
BabelMR: A Polyglot Framework for Serverless MapReduce
Fabian Mahling*, Paul Rößler*, Thomas Bodner and Tilmann Rabl

Hasso Plattner Institute, University of Potsdam, Germany

Abstract
The MapReduce programming model and its open-source implementation Hadoop have democratized large-scale data
processing by providing ease-of-use and scalability. Subsequently, systems such as Spark have dramatically improved
efficiency. However, for a large number of users and applications, using these frameworks remains challenging, because they
typically restrict them to specific programming languages or require cluster management expertise.

In this paper, we present BabelMR, a data processing framework that provides the MapReduce programming model to
arbitrary containerized applications to be executed on serverless cloud infrastructure. Users provide application logic in
Map and Reduce functions that read and write their inputs and outputs to the ephemeral filesystem of a serverless function
container. BabelMR orchestrates the data-parallel programs across stages of concurrent cloud function executions and
efficiently integrates with serverless storage systems and columnar storage formats. Our evaluation shows that BabelMR
reduces the entry hurdle to analyzing data in a distributed serverless environment in terms of development effort. BabelMR’s
I/O and data shuffle building blocks outperform handwritten Python and C# code, and BabelMR is competitive with state-of-
the-art serverless MapReduce systems.

1. Introduction
Data processing workflows are becoming increasingly
complex. Interdisciplinary teams of data engineers, an-
alysts, and scientists build data pipelines that combine
different programming languages, runtime environments,
and computing frameworks [1]. The resulting multi-
language programs are commonly integrated via three
different approaches. First, relational database systems
are extended to support user-defined functions (UDFs).
UDFs are constrained to be written in specific language
dialects because of security or performance concerns of
the database vendors and do not allow to express complex
analytical algorithms. Second, MapReduce systems are
more flexible and support general analytical dataflows
[2, 3]. They prioritize a few popular languages (for ex-
ample, Python [4] and SQL [5]) and provide hooks for
other languages in their individual OS environment [6].
Third, OS-level containers are employed to encapsulate
arbitrary applications along with their dependencies [7].
Redshift, BigQuery, and Snowflake have integrated UDFs
as containers [8, 9, 10]. SAP HANA, Databricks, and
ClickHouse have containerized their entire architectures
[11, 12, 13]. The user code and system components are
coupled loosely via REST APIs, which greatly simplifies
integration but impedes the performance optimizations
available to the prior approaches.

Joint Workshops at 49th International Conference on Very Large Data
Bases (VLDBW’23) — Workshop on Serverless Data Analytics (SDA’23),
August 28 - September 1, 2023, Vancouver, Canada
*These authors contributed equally.
$ fabian.mahling@student.hpi.uni-potsdam.de (F. Mahling);
gerd.roessler@student.hpi.uni-potsdam.de (P. Rößler);
thomas.bodner@hpi.de (T. Bodner); tilmann.rabl@hpi.de (T. Rabl)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

Another entry barrier for users of distributed data
processing systems is the management of the underlying
compute infrastructure. Conventional compute services
based on virtual servers require decisions on instance
types, cluster sizes, and pricing models [14, 15]. Virtual
containers need orchestration and observability [16, 17].

In our view, these hurdles are not inherent issues
of scalable data processing and recent developments in
serverless computing can help to alleviate them.

Multiple cloud providers have introduced serverless
compute services that allocate resources based on con-
sumption, removing the need for manual provisioning
and scaling [18, 19, 20]. The services have supported
lightweight functions initially and now also run full-
fledged containers [21]. Recent research has indicated
the potential of data processing systems built on server-
less functions. PyWren [22], Starling [23], and Lambada
[24] have demonstrated performance and scalability that
are competitive to systems on regular virtual machines.

Building on this work, we present the BabelMR frame-
work for multi-language, data-intensive applications.
Users of BabelMR package applications in containers
and declare them to be mappers or reducers. Collocated
with the user’s application artifacts in a container is the
BabelMR execution engine, which efficiently integrates
with cloud storage and standard file formats. Between the
BabelMR engine and the user application, data is passed
locally through the container’s ephemeral filesystem.
The distributed computation of the containers within
and across map and reduce stages is orchestrated by the
BabelMR coordinator and carried out on the serverless
compute service AWS Lambda. This enables users to
write their applications in any language and run them in
a data-parallel fashion on serverless cloud infrastructure
with no operational overhead.

mailto:fabian.mahling@student.hpi.uni-potsdam.de
mailto:gerd.roessler@student.hpi.uni-potsdam.de
mailto:thomas.bodner@hpi.de
mailto:tilmann.rabl@hpi.de
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

Shared Object StorageUser CodeBabelMR Local Ephemeral Filesystem

M
ap

 S
ta

ge
Export

Import Map Export

Import map0.parquetRepartition Export

ou
t.c

sv

in.csv

Import 0.parquet

R
ed

uc
e

St
ag

e Import Export

Import Reduce Export

reduce0.parquetImport Export
map0.parquet
map1.parquet

...

in.csv

ou
t.c

sv

λ λ λ

λ λ

λ

λ

unpartitioned S3 objects

partitioned S3 objects

pre-aggregated S3 objects

aggregated S3 objects

Figure 1: BabelMR dataflow: Stages are executed in parallel on serverless functions. Within one serverless function, BabelMR
imports data from shared object storage (converts it into common formats) and outputs it to the local filesystem. The user code
interacts with the filesystem only. BabelMR loads its output (performs repartitioning) and exports the data to shared storage.

