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Abstract
Selecting appropriate index configurations that can minimize query processing costs is essential to database applications. This
problem becomes more complicated when the database is replicated on multiple nodes. There have been divergent design
index tuning algorithms utilizing either heuristic or optimization methods to solve this NP-Hard problem. However, this
index selection problem becomes much more complex for large-scale replicated database applications and efficient algorithms
are needed. While quantum computing has been investigated with promising results in several areas of database management,
such as query optimization and transaction scheduling, no work exists that studies the divergent design index tuning problem
for replicated databases. To fill this gap, in this paper, we provide our vision of a machine learning-based quantum divergent
design index tuning algorithm for replicated databases. We first discuss the issues that should be handled when designing
such an algorithm. We then describe an algorithm for classical computers that has been shown to perform better than other
existing algorithms and present our vision of how to transform the algorithm to its quantum version.
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1. Introduction
Given a database consisting of database tables with at-
tributes (columns) and tuples (records) residing on a com-
puter node, a workload of queries, and a space budget,
the Index Selection Problem (ISP) [1] is to select an in-
dex configuration composed of one or more attributes in
the database tables that would minimize the workload
processing time. Divergent design index tuning [2, 3, 4]
is the ISP problem for a replicated database where the
database is replicated on multiple nodes. It utilizes the
replication feature to select a set of index configurations,
each of which is specialized for a subset of the workload
to be run on a node. Due to such specialization, diver-
gent design index tuning has been shown to perform
better than the uniform approach where the same index
configuration is selected for all nodes.

Divergent design index tuning is an NP-hard prob-
lem [2]; therefore, heuristic and optimization approaches
[2, 3, 4] have been proposed to solve it on classical com-
puters. However, for large-scale database applications in
the era of Big Data where the numbers of computer nodes,
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database tables, tuples in each database table, attributes
in each database table, and queries are very large, which
exist in many application domains, such as e-commerce,
finance, and healthcare, the optimization problem be-
comes much harder to solve. In addition, besides retrieval
queries, update queries which include deletion, insertion,
and modification may also occur frequently, which adds
complexity to the problem. Developing a divergent de-
sign index tuning algorithm that can work efficiently for
such applications is needed.

Recently, quantum computing has attracted a lot of
global attention with many companies, research centers,
and funding agencies around the world making substan-
tial investments in the field [5, 6, 7, 8, 9]. As reported
in [10], in 2019, the IBM Quantum Network had only
40 members, but as of April 2023, there are more than
210 Fortune 500 companies, universities, research labs,
and startups participating in quantum computing. How-
ever, so far, not much research has been conducted in
the area of quantum database management. This can
be seen through the scarcity of quantum database re-
search papers published in database journals and con-
ferences. While quantum computing has been shown to
offer promising improvements over classical computing
with 103 times shorter runtime for query optimization
[11, 12] and with constant runtime vs. rapidly rising
runtime for transaction scheduling [13], which are two
NP-Hard problems in database management, it has not
been used to solve other database combinatorial opti-
mization problems, such as the ISP and divergent design
index tuning problem, which is also NP-Hard [1, 2]. At
the same time, a good amount of research done by the
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machine learning community has shown that quantum
computing accelerates machine learning algorithms and
enables them to learn using fewer data points than clas-
sical computing [14, 15, 16, 17, 18, 19]. Therefore, in this
paper, we present our vision of leveraging quantum com-
puting to develop a machine learning-based divergent
design index tuning algorithm for large-scale replicated
database applications.

The rest of the paper is organized as follows. Section 2
discusses the related work on classical divergent design
index tuning and the quantum computing background.
Section 3 describes the issues that a quantum divergent
design index tuning algorithm using machine learning
needs to handle. Section 4 presents our vision of such an
algorithm. Finally, Section 5 concludes the paper with
future research directions.

2. Related Work
In this section, we review the existing work on divergent
design index tuning for classical computers and then
provide the background on quantum computing.

