
Table Union Search with Preferences
Hamed Mirzaei1,∗,†, Davood Rafiei1,†

1University of Alberta, 2-32 Athabasca Hall, Edmonton, Alberta, Canada

Abstract
We study the problem of Table Union Search (TUS) in the presence of preferences. The notion of unionability, as studied in
the literature, is too coarse to be effective in down-stream tasks. We introduce preferences for table unionability, as a way to
reduce the search space and focus on rows and columns that are important for the follow-up operations. We show how these
preferences can be efficiently implemented and how they can improve the performance of some down-stream tasks.

Keywords
Table Union Search, Preference Queries, Information Retrieval, Table Augmentation, Table Unionability, Column Unionability

1. Introduction
The vast corpus of relational tables on the web is a valu-
able resource for various applications such as table aug-
mentation, knowledge base population, and question an-
swering. Table Union Search (TUS) is an operation that
aims to find relational tables on the web, a.k.a. webta-
bles, that can be unioned with a query table. Two tables
are considered unionable if their column values are drawn
from the same domains. However, in the context of the
web, the domains of columns are not known or fixed
and existing approaches often rely on measures such as
value overlap to find columns with the same domains,
a.k.a unionable columns. But using this generic notion
of unionability in downstream tasks can be challenging.
Consider a query table 𝑄 as shown in Table 1, and

suppose we want to expand 𝑄 vertically or horizontally
by adding more rows or columns. TUS returns the same
list of webtables regardless of the follow-up operations.
Also TUS fails to identify and leverage complex rela-
tionships between tables and columns, often returning
near-duplicate webtables.
To address these issues, we introduce preferences to

TUS, allowing for more efficient and effective retrieval of
unionable webtables based on user-defined criteria. Pref-
erences help in tailoring the results to different follow-up
operations and mitigating the limitations of TUS. By in-
corporating these preferences, we aim to improve the
usefulness and relevance of the TUS output for various
applications. The contributions of this research are as
follows:

Joint Workshops at 49th International Conference on Very Large Data
Bases (VLDBW’23) — TaDA’23: Tabular Data Analysis Workshop,
August 28 - September 1, 2023, Vancouver, Canada
∗Corresponding author.
†
These authors contributed equally.
Envelope-Open mirzaei@cs.ualberta.ca (H. Mirzaei); drafiei@ualberta.ca
(D. Rafiei)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

Table 1
Query Table 𝑄 crawled from web.

Country(𝑞1) City(𝑞2) Population(𝑞3)

Canada Edmonton 0.98 m
USA New York 8.468 m
China Shanghai
Iran Tehran 8.694 m

• We introduce four major preferences to the TUS
operation: skyline, novelty, diversity and depen-
dent set.

• We introduce two benchmark datasets for union-
able webtables, constructed from Web Data Com-
mons 2015 [1] andWikiTables datasets [2].

• We propose efficient approaches for evaluating
each preference.

2. Related Works
Tabular data may be searched using table-based
queries [3, 4, 5, 6] and keyword-based approaches [7,
8, 9, 10]. Table-based approaches assume that the search
query is a table while keyword-based assume it is a set of
keywords. Our work falls under table-based approaches
focusing on enriching the results of TUS.
Preferences have long been studied in databases (e.g.,

see the general survey [11], the foundational work [12]
and preferences in SQL [13]) but we are not aware of them
being applied to TUS. Khatiwada et al. [14] investigate
the semantics and relationships of columns to identify
unionable webtables more accurately. This may seem
similar to our work on dependent set preference (to be
discussed next), but there are some subtle differences.

3. Table Union Search
In this work, we define column unionability in terms
of value overlap, and other metrics such as semantic

mailto:mirzaei@cs.ualberta.ca
mailto:drafiei@ualberta.ca
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

similarity are not considered. The value overlap of two
sets 𝑆1 and 𝑆2 may be defined in terms of the Jaccard
similarity, expressed as |𝑆1 ∩ 𝑆2|/|𝑆1 ∪ 𝑆2|.
Consider query table 𝑄(𝑞1, 𝑞2, … , 𝑞𝑛) and candidate

webtable 𝐶(𝑐1, 𝑐2, … , 𝑐𝑛) both of degree 𝑛. Each candidate
column 𝑐𝑖 may be unionable with a query column 𝑞𝑗. We
refer to such pair as a unionability pair, shown as 𝑐𝑖 ↔ 𝑞𝑗.