In summary, we make the following contributions:

• We implement a MapReduce-style system on
serverless cloud infrastructure. Particularly, we
propose a solution for the data-parallel execution
of any user code with serverless containers.

• We conduct microbenchmarks to determine the
startup time of containers in AWS Lambda and
the performance of the ephemeral filesystem for
low-touch inter-process communication.

• We use queries from the TPC-H and TPCx-BB
benchmarks in multiple languages to evaluate the
development efficiency and the performance of
BabelMR, as compared to state-of-the-art server-
less data processors.

2. Overview of BabelMR
In this section, we present the most relevant serverless
compute and storage services of AWS and introduce the
architecture of BabelMR. The presented concepts apply
to the services of other cloud providers [25, 26] as well.

2.1. Serverless Cloud Infrastructure
AWS Lambda [18] is a serverless, event-driven compute
service. Users deploy applications in Lambda as so-called
functions. The user’s application code is embedded into
the Lambda Runtime, which is executed on lightweight,
stateless virtual machines [27, 28]. For each function, the
memory size can be configured from 128 MB to 10 GB.
Compute power scales linearly with the memory size up
to 6 vCPUs. Each function has ephemeral (local) storage
that can be configured between 512 MB and 10 GB.

AWS Lambda handles concurrent invocations auto-
matically, by spinning up multiple instances of VMs that
run the user code. The inherent elasticity this provides
is ideal for the sporadic nature of the workloads that
serverless data processing targets.

Amazon S3 [29] is an object storage service providing
elastic scalability. Objects are stored in buckets and are
identified by a unique key. Compared to other serverless
storage systems (e.g., key-value stores or filesystems),
storage costs are low and network bandwidth is high.
This renders S3 most suitable for big data processing.

2.2. System Architecture
In BabelMR, data pipelines are run in stages. Per stage,
Lambda-based workers execute the map or reduce user
functions concurrently, as shown in Figure 1. We co-
deploy the BabelMR execution engine and the user code
on the Lambda functions. During a function invocation,
the BabelMR engine imports a partition of the dataset into
the local filesystem. Then, user code is executed, which
reads the locally stored files containing key-value batches.
The user code stores its output back to disk. Finally, the
results are read by the BabelMR engine, partitioned, and
written back to shared storage.

2.3. Programming Model and Interface
BabelMR exposes a MapReduce-style interface. A job in
BabelMR is configured with map and reduce function
binaries and object storage locations for the input and
output data. We allow the specification of multiple inputs
(e.g., different tables) for map jobs. This facilitates the
implementation of map-side joins (see Code Listing 2).
Additionally, the key and value attributes are specified,
which are used for data partitioning and distribution.

10 10 20 20 30 30 40 40 50 50 25
0

50
0

10
00

20
00

40
00

100

101

Package Size (MB)

D
ur

at
io

n
(s

ec
on

ds
)

Zip S3 Zip Direct Image ECR

Figure 2: Initialization times for different package sizes,
uploaded directly, through S3, or as an image through ECR.
Measured on Lambda workers with 2,048 MB RAM.

128 256 512 1024 2048 4096

102

103

104

Lambda Function Memory Size (MB)

Th
ro

ug
hp

ut
(M

B
/s

)

Write Read Maximum Memory Usage

0

1

2

3

4

M
em

or
y

U
sa

ge
(G

B
)

Figure 3: Read and write speeds for the local filesystem
of Lambda functions with respect to function size. 1 GiB
of data was written chunks of 16 MB.

Runtime Customization. We use a custom Lambda
runtime to orchestrate user function binaries written in
any language, and thus are not limited to the languages
supported by the standard runtimes [30]. Our file-based,
inter-process communication spares the implementation
of language-specific adapters. Within a stage and worker,
the BabelMR engine loads a partition of the input data
and writes a file to the local filesystem, containing key-
value pairs. The user code must load and process the file
contents and output a file that again contains key-value
pairs together with a schema description. The BabelMR
engine exports the output data to remote shared storage.

Container Integration. To deploy their applications to
AWS Lambda, users directly upload zipped binaries to
their functions, upload the zipped binary to S3 or upload
a container image [31] to Amazon Elastic Container Reg-
istry (ECR) [32]. The uncompressed sizes of the Zip files
and container images are limited to 250 MB and 10 GB,
respectively.

1 # Base image containing BabelMR engine
2 FROM hpides/babelmr:latest
3 # Installation of runtime environment
4 RUN yum install python3 -y
5 COPY requirements.txt ./
6 RUN python3 -m pip install -r /var/task/

requirements.txt
7 COPY *.py ./
8 # Will be executed after BabelMR import
9 ENV MR_CMD="python3 /var/task/app.py"

Code Listing 1: Dockerfile to install the user’s execution
environment and code on top of our provided base image.