2.1. Classical Divergent Design Index
Tuning

There exist a good number of algorithms that have been
proposed to select an index configuration on a single node
for the entire query workload [20, 21, 22, 23, 24, 25, 26].
They employ either heuristic, optimization, or machine
learning methods to carry out the index selection pro-
cess for the entire query workload. For databases that
are replicated on multiple nodes, instead of selecting
the same index configuration for every node, divergent
design index tuning algorithms [2, 3] make use of the
replicas to select the index configurations, one for a sub-
set of the query workload to be processed on a node.
Like the index selection on a single node for the entire
query workload, divergent design index tuning also aims
to minimize the overall query processing costs. Using a
heuristic method, DivDesign [2] first divides the query
workload into subsets, distributes each subset to a node,
selects an index configuration for each subset, and com-
putes the estimated processing cost of each query on
a node using the existing What-if tool [27]. It then re-
distributes the queries based on the estimated costs and
repeats the process until no change is detected for the
subsets. The results are the subsets of the query workload
and the node and index configuration to run each subset.
The algorithm reduces the index maintenance costs as it
reduces the number of indexes on each node. However,
it does not deal with dynamic query workload and node
failure. RITA [3] employs an optimization method to
solve the index selection problem. It uses a Binary Inte-

ger Program (BIP) to express the problem and uses an
existing BIP solver to derive the solutions. While RITA
addresses the weaknesses of DivDesign, the What-if tool
[28] that it uses to estimate the query processing costs is
not available on many database systems.

None of the algorithms, DivDesign and RITA, dis-
cussed above is able to learn from its past errors to im-
prove future index selection. Machine learning methods
have been used to incorporate learning into the index
selection process. Various learned index advisors exist,
such as the cost-model reinforcement learning [29], DRL-
based index advisor [22], OpenGauss [23], document
database index learning [26], SMARTIX [24], and DBA
Bandis [25]. However, all these machine learning-based
index selection algorithms are designed for a single node.
To deal with replicated databases on multiple nodes, DR-
Lindex [30, 31] employs a DRL algorithm to select the
index configurations for a cluster replicated database. Its
reward function considers the estimated processing cost
of the workload and the replica load unbalance factor.
While DRLindex [31] shows that DRL is a promising so-
lution for divergent index selection, it solely relies on the
query optimizer and only handles single-column indices.
DRL Divergent Index Advisor (DINA) [4] is designed
to address the limitations of DRLindex. To avoid pos-
sible query cost estimation errors due to using a query
optimizer, DINA employs two training phases where it
learns the efficiency of various possible query workload
partitions and their index configurations by creating the
indexes and observing the real execution times. It deals
with both single-column and multiple-column indices.

All the above algorithms were designed for classical
computers. To the best of our knowledge, there is no
existing quantum algorithm for divergent design index
tuning.

2.2. Quantum Computing Background
In this subsection, we introduce the quantum computing
background including the basics of quantum informa-
tion in Section 2.2.1 and quantum machine learning with
a special focus on variational quantum circuits in Sec-
tion 2.2.2.

2.2.1. Quantum Information and Quantum
Computing

Quantum information processing emerged from the need
to simulate quantum systems, which cannot be efficiently
represented by classical information units [32]. The rea-
son is that quantum systems can assume states that no
classical systems can. Unlike a classical bit, a quantum
bit (or qubit) can be in a superposition of 0 and 1, which
is collapsed on one of them upon measurement [33]. In
addition, a system of multiple qubits can be in an en-



tangled state. When in such a state, the outcome of the
measurements for the qubits are correlated to each other
[33]. These properties make the simulation of a system
of qubits (such as many other quantum systems) very
hard for a classical computer. They are also the reason
for the superiority of a quantum computer, which utilizes
qubits, against a classical one [34].

As the superiority of quantum computers results from
the special states that a system of qubits can assume, it is
important to keep these states undisturbed until the end
of the calculation. Unlike classical computers, the states
are not discrete in a quantum computer. For 𝑛 qubits,
the quantum state is represented by 2𝑛 complex values
with norm 1 [33]. This makes a quantum state more
susceptible to noise than a classical one. Environmental
noise can cause decoherence in a quantum system, which
will result in the loss of information [35].