Definition 3.1 (Alignment). An alignment between
two tables 𝐶(𝑐1, 𝑐2, … , 𝑐𝑛) and 𝑄(𝑞1, 𝑞2, … , 𝑞𝑛) is a bijective
mapping between all columns of 𝐶 and 𝑄 and is shown as
𝑎(𝐶, 𝑄).

We define the unionability score of an alignment
𝑎(𝐶, 𝑄) (AUScore) as the product of the Jaccard scores of
its unionability pairs (Definition 3.2).

Definition 3.2 (AUScore). The unionability score of
alignment 𝑎(𝐶, 𝑄) is the product of 𝐶𝑈 𝑆𝑐𝑜𝑟𝑒 of all union-
ability pairs in 𝑎(𝐶, 𝑄).

𝐴𝑈𝑆𝑐𝑜𝑟𝑒(𝑎(𝐶, 𝑄)) = ∏
(𝑐𝑖, 𝑞𝑗)∈𝑎(𝐶, 𝑄)

𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝑉𝑐𝑖 , 𝑉𝑞𝑗). (1)

Two tables 𝐶 and 𝑄 can be of different degrees. If
we apply projections of the same size over both tables,
we may find alignments of different sizes. We define
the set of all these possible alignments that result from
projections over 𝐶 and 𝑄 as the Alignment Set of two
tables (Definition 3.3).

Definition 3.3 (Alignment Set). An alignment set of
two tables 𝐶(𝑐1, 𝑐2, … , 𝑐𝑚) and 𝑄(𝑞1, 𝑞2, … , 𝑞𝑛) is the
set of alignments between all possible projections of the
same degree over 𝐶 and 𝑄 and is shown as 𝐴(𝐶, 𝑄).

For an integer 𝑐 and a subset 𝑆 of query columns,𝐴𝑐
𝑆(𝐶, 𝑄)

denotes the subset of alignments of size 𝑐 in 𝐴(𝐶, 𝑄)with
only mappings over query columns in 𝑆.

Alignments of different sizes may be compared based
on their probability distributions, as estimated using a
sample [6], and an Alignment Goodness Score (AGScore)
may be defined (Definition 3.4).

Definition 3.4 (AGScore). The goodness score of align-
ment 𝑎(𝐶, 𝑄) is its updated 𝐴𝑈𝑆𝑐𝑜𝑟𝑒 using the correspond-
ing probability distribution function.

𝐴𝐺𝑆𝑐𝑜𝑟𝑒(𝑎(𝐶, 𝑄)) = 𝐶𝐷𝐹|𝑎(𝐶, 𝑄)|(𝐴𝑈 𝑆𝑐𝑜𝑟𝑒(𝑎(𝐶, 𝑄))) (2)

where 𝐶𝐷𝐹|𝑎(𝐶, 𝑄)| is 𝐶𝐷𝐹 for the probability distribution
corresponding to the size of alignment 𝑎(𝐶, 𝑄).

Finally, we define Table Unionability Score (TUScore)
of two tables 𝐶 and 𝑄 as the maximum 𝐴𝐺𝑆𝑐𝑜𝑟𝑒 of align-
ments in 𝐴(𝐶, 𝑄) (Definition 3.5).

Definition 3.5 (TUScore). The table unionability score
of webtable 𝐶 with respect to query table 𝑄 is the maximum
𝐴𝐺𝑆𝑐𝑜𝑟𝑒 of alignments in 𝐴(𝐶, 𝑄).

𝑇𝑈 𝑆𝑐𝑜𝑟𝑒(𝐶, 𝑄) = max
𝑎(𝐶, 𝑄)∈𝐴(𝐶, 𝑄)

𝐴𝐺𝑆𝑐𝑜𝑟𝑒(𝑎(𝐶, 𝑄)). (3)

For an integer 𝑐 and a subset of query columns 𝑆,
𝑇𝑈 𝑆𝑐𝑜𝑟𝑒𝑐𝑆(𝐶, 𝑄) denotes the 𝑇𝑈 𝑆𝑐𝑜𝑟𝑒 over alignments
in 𝐴𝑐

𝑆(𝐶, 𝑄).
Now that we have all the tools, we define table union

search as the task that returns the top-𝑘 most unionable
candidate webtables for a query table 𝑄 (Definition 3.6).