In BabelMR, the user’s application is co-deployed with
its runtime environment and the BabelMR engine. This
may quickly exceed the size limitation of Zip-based
Lambda functions. Container image-based functions do
not entail such a strict limit and have worked for all of
our use cases, ranging from simple scalar UDFs to full-
fledged, in-memory database engines [33]. To evaluate
the impact of these deployment methods on function
startup times, we build different function packages, each
containing a dynamically sized BLOB and a minimal, run-
ning function. Then, we measure the time it takes for a
function to be initialized and operational.

Figure 2 shows that container images deployed via
ECR impose no initialization overhead. Instead, initial-
ization times decrease compared to Zip-based uploads
and stay constant for different package sizes. This is due
to Lambda employing lazy loading for images [21]. Thus,
files within the images are only loaded on the running
function, when they are accessed/read - in this case only
the minimal function. When reading the blob, we get
a throughput of roughly 150 MB/s for lazy loading files
from ECR for 50 concurrently invoked Lambda functions.
After the blob is read for the first time, subsequent read
speeds did not differ based on the deployment variant.

Deploying the code packages as a Docker image over-
comes potential size limitations. It also simplifies the
user’s integration with BabelMR, as we can provide a
base image, which contains all our dependencies. Based
on this image, the MapReduce executable and the execu-
tion environment are added (in our tests, the Dockerfiles
were less than 10 lines long, see Listing 1). Using image-
based Lambda functions is, therefore, the selected variant
in our system.

1 item=ParquetFile("/tmp/0.parquet").to_pandas()
2 sale=ParquetFile("/tmp/1.parquet").to_pandas()
3

4 filtered_item = item[
5 item["i_category_id"].isin([1, 2, 3])
6].filter(["i_item_sk"])
7

8 filtered_sale = store_sale[
9 store_sale["ss_store_sk"].isin([10, 20, 33])

10].filter(["ss_item_sk", "ss_ticket_number"])
11

12 filtered_sale["item_id"] = filtered_sale[
13 "ss_item_sk"
14]
15 joined = (
16 filtered_sale.set_index("item_id")
17 .join(
18 filtered_item.set_index("i_item_sk"),
19 how="inner")
20)
21

22 joined.reset_index(drop=True, inplace=True)
23 fastparquet.write("/tmp/out.parquet", joined)

Code Listing 2: Python code for the first map function of
TPCx-BB Q1 in BabelMR.

Read only specified row groups of file.
def read_partitioned(fd, columns, opener):

dfs = []
inputfile = fd["bucket"] + "/" + fd["key"]
partitions = fd["partitions"]
pf = ParquetFile(inputfile, open_with=opener)
for i, rg in enumerate(pf):
Check if current partition is specified.
if partitions == [] or i in partitions:
dfs.append(rg.to_pandas(columns=columns))

return pd.concat(dfs)

def read_partitioned_parallel(columns, opener,
file_descriptions):

Spin up multiple threads for parallel read.
with ThreadPoolExecutor() as executor:
result_dfs = list(
executor.map(
lambda fd: read_partitioned(
fd, columns, opener
),

file_descriptions))
return pd.concat(result_dfs)

Code Listing 3: Parallel import of Parquet files written
in Python for the BabelMR variant All Custom.

2.4. Execution
In a MapReduce system, the I/O-bound tasks of remote
data transfer and data shuffling are often the bottleneck
and focus of optimization. In BabelMR, the worker-local
communication between the engine process and the user
application’s process also needs to be efficient.

Distributed Communication. BabelMR employs scan
and shuffle operators that are optimized for processing on
serverless infrastructure. These operators largely follow
the design of the state-of-the-art Starling and Lambada
systems. They encapsulate efficient reading, writing, and
format conversions between CSV, Apache Parquet [34],
and ORC [35]. Also, they are fine-tuned to the CPU and
network characteristics of Lambda and S3.

Inter-process Communication. BabelMR transfers
data between its engine process and the application’s
process via the local filesystem. Using shared memory
or message passing may yield performance superior to
filesystem I/O [36]. However, it requires the user code
to implement complex read and write operations or use
libraries, such as Arrow Flight [37], which are not widely
supported across programming languages. Conversely,
using the filesystem yields high usability as file access
is supported by every language. To evaluate whether
the filesystem achieves acceptable performance under
this usability trade-off, we measure the throughput of
Lambda’s local ephemeral storage.

To measure I/O throughput, we write 1 GiB of data in
chunks of 16 MB into the /tmp/ directory of the Lambda

instance with a single thread. We flush the file streams
and then read the files serially. We executed the bench-
mark with 10 repetitions on 32 concurrently invoked
Lambda functions. Figure 3 shows the median read and
write speeds and the memory used with respect to the
function’s RAM. The measured write speed increases
with the function size from 32 MB/s to 512 MB/s. The
read speed for a 128 MB function is 34 MB/s and goes up
to 9.9 GB/s for the 4 GB function. This is likely due to
file accesses being cached in memory - as also indicated
by the memory used.