The first studies on quantum algorithms have only
focused on providing a speed-up for problems that are
hard to solve on classical computers [36, 37, 38]. These
studies ignored the possible limitations of the first gener-
ation of quantum computers. In recent years, with the
invention of the first quantum computers, the focus of
research has shifted to developing quantum algorithms
that can work on modest hardware of our age. The first
generation of quantum computers which are also called
noisy-intermediate scale quantum (NISQ) computers [39],
suffers from a small number of qubits and short coher-
ence times. The main solution that has been proposed
so far is to create quantum-classical hybrid algorithms
that use quantum subroutines to solve smaller problems
which are then used to solve the main problem using a
classical computer. These algorithms are more suitable
to work on NISQ devices.

2.2.2. Quantum Machine Learning and
Variational Quantum Circuits

Among the hybrid algorithms, the ones that depend on
variational quantum circuits (VQCs) take up a big vol-
ume [40]. In these algorithms, quantum circuits that
apply parameterized quantum gates are used. These cir-
cuits consist of a small number of qubits and quantum
gates, and they are run many times during the course
of a program. Depending on the outcome of a VQC, a
classical optimizer tunes the parameters. The purpose
is to find the optimal values of the parameters and to
output the result obtained using these values. QAOA
[41] and VQE [42] are the most famous examples of such
algorithms. An application of these two algorithms to an-
other database problem, namely join order optimization,
has already been studied [43]

It has been shown that VQCs can be utilized for ma-
chine learning applications, which is not surprising since
the best set of parameters can be learned for a given

task. Additionally, it has been proven that the represen-
tation capacity of a VQC is higher than a classical neural
network [44]. This results in VQCs obtaining the same
solution quality as neural networks using fewer parame-
ters. Quantum machine learning has already been used
to solve join order optimization [45].

3. Issues in Designing a Machine
Learning-Based Divergent
Design Index Tuning Algorithm

In this section, we first discuss the issues that a machine
learning-based divergent design index tuning algorithm
needs to address regardless of whether it is designed to
run on a classical computer or on a quantum computer.
These issues are due to the design requirements of in-
dices, not due to the underlying hardware on which the
algorithm runs. We then discuss the issues that exist due
to the special characteristics of quantum computers.

3.1. Issues Common to Classical and
Quantum Computers

1. Single-Column Indices or Multiple-Column Indices:
As a query predicate may contain more than one at-
tribute, an index tuning algorithm that only deals with
single attributes may not yield good performance.
However, dealing with multiple attributes requires
index tuning algorithms to examine many combina-
tions of attributes, which is a complex and expensive
process.

2. Query Workload Analysis: The algorithm needs to
be able to analyze the query workload to identify the
query characteristics, such as the types, frequencies,
and predicates of the queries, and take them into con-
sideration in selecting appropriate indices. In addition,
as the algorithm is designed for replicated databases
on multiple nodes, it also needs to consider the cur-
rent query workloads on the nodes in order to decide
what index configurations should be selected to run
which queries on which nodes.

3. Cost Evaluation: The cost of an index configuration
consists of many components, such as time to create
indices, time to perform I/Os, time to process queries
on CPUs, time to update indices due to deletion/in-
sertion/modification queries, and space to create in-
dices. In addition, for replicated databases on multiple
nodes, the cost in terms of the degree of load balanc-
ing should also be included. The algorithm design
also needs to consider whether it should rely on the
estimated costs produced by an existing query opti-
mizer or it should rely on the actual query execution
time. The former is simpler to use but the resulting



costs may not be accurate due to the errors of the
query optimizer. On the contrary, the latter is more
complicated as the algorithm will need to be designed
in such a way that it can determine when and how
the actual query execution information is obtained
and how to incorporate such information into its pro-
cess to improve the next index selection round, even
though it can avoid the errors made by the query
optimizer.