Definition 3.6 (Top-k TUS). Given a query table
𝑄(𝑞1, 𝑞2, … , 𝑞𝑛) with degree 𝑛, Top-k TUS is the task of
finding the top-𝑘 candidate webtables in the corpus with
the highest unionability score to 𝑄.

To find the top-k TUS candidates, the “Weak And” algo-
rithm (WAND) is utilized [15]. WAND is a safe-ranking
document-at-a-time technique that prunes many candi-
date webtables early in the process without fully exam-
ining them. The WAND algorithm works over inverted
indexes and achieves its efficiency by using a threshold
score to limit the number of documents that need to be
examined, drastically reducing the search time. To adapt
WAND to this context, we consider candidate webtables
as documents and each of their columns as a term. The
weight of each column would be its Jaccard score with
the query column under consideration. We refer to this
implementation as TUS. We also add some filters such as
candidate webtables should cover a key of query table to
TUS and refer to it as TUS+.

4. Preferences

4.1. Skyline
Skyline preference has been extensively studied in the
literature [16, 17]. It is commonly defined over a cor-
pus of data points, each represented as a numeric vector,
where one looks for those data points which are not dom-
inated by others. A data point 𝐷𝑛 represented by vector
𝑉𝑛 dominates a data point 𝐷𝑚 represented by vector 𝑉𝑚
and shown as𝐷𝑛 ≻ 𝐷𝑚 if it has as good as or better values
over all dimensions and a better value over at least one
dimension [17]. Our approach is to represent each align-
ment 𝑎(𝐶, 𝑄) as a vector 𝑉𝑎 of size equal to the number of
query columns with each element showing the unionabil-
ity score of a pair of columns. Following this idea, each
candidate webtable with multiple alignments can be rep-
resented as a set of numeric vectors. An observation is
that for one candidate webtable, some of the alignments
are a subset of the others which we prune them early in
the process. Finally, by utilizing existing algorithms on

skyline such as SaLSa [18] or BBS [19], we can return the
candidate webtables with the best alignment over each
subset of query columns (Definition 4.1).

Definition 4.1 (Top-k Skyline). With each alignment
between a candidate webtable 𝐶 and a query table 𝑄 repre-
sented as a numeric vector (as discussed), the Top-k Skyline
of 𝑄 is the top-𝑘 candidate webtables with the most number
of skyline vectors.

4.2. Diversity
Diversity is a well-studied preference in the literature
with the purpose of resolving ambiguity by returning
diverse results [20, 21, 22]. The proposed approaches
usually involve a scoring function [22] that balances the
diversity of the results while promoting their relevance
to the search query.

Definition 4.2 (Top-k Diversity). The Top-k Diversity
of query table 𝑄 over subset 𝑆 of query columns is the list 𝑅
of webtables from dataset𝒟whichmaximizes the following
objective function and are sorted based on their TUScore.

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦(𝑄, 𝑆, 𝑘) =
argmax
𝑅⊆𝒟,|𝑅|=𝑘

(𝑘 − 1).(1 − 𝜆).Rel(𝑄, 𝑆, 𝑅) + 𝜆.Dif (𝑄, 𝑅), (4)

where the parameters 𝜆 and (𝑘 − 1) in this formulation
control the scores’ contribution and to bring them to the
same scale respectively,

𝑅𝑒𝑙(𝑄, 𝑆, 𝑅) =
|𝑅|
∑
𝑖=1

𝑇𝑈 𝑆𝑐𝑜𝑟𝑒|𝑆|𝑆(𝑅𝑖, 𝑄), (5)

and 𝐷𝑖𝑓 (𝑄, 𝑅) is defined as the harmonic mean of the
differences of tables in 𝑅 from each other and from the
query table.

As finding such a list 𝑅 is a computationally hard task
[22], we utilize a greedy approach based on Yu et al.’s
𝑆𝑤𝑎𝑝 algorithm [23] which starts with a list of 𝑘 webta-
bles and iterates over the rest of webtables to see if swap-
ping outsiders with insiders improves the diversity score.
We modified the 𝑆𝑤𝑎𝑝 algorithm to choose the initial list
more carefully and iterate over webtables in a specific
order.