Thus, when RAM is sufficiently available, using the
filesystem as intermediate storage is reasonable. Our
experiments indicate that execution times of big data
pipelines benefit from larger workers, in particular, be-
cause CPU resources scale accordingly. Additionally, we
do not import more than 340 MB of data per function
invocation as the network throughput diminishes after
an initial network burst budget. Consequently, we do not
process larger-than-memory data on a single function.

Optimizations can be applied, to further improve data
exchange. Instead of storing data as CSV files in S3,
choosing more efficient file formats like Parquet [34]
or ORC [35] yields better performance. Less data needs
to be read from S3 and partitioned data can be stored
in one single file. As the BabelMR engine can convert
between standard formats, user code can operate on the
preferred format independent of the format used in S3.

Programming languages may entail long initialization
times (e.g., for dependency loading). In a regular Lambda

runtime, the execution environment is cached when an in-
vocation finishes. The initialization overhead occurs once
per function execution lifecycle [38]. In BabelMR, the
application is newly initialized per invocation, because
it’s process is not kept alive by the underlying custom
runtime. For many languages, it is possible to employ
wrappers that keep application state cached, eliminating
repeated initialization. This, however, is not supported
out-of-the-box and requires per-language effort.

3. Evaluation
To evaluate the usability and performance of BabelMR,
we write BabelMR applications for the relational query
TPC-H Q1 [39] and the MapReduce job TPCx-BB Q1 [40,
41]. We implement the applications in Python and C# in
three variants. The source code can be found on GitHub
under https://github.com/hpides/babelmr-applications.

All Custom implements all functionalities a MapReduce
system requires. The complete workflow includes S3
access (partitioned import/export), the application logic
(map/reduce), and repartitioning methods. The mappers
export partitioned Parquet files and the reducers import
individual row groups from multiple map outputs. We use
established dataframe libraries for the application logic,
the AWS SDK for S3 access, and implement repartitioning
and parallelized reads to the best of our knowledge.

System-side Shuffle takes care of data shuffling. As
partitioning strategies are independent of the application
logic, a generic intermediate pipeline is supplied, which
shuffles between map and reduce stages. To configure
the intermediate pipeline, we specify the attributes that
should be available on each reducer (i.e., the values), the
attributes the data should be partitioned on (i.e., the key)
and the number of reducers 𝑛. The intermediate pipeline
reads the map outputs and yields output files with 𝑛
partitions, which are consumed by subsequent reducers.

BabelMR entirely relieves the user of the responsibility
to deal with cloud storage access as we collocate the user-
defined application together with the BabelMR engine on
one function (see Section 2). We build an executable that
reads input from the filesystem, performs the batched
job and writes the result to the filesystem.

TPC-H Q1 TPCx-BB Q1

Python C# Python C#
All Custom 152 150 210 149
System-side Shuffle 143 100 201 94
BabelMR 120 71 170 69

Table 1: Lines of code to implement the MapReduce programs.
The values for BabelMR include a Dockerfile with 4 LoC for
C# and 6 LoC for Python.

Additionally, we implement TPC-H Q1 in the server-
less MapReduce frameworks Corral [42] and PyWren as
well as with PySpark [4] and Ray [43]. We execute the
latter with AWS Elastic MapReduce (EMR) [44] and AWS
Glue [45]. We compare them against BabelMR (Go) and
BabelMR (Python), where we use Go and Python for the
application code. Here, we process CSV data, as Parquet
is not supported by Corral.

3.1. Development Efficiency
By using BabelMR, the required lines of code are reduced
by 19% and 53% compared to All Custom (see Table 1).
We do not have to implement any S3 access, partitioning,
or shuffling logic. In fact, in BabelMR, the application
code does not use the AWS SDK at all.

Listing 2 shows the Python code for the first batched
map job of TPCx-BB Q1. Here, we can utilize well-known
APIs, as data is stored in the filesystem. Import and export
code (lines 1-2 and 23) become simple and short. The
majority of the file (lines 4-20) contains application logic.
Likewise, we implement the reduce jobs of the query.
With the Dockerfile in Listing 1, we install dependencies
and code on top of the BabelMR base image.

For All Custom and System-side Shuffle, we implement
S3 access ourselves. Listing 3 shows the implementation
of a parallelized import from S3.

All of the MapReduce frameworks abstract from the
distribution logic. BabelMR applications are similar in
length to programs in Corral and PyWren. PySpark and
Ray programs are shorter due to the mature integration
into both dataframe and cloud service libraries.

3.2. Performance
The benchmarks were executed from May to July 2023.
We configured Lambda workers with 5,120 MB RAM
and 512 MB local storage. We invoked workers of the
same stage concurrently from a c5.2xlarge EC2 instance
within the same region (us-east-1). For Ray on Glue,
we use Ray 2.4 and Glue 4.0. We conduct benchmarks
for EMR on elastic and static clusters using emr-6.11.0.
Elastic clusters are initialized with minimum resources
and grow while executing a job. Static clusters start the
job execution with initialized resources. We measure
runtimes of the three variants and related systems on
four scale factors and take the average of 10 warm runs.