4. Machine Learning Issues: When using machine learn-
ing to predict index configurations as a part of a di-
vergent design index tuning algorithm, the following
are some of the additional issues that should also be
investigated:
a) Type of machine learning algorithm: There are

different types of machine learning algorithms
that can be used [46]: supervised machine learn-
ing such as decision tree and neural network; un-
supervised machine learning, such as clustering
and association rule mining; and reinforcement
learning. With supervised learning, a lot of la-
beled data (training data) must exist prior to be-
ing used to build a learning model for index pre-
diction, which is often difficult to obtain in real
applications. With unsupervised learning, a lot
of data still need to exist for the query patterns
discovered to be meaningful, even though no la-
beled data are required. Reinforcement learning
does not require labeled data to be available in
advance because it learns as it goes, but a proper
reward function must be designed to compute the
rewards for the actions taken. A combination of
these algorithms can also be used, such as deep
reinforcement learning where a neural network
trained based on a sample set of labeled data is
used inside the reinforcement learning process.

b) Data Representation, Collection, and Cleaning:
What data are needed for the chosen machine
learning algorithm, how to represent them, and
how to collect them? Data may include attributes
in the database, queries, database statistics, and
so on. Once they are collected, how to deal with
the data quality issues, such as data inconsistency,
data missing, and outliers?

c) Dynamic data: as data in database applications
change over time, the machine learning model
constructed before the data change may no longer
perform well for index selection, then how to de-
tect this phenomenon, and how to rebuild the
model incrementally to reflect the new data with-
out having to rerun the machine learning algo-
rithm from the beginning are among the issues
that need to be handled.

3.2. Issues Specific to Quantum
Computers

1. Data Loading and Encoding: As classical data are
stored as bit strings of 0s and 1s, to store and process
them in a quantum computer, the first issue is how to
encode classical data into qubits representing quan-
tum states in such a way that would minimize the
numbers of qubits and the circuit depths. There are
various encoding techniques [9, 45]: basic encoding
encodes each classical bit into a qubit; angle encod-
ing provides a denser encoding by encoding each real
value into a qubit; and amplitude encoding, which
provides the densest encoding but also generates the
most complex circuit depth, encodes each real value
into the amplitudes of the quantum state, allowing 2𝑛
values to be encoded into 𝑛 qubits. As different en-
coding algorithms require different numbers of qubits
and create different circuit depths, the choice of which
algorithm to use should aim at the ability to store the
necessary data using the minimum required quantum
resources in terms of qubits and gate operations.

2. Data Decoding: This process describes how to retrieve
and interpret the results from a quantum computer.
There may be different options like choosing the most
occurring bit pattern in the measurements, calculat-
ing the probabilistic expected value of the quantum
circuit, i.e., the expectation value, and the probability
distribution of the measured values. There may also
be cases where more qubits are measured in the out-
put than needed for the representation of the results,
such that these additional values may just be ignored
or several measured values are mapped to single ones
of the result domain. For example, an index tuning
algorithm may retrieve the tuning parameters from a
quantum circuit.

3. Quantum Circuit Design: The longer the depths of the
quantum circuits implementing the quantum opera-
tions designed for the divergent design index tuning
algorithm, the more qubits, gates, and control opera-
tions are needed, the more errors are encountered due
to noise and decoherence of qubits, and the longer
it takes to execute the algorithm. It is thus impor-
tant to design the algorithm in such a way that the
circuit depths are minimized. Techniques that opti-
mize quantum circuits, such as gate cancellation, gate
merging, and gate synthesis should be investigated
[47, 48]. Gate cancellation removes redundant gates
such as those that cancel each other out; gate merging
merges consecutive gates of the same operation into
one single gate; and gate synthesis efficiently decom-
poses complex gates into sequences of elementary
gates available on the hardware being used. While
gate synthesis may increase circuit depth at first, its
resulting elementary gate sequences may enable fur-



ther circuit optimization via gate cancellation and gate
merging.