4.3. Novelty
Novelty is a well-known preference which has been stud-
ied in the literature with the purpose of avoiding redun-
dancy in the returned result [24, 25, 26, 22]. In the context
of our work, we want to avoid redundant webtables and
return those offering as much unique new values as pos-
sible over a subset of query columns. It can be considered
as a special case of diversity preference which aims at

finding webtables with the most diverse values over a
subset of query columns. Hence, we can use the same
framework discussed for the diversity preference with
some modifications in the proposed scores. The objective
function for novelty consists of two scores, 𝑅𝑒𝑙 and 𝑁𝑒𝑤.
The first score, 𝑅𝑒𝑙, is the same as the one we defined for
diversity. But, the 𝑁𝑒𝑤 score computes the amount of
new information that the selected candidate webtables
bring to the query table as a whole. We define top-k
novelty over this framework as the list 𝑅 of 𝑘 candidate
webtables which maximizes this objective function.

Similar to diversity, finding the exact list 𝑅 which max-
imizes the objective function is computationally hard
[22], hence greedy approaches have been in use. Again,
we followed the 𝑆𝑤𝑎𝑝 algorithm [23] after adapting it to
our context for novelty.

4.4. Dependent Set
A problem with the notions of unionability used in TUS
is that each query column is treated as an independent
entity. Consequently, important information about the
combination of values across query columns will be lost
and two candidate webtables with the same set of val-
ues over their columns will be considered duplicate even
though they offer different combination of them. In order
to resolve this issue, we propose dependent set prefer-
ence, which differentiates between candidate webtables
that have the same values but different combinations. De-
pendent set introduces sets of dependent query columns.
Users can put query columns in different dependent sets
to demonstrate the importance of their values together.
Note that some query columns may not be part of any de-
pendent set or treated as a dependent set of size one. With
this preference, each dependent set 𝑆𝑖 of query columns is
considered as a new query column with values generated
by concatenating the values of columns in 𝑆𝑖. Following
this idea, we define top-𝑘 dependent set as the top 𝑘 can-
didate webtables with the most table unionability score
over the set of newly created query columns (Definition
4.3).

Definition 4.3 (Top-k Dependent Set). Having sets
𝑆1, … , 𝑆𝑚 of dependent query columns, the Top-k
Dependent Set is defined as top-k candidate webtables of
applying top-k TUS over the new set of query columns
{𝑞′1, … , 𝑞′𝑚} ∪ {𝑞𝑖 | 𝑞𝑖 ∉ 𝑆𝑗 𝑓 𝑜𝑟 𝑗 = 1, … , 𝑚} where 𝑞′𝑖 ’s values
are the concatenation of values of query columns in 𝑆𝑖.

To efficiently find the top-k candidates, we first find
webtables with at least one alignment over a dependent
set of query columns using the WAND approach over
query columns’ posting lists. Then, for each alignment
of the filtered webtables, if it covers dependent set 𝑆𝑖, we
concatenate candidate columns in the same order we did

for 𝑞′𝑖 to get to a new candidate column 𝑐′𝑖 . The last step
is to compute the table unionability score over the new
set of candidate and query columns and to return the
top-k ones to the user.

5. Evaluations
To assess the effectiveness of the proposed preferences,
we evaluate their performance in two down-stream tasks:
i) expanding query table by adding new rows and ii)
extending it by adding new columns. As a measure of
performance, we utilize Average F1-Measure@k, calcu-
lated by averaging the f1-measure@k scores over query
tables.