For scale factor 𝑛, we use 𝑛 workers in the map stage
of the TPC-H Q1, and one worker for the reduce stage.
Intermediate shuffle stages are executed on one worker
for TPC-H Q1 and ⌈ 𝑛

50
⌉ workers for TPCx-BB Q1. For

TPCx-BB Q1, we use ⌈𝑛
2
⌉ workers in the first map stage

and ⌈ 𝑛
10
⌉ workers in each reduce stage. The data is stored

in Parquet format across 𝑛 files for TPC-H Q1 and ⌈𝑛
2
⌉

files for TPCx-BB Q1. We evaluate pipelines that process

https://github.com/hpides/babelmr-applications

1 10 100 1000
0

20

40

60

80
R

un
ti

m
e

(s
ec

on
ds

)

TPC-H Q1 Python

BabelMR System-side Shuffle All Custom

1 10 100 1000
0

50

100

TPCx-BB Q1 C#

Scale Factor

Figure 4: End-to-End runtimes for TPC-H Q1 and TPCx-BB Q1 executed on different scale factors with the different proposed
architectures in Python and C#. The data was stored in S3 and partitioned into multiple Parquet files.

CSV data for TPC-H Q1 only, where we have 5𝑛 files and
use ⌈2.5𝑛⌉ mappers. For AWS EMR, elastic and static
clusters may utilize one driver (8 vCPUs/16 GB RAM)
and 1, 4, 40 or 400 worker (16 vCPUs, 32 GB RAM each)
for scale factors 1 to 1,000. For Ray clusters, we use Z.2x
machines for the worker. That way, the clusters have the
same amount of resources at disposal as the serverless
systems using Lambda workers.

TPC-H Q1. For our experiments with TPC-H Q1 (see
Figure 4), System-side Shuffle has the fastest runtimes.
This is due to the map stage generating very small results
(≈ 𝑛 · 8 KB). These small files are read fast in parallel by
the intermediate shuffle stage. The shuffle outputs one
file that can be easily consumed by the reducer.

While BabelMR also benefits from the optimized read
during the reduce stage, System-side Shuffle executes
roughly 4 s faster. This is because of a shorter map stage,
where every worker works on exactly one input file. Here,
invoking BabelMR to materialize the Parquet file into the
ephemeral storage leads to an overhead, compared to
Python directly loading from S3.

While All Custom’s parallelized import (see Listing 3)
is roughly 10 times faster than importing sequentially, it
still scales badly. At scale factor 1,000, the reduce function
needs to resolve 1,000 imports, resulting in around 60
seconds being spent on imports. This leads to ~3.6 times
slower end-to-end runtimes compared to BabelMR and
System-side Shuffle at scale factor 1,000.

TPCx-BB Q1. Figure 5 breaks down the execution times
of individual functions for TPCx-BB Q1. The query con-
sists of three stages (and two additional shuffle stages for
System-side Shuffle). Note the difference for workers of
the System-side Shuffle and All Custom for Stage 2 and
Stage 3. The consumed data is the same, but workers in
All Custom need to execute 50 or 10 imports respectively.
Workers in System-side Shuffle only have to import two

files, due to the upstream repartitioning and combining
of the intermediate shuffle stage (two blue lines).

Stages 2 and 3 in BabelMR profit from the same princi-
ple. Additionally, the import of BabelMR in the first stage
outperforms the other variants. Only 3 of the 23 columns
of the store_sales table are required. The Parquet import
of BabelMR is better optimized to read only the required
columns than the custom implementation in C#.

At large scale factors, BabelMR beats All Custom with
regards to usability and performance on both TPC-H Q1
and TPCx-BB Q1. Compared to the System-side Shuffle,
performance is similar and usability is better. In contrast
to System-side Shuffle, BabelMR materializes data once
more and has a larger deployable, leading to overheads.

All Custom

System-side Shuffle

Fu
nc

ti
on

In
st

an
ce

0 5 10 15 20 25

BabelMR

Runtime (seconds)

BabelMR Engine User Code

Figure 5: Break down of execution times per function for
TPCx-BB Q1 (sf=100) for the three variants written in C#.
Each line represents the lifetime of one Lambda function.

PyWren. As PyWren is unmaintained, we had to rebuild
the underlying Python runtime and do minor bug fixes
on PyWren. Still, compared to 2017 [22] setup times
decreased from 14.2 s to 7 s and Lambda start latencies
from 9.7 s to at most 1 s now (see Figure 2).

We execute the same Python map and reduce functions
for TPC-H Q1 in PyWren and BabelMR. As we measure
end-to-end runtimes, serialization of the Python func-
tions and their upload to S3 is also measured. BabelMR
outperforms PyWren by approximately 14 s for scale fac-
tors 1 and 10. This originates from the fact, that setup
costs in PyWren are doubled, once for the map and once
for the reduce phase [22]. On scale factor 100, BabelMR
is on average 17.5 s faster than PyWren. At start-up, Py-
Wren creates S3 objects for each worker’s input, which
leads to this additional overhead at high scale factors.