4. Training Data Handling: Training data is used in the
machine learning part of the machine learning-based
divergent design index tuning algorithm. On classical
computers, the amount of training data and its quality
impact the accuracy of the machine learning model.
The same is true on quantum computers. However,
with errors caused by noise and decoherence of qubits
as discussed in the background Section 2.2, an impor-
tant issue is to determine what would be the sufficient
amount and quality of training data to meet the re-
quired accuracy of the machine learning model, and
subsequently, the accuracy of the divergent design
index tuning algorithm, while taking such errors into
account.

5. Quantum Machine Learning: As there already exists
a good number of quantum machine learning algo-
rithms in the literature [14, 15, 16], an issue to con-
sider is whether one or more such algorithms can be
incorporated into the divergent design index tuning
algorithm, or whether any of those algorithms needs
to be revised before adoption, or a new quantum ma-
chine learning algorithm should be developed.

6. Hybrid Algorithms: Due to the limitation in the num-
ber of qubits and the decoherence time available on
current quantum computers, hybrid approaches that
take advantage of both classical and quantum com-
puters have been proposed in areas such as quantum
machine learning [14, 15, 16] and quantum query op-
timization [9, 45], where a part of the algorithms are
executed on a classical computer while another part
is executed on a quantum computer. To adapt a hy-
brid approach in quantum machine learning-based
divergent design index tuning, some key issues that
need to be addressed are to decide which parts of
the algorithm should be processed on a classical com-
puter, which parts should be processed on a quantum
computer, and how these parts should communicate
with each other to produce the intermediate results
and the final results, while taking advantage of clas-
sical parallelism and quantum parallelism as well as
considering load balancing on each computer and the
waiting time between different processes.

7. Algorithm Evaluation: To evaluate the quantum
speedup in terms of query execution time, theoreti-
cal analyses and/or experimental evaluations should
identify cases where quantum algorithms can outper-
form classical counterparts. They should study the
impacts of the database size in terms of attributes and
tuples, query workload, database update rate, number
of nodes, number of qubits, number of gates, circuit
depths, decoherence time, and error rate.

8. Properties of Quantum Computers: There is a rapid
development and huge improvements in the develop-

Figure 1: The architecture of DINA [4]

ment of quantum hardware in recent years and it is
expected that this progress will continue in the fu-
ture. However, in order to guide the development
of quantum hardware and provide researchers with
quantum hardware feedback for their development
goals, it is a key point to investigate the following
question: Which properties (such as latencies of the
quantum gates, supported quantum circuit depths and
noise rates) should a future quantum computer have
to achieve a certain accuracy and performance im-
provement over classical hardware for our quantum
approach?

4. A Proposed Quantum Machine
Learning-Based Divergent
Design Index Tuning Algorithm

In this section, we first briefly describe DINA [4], a di-
vergent design index tuning algorithm using Deep Rein-
forcement Learning (DRL) for classical computers that
has been shown to perform better than existing algo-
rithms. We then provide our vision of how to extend this
algorithm for quantum computers.

4.1. DINA: A DRL Divergent Design
Index Tuning Algorithm for Classical
Computers

In [4], DINA (DRL Divergent Index Advisor) has been
proposed to select indices for a database replicated on
multiple nodes. The database copy on each node is called
a replica. DINA works for both single-column indices
and multiple-column indices. It uses DRL where its DRL
agent learns as it goes by exploring different query work-



load partitioning alternatives among the replicas and the
effectiveness of their index configurations. The DRL effi-
ciently explores the large search space. To avoid relying
solely on the query optimizer as the estimated costs gen-
erated by the query optimizer can be erroneous, it trains
the DRL agents in two phases: pre-training using the
estimated query cost generated by a query optimizer and
the re-training phase using the actual query execution
time. As shown in Fig. 1, the algorithm has the three
following major steps:

Step 1: Invoke the Workload Forecaster module which
runs an algorithm that forecasts the coming query
workload [49] to generate a set of query tem-
plates, and the query instances and the number
of query instances for each query template.