5.1. Datasets
Existing datasets [6] only provide a limited selection of
unionable candidates, and they fail to adequately show-
case the impact of preferences. We introduce two datasets
for our evaluation: (1)Web Data Commons 2015 (WDC)
dataset [1], and (2)WikiTables dataset [2]. We built our
dataset of query and candidate webtables from these base
tables by randomly selecting rows and random projection
of columns. Applying these operations on a base table is
expected to generate new tables that are unionable with
the base table by the definition of unionability [27].
WDC 2015. We selected 50 webtable with at least 9
columns and 900 records from the WDC 2015 [1] dataset.
We checked them manually and pruned those with less
than 5 text columns or with non-English content and
ended up with 14 webtables as our base tables. We sam-
pled 101 tables from each base table, as discussed above,
and designated one table as our query table and the re-
maining 100 tables as candidate webtables. This gave us
a total of 14 query tables and 1400 candidate webtables.
WikiTables. We did a similar process as the one for the
WDC dataset. We first selected top 100 webtables with at
least 9 columns and 300 rows from theWikiTables dataset
[2]. Then, we pruned those with non-English content. In
addition, since we wanted to guarantee different levels
of unionability among query and candidate columns, we
pruned those tables with many columns that had only
‘yes/no’ values in their content. Finally we ended up
with 12 base tables which we used to generate query
and candidate webtables from. We ended up with 12
query tables, one per each base table, and 1200 candidate
webtables, 100 candidates per each base table.

5.2. Task 1: Query Table Expansion
TUS struggles in expanding the query table with addi-
tional rows. Figure 1 shows that novelty and diversity
outperform other approaches such as TUS and TUS+.

Figure 1: Task 1: Average F1 Measure@k for query expansion
over both datasets.

Figure 2: Task 2: Average F1 Measure@k for query extension
over both datasets.

Novelty returns webtables with more new rows for the
query table. For 𝑘 > 5, dependent sets also outperform
TUS and TUS+ in terms of performance. Interestingly,
some of the webtables have both new rows and new
columns for the query table, which explains why diver-
sity and dependent sets excel in this task.

5.3. Task 2: Query Table Extension
TUS may include webtables unsuitable for extending the
query table with new columns. When all columns of a
webtable is unionabile with at least one query column,
no new columns may be added to the query table. Figure
2 shows that diversity and novelty outperform TUS and
TUS+. Diversity focuses on returning webtables with
more new columns. Dependent sets also outperform
TUS and TUS+ for 𝑘 > 5.

6. Conclusions
Existing approaches for finding unionable tables primar-
ily focus on efficiently providing an approximate ranked
list of candidate tables to the user, which may limit access
to suitable tables for follow-up operations. In this paper,
we explore the power of preferences, showing that users
can retrieve tables that are not only unionable with the
query table but are also suitable for various follow-up
operations. A possible future direction is exploring more
efficient approaches to support preferences with TUS.

References
[1] O. Lehmberg, D. Ritze, R. Meusel, C. Bizer, A large

public corpus of web tables containing time and
context metadata, in: Proceedings of the 25th In-
ternational Conference Companion on World Wide
Web, 2016, pp. 75–76.

[2] C. S. Bhagavatula, T. Noraset, D. Downey, Methods
for exploring and mining tables on wikipedia, in:
Proceedings of the ACM SIGKDD workshop on
interactive data exploration and analytics, 2013, pp.
18–26.

[3] S. Zhang, K. Balog, Recommending related tables,
arXiv preprint arXiv:1907.03595 (2019).

[4] Y. Zhang, Z. G. Ives, Finding related tables in data
lakes for interactive data science, in: Proceedings of
the 2020 ACM SIGMOD International Conference
on Management of Data, 2020, pp. 1951–1966.

[5] T. Cong, H. Jagadish, Pylon: Table union search
through contrastive representation learning, arXiv
preprint arXiv:2301.04901 (2023).

[6] F. Nargesian, E. Zhu, K. Q. Pu, R. J. Miller, Table
union search on open data, Proceedings of the
VLDB Endowment 11 (2018) 813–825.

[7] R. Pimplikar, S. Sarawagi, Answering table queries
on the web using column keywords, arXiv preprint
arXiv:1207.0132 (2012).

[8] L. Deng, Table2Vec: Neural word and entity embed-
dings for table population and retrieval, Master’s
thesis, University of Stavanger, Norway, 2018.

[9] Z. Chen, M. Trabelsi, J. Heflin, Y. Xu, B. D. Davison,
Table search using a deep contextualized language
model, in: Proceedings of the 43rd International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, 2020, pp. 589–598.

[10] A. Bogatu, A. A. Fernandes, N. W. Paton, N. Kon-
stantinou, Dataset discovery in data lakes, in: 2020
IEEE 36th International Conference on Data Engi-
neering (ICDE), IEEE, 2020, pp. 709–720.