Corral. Corral exposes the traditional tuple-based
MapReduce interface without the support of combiners.
As a result, the outputs of the map stage are significantly
larger (≈ 𝑛 · 60 MB) than those of BabelMR Go. Addi-
tionally, the map stage produces only four distinct keys.
Therefore, execution times do not scale properly as four
reducers have to process the entire map output (see Fig-
ure 6). For scale factor 100 the input for one reducer is
larger than its memory, which is not supported by Corral
and results in a failing pipeline. Corral performs slightly
better compared to BabelMR Go for scale factor 1. This
is partly due to the materialization overhead discussed
earlier. Additionally, Corral distributes the rows of the
five input files evenly among workers, whereas BabelMR
assigns CSV input on a per-file granularity,

PySpark on EMR. BabelMR outperforms PySpark on
all scale factors on TPC-H Q1. PySpark exposes the high
level Spark [5] API to the user, so underlying execution
details are handled by Spark. Thus, three instead of two
stages are executed, wherein the first stage, Spark reads
metadata from input files. This takes 2 s at scale factor
1 and 20 s at scale factor 1,000. Execution time is also
spent on managing the cluster and allocating the required
executors. At scale factor 1,000, PySpark runs 28 s until
all 240 executors work on jobs in the static cluster and
even longer on the elastic cluster.

Ray on Glue. Ray handles distribution and scheduling
of jobs, utilizing it’s high level dataset API. While Ray
yields good usability and is well integrated in AWS Glue,
execution times are higher than those of the introduced
systems working on AWS Lambda. Start-up latencies are
one reason for this. For scale factor 10, it takes 35 s to
start all workers.

In summary, BabelMR is performance competitive with
other MapReduce systems running applications written
in the languages that they support, despite the more
generic multi-language approach.

1 10 100 1000
0

100

200

300

Scale Factor

R
un

ti
m

e
(s

ec
on

ds
)

BabelMR (Go) PyWren (Python)
BabelMR (Python) PySpark - Elastic Cluster
Corral (Go) PySpark - Static Cluster
Ray (Python)

Figure 6: Execution times for TPC-H Q1 on PyWren, Corral,
PySpark, Ray, and BabelMR. The data was stored in S3 and
partitioned into multiple CSV files. * denotes a failed run;
× denotes a run omitted due to AWS quota constraints.

4. Related Work
Most closely related to our work are data processing sys-
tems that build on serverless infrastructure to alleviate
their users from provisioning, management, and scaling
of resources. There are the MapReduce-style systems
PyWren [22], Corral [42], Flint [46], and Qubole [47] that
each offer an interface for a popular programming lan-
guage, e.g., Python, Go, or Java. In addition, there has
been work on serverless SQL query processors with Star-
ling [23] and Lambada [24], and our own prior work on
Skyrise [48]. They all integrate efficiently with cloud stor-
age options for storage access and data shuffling. They,
however, all target only a single programming language.

Saur et al. acknowledge the demand for custom code
executing arbitrary computation written in any program-
ming language [36]. They suggest containerized UDFs
enabling dependency management, portability, and en-
capsulation. They exchange input and output tuples be-
tween the running containers and the database. While
Saur et al. assume a database server communicating to
the containers, in our serverless environment data is
stored in S3. We propose to collocate BabelMR into the
container that handles the S3 access, communicating data
to the user code via the file system.

While not a full-fledged data processing system, the
distributed map abstraction from AWS Step Functions
[49] allows to orchestrate large-scale parallel workloads
of containerized applications. In contrast to BabelMR,
they cannot execute reduce jobs, and thus are limited to
embarrassingly parallel applications.

5. Conclusion
Distributed data processing frameworks present high
programming and operations barriers for many users. In
this paper, we propose the container-based, language-
agnostic BabelMR system built on serverless cloud infras-
tructure. BabelMR inherits the flexibility of OS containers
and the simplicity of serverless cloud services.

Our evaluation shows that BabelMR is performance-
competitive with language-specific MapReduce frame-
works while at the same time, it is more flexible and
easier to use.

Acknowledgments
We would like to thank Theo Radig and Fabian Engel for
valuable discussions and code contributions. This work
was partially funded by the German Ministry for Educa-
tion and Research (ref. 01IS18025A and ref. 01IS18037A),
the German Research Foundation (ref. 414984028), the
European Union’s Horizon 2020 research and innovation
programme (ref. 957407), and the AWS Cloud Credit for
Research Program.

References
[1] B. Haynes, A. Cheung, M. Balazinska, PipeGen:

Data Pipe Generator for Hybrid Analytics, in: M. K.
Aguilera, B. Cooper, Y. Diao (Eds.), ACM SoCC,
2016, pp. 470–483.

[2] J. Dean, S. Ghemawat, MapReduce: Simplified Data
Processing on Large Clusters, in: USENIX OSDI,
2004, pp. 137–150.

[3] M. Zaharia, M. Chowdhury, M. J. Franklin,
S. Shenker, I. Stoica, Spark: Cluster Computing
with Working Sets, in: USENIX HotCloud, 2010.

[4] Apache Software Foundation, PySpark, https://
spark.apache.org/docs/latest/api/python/, 2023.

[5] Apache Software Foundation, Spark SQL,
DataFrames and Datasets Guide, https://spark.
apache.org/docs/latest/sql-programming-guide.
html, 2023.