Step 2: Submit the query workload to the Pre-Processing
module to derive a set of candidate indices which
are the attributes in theWHERE and JOIN clauses
in the query templates, and create a workload ma-
trix where rows are the query templates, columns
are the candidate indices, and an entry has a
value of 1 if the candidate index is an attribute in
the WHERE or JOIN clause of the corresponding
query template and 0 otherwise.

Step 3: Use DRL to process the query workload to select a
proper index configuration for each replica such
that the overall query processing cost and the
workload skew on the replicas are minimal. The
DRL framework is composed of the environment
and agent. The environment defines the states of
the replicas based on their index configurations
and the possible actions for each state that the
agent can take and returns a reward value for
each action. The current state is represented as a
state matrix where rows are the replicas, columns
are the candidate indices, and an entry is 1 if the
agent has selected the corresponding index for
the corresponding replica and 0 otherwise. The
possible actions are which query templates to be
executed on which replicas and which candidate
indices can be used on which replicas. An action
at time 𝑡 denoted as 𝑎𝑡 is to select a query template
to be executed on a replica and to select an index
for the queries of that template.

Given a state at time 𝑡 denoted as 𝑠𝑡, the agent takes
the action predicted by Deep Q-learning [50], the state
is then changed from 𝑠𝑡 to the new state 𝑠𝑡+1, and the
agent receives a reward value 𝑟𝑤𝑡. The reward of an
action is computed using a reward function based on
the query processing cost reduction 𝑟𝑒𝑤𝑎𝑟𝑑(𝐼 ) calculated
from the reduction in the estimated query processing
cost generated by the query optimizer (during the agent

pre-training phase) or in the actual query execution cost
(during the agent re-training phase), and the inverse of
the total workload-skew of the replicas 𝑟𝑒𝑤𝑎𝑟𝑑(𝑆).

𝑟𝑒𝑤𝑎𝑟𝑑 = 𝛼 × 𝑟𝑒𝑤𝑎𝑟𝑑(𝐼 ) + 𝛽 × 𝑟𝑒𝑤𝑎𝑟𝑑(𝑆)

where 𝛼 and 𝛽 are the weights obtained by trial and
error defining a trade-off between query cost reduction
and load-balancing. The details of these functions can
be found in [4]. In Deep Q-Learning, the value of each
action 𝑎 in a state 𝑠 at each time step is computed using a
Q-function. The action predicted for the agent to take is
the one that has the highest Q value, which is the most
rewarding action. In DINA, the Q-function used is the
following Bellman equation [51]:

𝑄(𝑠𝑡, 𝑎𝑡) = 𝑄(𝑠𝑡, 𝑎𝑡) +
𝛼[𝑟𝑤𝑡+1 + 𝛾𝑚𝑎𝑥𝑎𝑡+1𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡, 𝑎𝑡)]

where 𝑄(𝑠𝑡, 𝑎𝑡) is the Q-value for state 𝑠𝑡 and action
𝑎𝑡, 𝛼 is the learning rate, 𝑟𝑤 is the reward value, 𝛾 is the
discount rate, and 𝑚𝑎𝑥𝑎𝑡+1𝑄(𝑠𝑡+1, 𝑎𝑡+1) is the maximum
value of the estimated future return for the next state.
Due to the large search space, the agent uses a neural
network to predict the action to take at each state. The
network is trained during the agent pre-training and re-
training phases using a random sample of the agent’s
experience tuples (𝑠𝑡, 𝑎𝑡, 𝑟𝑤𝑡, 𝑠𝑡+1) stored in the memory.

Experiments using the TPC-H [52] and TPC-DS [53]
database benchmarks have shown that DINA performs
better than the existing algorithms, DivDesign [2] and
RITA [3]; and the version of DINA that uses the actual
query execution time through the re-training phase per-
forms better than the version of DINA that uses the query
processing cost estimated by the query optimizer through
the pre-training phase. The detailed description and ex-
periment results of DINA can be found in [4].