[11] K. Stefanidis, G. Koutrika, E. Pitoura, A survey
on representation, composition and application of
preferences in database systems, ACMTransactions
on Database Systems (TODS) 36 (2011) 1–45.

[12] P. Ciaccia, D. Martinenghi, R. Torlone, Foundations
of context-aware preference propagation, Journal
of the ACM (JACM) 67 (2020) 1–43.

[13] W. Kießling, M. Endres, F. Wenzel, The preference
sql system-an overview, IEEE Data Engineering
Bulletin 34 (2011) 12–19.

[14] A. Khatiwada, G. Fan, R. Shraga, Z. Chen, W. Gat-
terbauer, R. J. Miller, M. Riedewald, Santos:
Relationship-based semantic table union search,
arXiv preprint arXiv:2209.13589 (2022).

[15] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer,
J. Zien, Efficient query evaluation using a two-level

retrieval process, in: Proceedings of the twelfth in-
ternational conference on Information and knowl-
edge management, 2003, pp. 426–434.

[16] C. Kalyvas, T. Tzouramanis, A survey of skyline
query processing, arXiv preprint arXiv:1704.01788
(2017).

[17] J.-H. Choi, F. Hao, A. Nasridinov, Hi-sky: Hash
index-based skyline query processing, Applied Sci-
ences 10 (2020) 1708.

[18] I. Bartolini, P. Ciaccia, M. Patella, Salsa: Comput-
ing the skyline without scanning the whole sky, in:
Proceedings of the 15th ACM international confer-
ence on Information and knowledge management,
2006, pp. 405–414.

[19] D. Papadias, Y. Tao, G. Fu, B. Seeger, Progressive
skyline computation in database systems, ACM
Transactions on Database Systems (TODS) 30 (2005)
41–82.

[20] D. Rafiei, K. Bharat, A. Shukla, Diversifying web
search results, in: Proceedings of the 19th inter-
national conference on World wide web, 2010, pp.
781–790.

[21] M. R. Vieira, H. L. Razente, M. C. Barioni, M. Had-
jieleftheriou, D. Srivastava, C. Traina, V. J. Tsotras,
On query result diversification, in: 2011 IEEE
27th International Conference on Data Engineering,
IEEE, 2011, pp. 1163–1174.

[22] M. R. Vieira, H. L. Razente, M. C. Barioni, M. Had-
jieleftheriou, D. Srivastava, C. Traina Jr, V. J. Tso-
tras, Divdb: A system for diversifying query re-
sults, Proceedings of the VLDB Endowment 4 (2011)
1395–1398.

[23] C. Yu, L. Lakshmanan, S. Amer-Yahia, It takes va-
riety to make a world: diversification in recom-
mender systems, in: Proceedings of the 12th in-
ternational conference on extending database tech-
nology: Advances in database technology, 2009, pp.
368–378.

[24] C. L. Clarke, M. Kolla, G. V. Cormack, O. Vechto-
mova, A. Ashkan, S. Büttcher, I. MacKinnon, Nov-
elty and diversity in information retrieval eval-
uation, in: Proceedings of the 31st annual in-
ternational ACM SIGIR conference on Research
and development in information retrieval, 2008, pp.
659–666.

[25] P. Castells, N. Hurley, S. Vargas, Novelty and diver-
sity in recommender systems, in: Recommender
systems handbook, Springer, 2022, pp. 603–646.

[26] T. Ghosal, T. Saikh, T. Biswas, A. Ekbal, P. Bhat-
tacharyya, Novelty detection: A perspective from
natural language processing, Computational Lin-
guistics 48 (2022) 77–117.

[27] P. Venetis, A. Y. Halevy, J. Madhavan, M. Pasca,
W. Shen, F. Wu, G. Miao, Recovering semantics of
tables on the web (2011).

	1 Introduction
	2 Related Works
	3 Table Union Search
	4 Preferences
	4.1 Skyline
	4.2 Diversity
	4.3 Novelty
	4.4 Dependent Set

	5 Evaluations
	5.1 Datasets
	5.2 Task 1: Query Table Expansion
	5.3 Task 2: Query Table Extension

	6 Conclusions