[6] Apache Hadoop contributors, Hadoop Stream-
ing, https://hadoop.apache.org/docs/stable/
hadoop-streaming/HadoopStreaming.html, 2023.

[7] Docker, Use Containers to Build, Share and
Run your Applications, https://www.docker.com/
resources/what-container/, 2023.

[8] Google Cloud Platform, Working with Remote
Functions, https://cloud.google.com/bigquery/
docs/remote-functions/, 2023.

[9] Amazon, Creating a Scalar Lambda UDF,
https://docs.aws.amazon.com/redshift/latest/dg/
udf-creating-a-lambda-sql-udf.html, 2023.

[10] Snowflake, Writing External Functions,
https://docs.snowflake.com/en/sql-reference/
external-functions, 2023.

[11] SAP, SAP HANA in Containers, https://blogs.
sap.com/2020/03/13/at-your-service-sap-hana-2.
0-an-introduction-2/, 2023.

[12] Databricks, Announcing Serverless Compute for
Databricks SQL, https://www.databricks.com/blog/
2021/08/30/announcing-databricks-serverless-sql.
html, 2023.

[13] ClickHouse, Building ClickHouse Cloud From
Scratch in a Year, https://clickhouse.com/blog/
building-clickhouse-cloud-from-scratch-in-a-year/,
2023.

[14] Amazon, Amazon EC2, https://aws.amazon.com/
ec2/, 2023.

[15] Amazon, EC2 Instance Types, https://aws.amazon.
com/ec2/instance-types/, 2023.

[16] Apache Software Foundation, kOps - Kubernetes
Operations, https://kops.sigs.k8s.io/, 2023.

[17] Amazon, Amazon Elastic Kubernetes Service, https:
//aws.amazon.com/eks/, 2023.

[18] Amazon, AWS Lambda, https://aws.amazon.com/
lambda/, 2023.

[19] Microsoft, Azure Functions, https://azure.microsoft.
com/services/functions/, 2023.

[20] Google, Google Cloud Functions, https://cloud.
google.com/functions/, 2023.

[21] M. Brooker, M. Danilov, C. Greenwood, P. Piwonka,
On-demand Container Loading in AWS Lambda, in:
USENIX ATC, 2023, pp. 315–328.

[22] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, B. Recht,
Occupy the Cloud: Distributed Computing for the
99%, in: ACM SoCC, 2017, pp. 445–451.

[23] M. Perron, R. C. Fernandez, D. J. DeWitt, S. Mad-
den, Starling: A Scalable Query Engine on Cloud
Functions, in: ACM SIGMOD, 2020, pp. 131–141.

[24] I. Müller, R. Marroquín, G. Alonso, Lambada: Inter-
active Data Analytics on Cold Data Using Serverless
Cloud Infrastructure, in: ACM SIGMOD, 2020, pp.
115–130.

[25] Microsoft, Azure Serverless, https://azure.microsoft.
com/solutions/serverless/, 2023.

[26] Google, Serverless, https://cloud.google.com/
serverless, 2023.

[27] A. Agache, M. Brooker, A. Iordache, A. Liguori,
R. Neugebauer, P. Piwonka, D. Popa, Firecracker:
Lightweight Virtualization for Serverless Applica-
tions, in: USENIX NSDI, 2020, pp. 419–434.

[28] Firecracker contributors, Firecracker: Secure and
Fast microVMs for Serverless Computing, https://
github.com/firecracker-microvm/firecracker/, 2023.

[29] Amazon, AWS S3, https://aws.amazon.com/s3/,
2023.

https://spark.apache.org/docs/latest/api/python/
https://spark.apache.org/docs/latest/api/python/
https://spark.apache.org/docs/latest/sql-programming-guide.html
https://spark.apache.org/docs/latest/sql-programming-guide.html
https://spark.apache.org/docs/latest/sql-programming-guide.html
https://hadoop.apache.org/docs/stable/hadoop-streaming/HadoopStreaming.html
https://hadoop.apache.org/docs/stable/hadoop-streaming/HadoopStreaming.html
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://cloud.google.com/bigquery/docs/remote-functions/
https://cloud.google.com/bigquery/docs/remote-functions/
https://docs.aws.amazon.com/redshift/latest/dg/udf-creating-a-lambda-sql-udf.html
https://docs.aws.amazon.com/redshift/latest/dg/udf-creating-a-lambda-sql-udf.html
https://docs.snowflake.com/en/sql-reference/external-functions
https://docs.snowflake.com/en/sql-reference/external-functions
https://blogs.sap.com/2020/03/13/at-your-service-sap-hana-2.0-an-introduction-2/
https://blogs.sap.com/2020/03/13/at-your-service-sap-hana-2.0-an-introduction-2/
https://blogs.sap.com/2020/03/13/at-your-service-sap-hana-2.0-an-introduction-2/
https://www.databricks.com/blog/2021/08/30/announcing-databricks-serverless-sql.html
https://www.databricks.com/blog/2021/08/30/announcing-databricks-serverless-sql.html
https://www.databricks.com/blog/2021/08/30/announcing-databricks-serverless-sql.html
https://clickhouse.com/blog/building-clickhouse-cloud-from-scratch-in-a-year/
https://clickhouse.com/blog/building-clickhouse-cloud-from-scratch-in-a-year/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://kops.sigs.k8s.io/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://azure.microsoft.com/services/functions/
https://azure.microsoft.com/services/functions/
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://azure.microsoft.com/solutions/serverless/
https://azure.microsoft.com/solutions/serverless/
https://cloud.google.com/serverless
https://cloud.google.com/serverless
https://github.com/firecracker-microvm/firecracker/
https://github.com/firecracker-microvm/firecracker/
https://aws.amazon.com/s3/

[30] Amazon, Lambda Runtimes, https://docs.aws.
amazon.com/lambda/latest/dg/lambda-runtimes.
html, 2023.