4.2. Quantum DINA: Our Vision to
transform DINA to a quantum
approach

Looking at the architecture of DINA in Figure 1, we iden-
tify three possible components which can be replaced
by a quantum approach. These are the Workload Fore-
caster, the Divergent Design Index Selection, and the
Cost Estimation. We can choose to replace all with quan-
tum approaches or keep some classical ones. We will
use variational quantum circuits with their properties
to potentially learn with fewer training data [17], such
that our new architecture can adapt faster to changes in
indices, queries, and data sets.

Workload Forecaster The workload forecaster can
take advantage of the probabilistic nature of quantum



computing to simulate uncertainty about the expected
query workload. We have two possible approaches of
mapping quantum states to query templates.

One approach is to assign a query template to each
quantum state and the probability of the quantum state
is the percentage of queries belonging to this template.
Many shots of the quantum circuits are required to get a
good approximation of all probabilities.

Another approach is to assign a query template to each
qubit and count how often each qubit is measured as 1.
This allows the counting of multiple templates with each
execution and thus requires fewer shots.

Index Selection We can replace the deep neural net-
work of the classical agent with a VQC. This component
has the task of choosing an action from a given state of
the environment. It gets the state of the environment
and an action as input and returns a predicted reward.

The state of the environment is a 𝑟 × 𝑛matrix of binary
variables. A basis encoding would require 𝑟 ∗ 𝑛 qubits
and is not feasible. Instead of looking at it as a matrix
of binary variables, we can interpret a row or column
as an integer in binary code. This allows us to reduce
the number of inputs to 𝑛 or 𝑟 integers. As we know the
number of bits, we know the upper bound of the integer
value. This makes it suitable for the scaling required for
angle encoding.

The action consists of selecting a replica for a query
template and choosing an index configuration. Each
query template and each replica can be given an ID, such
that we have two additional integers as input. The choice
of an index configuration is a set of possible indices. As
we know all possible indices, this can be seen as a vector
of binary variables, which in turn can again be inter-
preted as an integer.

With this encoding approach, we get 𝑛 + 3 or 𝑟 + 3
integers as input, and, with angle encoding, we get the
same number of qubits.

Cost estimation The cost estimator gets a query tem-
plate and an index configuration as input and returns
the estimated cost for the execution of a query from the
given template with the given index configuration. If we
use the same encoding method as that used for the index
solution, we will have 2 input values, which are the ID
of the query template and the set of indices interpreted
as an integer. With angle encoding, 2 qubits would be
sufficient for the input. As our output should be the esti-
mated cost of the query execution on the replica with the
given index, it should be a continuous value. By using
the probabilities of a qubit being measured as 1, we can
create a continuous output value. If 𝑝1 is the probability
of 1 being measured for the first qubit and 𝑝2 the proba-
bility of 1 for the second qubit, we can define the cost 𝑐

as 𝑐 = 𝑝1
𝑝2

. This will result in a value in the interval [0, ∞]
with 𝑐 = 0 for 𝑝1 = 0 and 𝑐 = ∞ for 𝑝2 = 0. The precision
of this cost value depends on the number of shots of the
quantum circuit.

The suggested encoding and decoding approaches are
not the only possible representations of the inputs and
outputs. Many other representations exist and an experi-
mental evaluation is needed to find out which represen-
tation has the best learning performance while having a
reasonable qubit requirement.

5. Conclusions and Future
Research

In this paper, we aimed to provide our vision of a quan-
tum divergent design index tuning algorithm that makes
use of machine learning to select indices for large-scale
replicated database applications. We discussed the issues
that the algorithm needs to address. We then presented
an algorithm for classical computers and our approaches
to how to transform it into a quantum algorithm.

For future research, we plan to formalize and imple-
ment our quantum algorithm using one of the widely-
used open-source software development kits for quan-
tum computers like the popular qiskit [54]. We will then
conduct experiments to evaluate the algorithm’s perfor-
mance and compare the experimental results to those of
its classical counterpart.
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