[31] D. Merkel, Docker: Lightweight Linux Contain-
ers for Consistent Development and Deployment,
Linux journal 2014 (2014) 2.

[32] Amazon, Amazon Elastic Container Registry, https:
//aws.amazon.com/ecr/, 2023.

[33] M. Dreseler, J. Kossmann, M. Boissier, S. Klauck,
M. Uflacker, H. Plattner, Hyrise Re-engineered: An
Extensible Database System for Research in Rela-
tional In-Memory Data Management, in: EDBT,
2019, pp. 313–324.

[34] Apache Software Foundation, Apache Parquet,
https://parquet.apache.org/, 2023.

[35] Apache Software Foundation, Apache ORC - High-
Performance Columnar Storage for Hadoop, https:
//orc.apache.org/, 2023.

[36] K. Saur, T. Mirmira, K. Karanasos, J. Camacho-
Rodríguez, Containerized Execution of UDFs: An
Experimental Evaluation, PVLDB 15 (2022) 3158–
3171.

[37] Apache Arrow contributors, Introducing Apache
Arrow Flight: A Framework for Fast Data
Transport, https://arrow.apache.org/blog/2019/10/
13/introducing-arrow-flight/, 2023.

[38] Amazon, Understanding the Lambda Execution En-
vironment, https://docs.aws.amazon.com/lambda/
latest/operatorguide/execution-environment.
html, 2023.

[39] Transaction Processing Performance Council, TPC-
H Benchmark, https://www.tpc.org/tpch/, 2023.

[40] P. Cao, B. Gowda, S. Lakshmi, C. Narasimhadevara,
P. Nguyen, J. Poelman, M. Poess, T. Rabl, From Big-
Bench to TPCx-BB: Standardization of a Big Data
Benchmark, in: TPCTC, volume 10080 of Lecture
Notes in Computer Science, 2016, pp. 24–44.

[41] Transaction Processing Performance Council,
TPCx-BB Benchmark, https://www.tpc.org/
tpcx-bb/, 2023.

[42] B. Congdon, Corral: A Serverless MapReduce
Framework Written for AWS Lambda, https://
github.com/bcongdon/corral/, 2023.

[43] Anyscale, Inc., Ray, https://www.ray.io/, 2023.
[44] Amazon, Amazon EMR, https://aws.amazon.com/

emr/, 2023.
[45] Amazon, Amazon Glue, https://aws.amazon.com/

glue/, 2023.
[46] Y. Kim, J. Lin, Serverless Data Analytics with Flint,

in: IEEE CLOUD, 2018, pp. 451–455.
[47] Qubole, Qubole: Apache Spark on AWS Lambda,

https://github.com/qubole/spark-on-lambda/, 2023.
[48] T. Bodner, Elastic Query Processing on Function

as a Service Platforms, in: VLDB PhD Workshop,
2020.

[49] Amazon, Step Functions: Using Map
State in Distributed Mode, https://docs.
aws.amazon.com/step-functions/latest/dg/
concepts-asl-use-map-state-distributed.html, 2023.

https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://parquet.apache.org/
https://orc.apache.org/
https://orc.apache.org/
https://arrow.apache.org/blog/2019/10/13/introducing-arrow-flight/
https://arrow.apache.org/blog/2019/10/13/introducing-arrow-flight/
https://docs.aws.amazon.com/lambda/latest/operatorguide/execution-environment.html
https://docs.aws.amazon.com/lambda/latest/operatorguide/execution-environment.html
https://docs.aws.amazon.com/lambda/latest/operatorguide/execution-environment.html
https://www.tpc.org/tpch/
https://www.tpc.org/tpcx-bb/
https://www.tpc.org/tpcx-bb/
https://github.com/bcongdon/corral/
https://github.com/bcongdon/corral/
https://www.ray.io/
https://aws.amazon.com/emr/
https://aws.amazon.com/emr/
https://aws.amazon.com/glue/
https://aws.amazon.com/glue/
https://github.com/qubole/spark-on-lambda/
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-asl-use-map-state-distributed.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-asl-use-map-state-distributed.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-asl-use-map-state-distributed.html

	1 Introduction
	2 Overview of BabelMR
	2.1 Serverless Cloud Infrastructure
	2.2 System Architecture
	2.3 Programming Model and Interface
	2.4 Execution

	3 Evaluation
	3.1 Development Efficiency
	3.2 Performance

	4 Related Work
	5 Conclusion

