
Adversarial Attacks on Tables with Entity Swap
Aneta Koleva1,2, Martin Ringsquandl1 and Volker Tresp2

1Siemens AG
2Ludwig Maximilian University of Munich

Abstract
The capabilities of large language models (LLMs) have been successfully applied in the context of table representation learning.
The recently proposed tabular language models (TaLMs) have reported state-of-the-art results across various tasks for table
interpretation. However, a closer look into the datasets commonly used for evaluation reveals an entity leakage from the train
set into the test set. Motivated by this observation, we explore adversarial attacks that represent a more realistic inference
setup. Adversarial attacks on text have been shown to greatly affect the performance of LLMs, but currently, there are no
attacks targeting TaLMs. In this paper, we propose an evasive entity-swap attack for the column type annotation (CTA) task.
Our CTA attack is the first black-box attack on tables, where we employ a similarity-based sampling strategy to generate
adversarial examples. The experimental results show that the proposed attack generates up to a 70% drop in performance.
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1. Introduction
Following the advancements of large language models
(LLMs) in NLP, tabular language models (TaLMs) have
emerged as state-of-the-art approaches to solve table in-
terpretation (TI) tasks, such as table-to-class annotation
[1], entity linking [2], and column type annotation (CTA)
[3, 4, 5]. Similar to other deep neural networks, LLMs are
sensitive to small input perturbation, which as adversar-
ial examples can further be optimized to be imperceptible
to humans [6]. Several works have studied adversarial
attacks on LLMs, and it is becoming an increasingly im-
portant topic as LLMs are vastly being integrated into
applications [7]. For the table modality, so far, sensitivity
to perturbations has not been investigated in TaLMs for
TI tasks. Hence, it is unclear which perturbation oper-
ations should be considered when attacking tables and
how to make them imperceptible.
Using CTA as an example task, we phrase the novel

problem of generating adversarial examples in entity
tables. The existing models already report very high
F1 scores on this task, and it is hard to judge by the
performance of the model, how well it can generalize
to unseen novel entities. In this direction, we design
an evasive entity-swap attack that is motivated by a
problemwe observed. Namely, in two datasets commonly
used for evaluation of the CTA task, WikiTables [3] and
VizNet [4], there is a data leakage from entities from the
training set into the test set.
In Table 1 we show the percentage of overlapped en-
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type total overlap %
people.person 47852 29215 61.0
location.location 34073 21327 62.6
sports.pro_athlete 17588 10948 62.2
organization.organization 9904 7122 71.9
sports.sports_team 8207 6640 80.9

Table 1
Overlap of entities per type in the WikiTables dataset.

tities between the train and test set in the WikiTables
dataset for the top 5 classes. The last 15 types in this
dataset have 100 overlap among entities.

In Figure 1, both of the first two tables have a column
named Player which contains the exact same set of en-
tities, and is annotated with the same semantic types
Athlete and Person. The third table shows an example of
an adversarial table with an entity swap. In this table,
the entities of the column Player are swapped with new,
unseen entities of the same semantic type.

In the evaluation, we gradually increase the percentage
of entities that we swap in the targeted columns, ranging
from 20 % up to 100 % percent of the number of entities
in the column. For choosing the adversarial entities, we
propose a similarity-based strategy and compare it to
sampling at random. Our evaluation demonstrates that
swapping entities with the most dissimilar entity of the
same type results in a substantial drop in performance
(6% drop when replacing 20% of the entities per column
up to 70% drop when replacing all of the entities).

2. Related Work
With the growing popularity of LLMs, the concern over
their vulnerability to adversarial attacks also increased.
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Figure 1: Entity-level adversarial example for table attack

A survey by Zhang et al. [8] presents a comprehensive
overview of attacks against text, highlighting the chal-
lenges that arise when attacking discrete data such as
text, compared to continuous data such as images. BERT-
Attack [6] proposes an adversarial attack against the
BERT model [9] using the model itself to generate the
adversarial samples. A recent gradient-based text attack
[10] presents a white-box attack which uses a parameter-
ized adversarial distribution for sampling the adversarial
samples. However, despite the popularity of adversarial
attacks on text, the field of tabular data remains unex-
plored for potential vulnerabilities to such attacks.
The few works that have been proposed so far, [11,

12, 13], focus on white-box attacks and target traditional
machine learning models trained on tabular data. The
main goal of these attacks is when generating adversarial
examples to preserve the distributional consistency of
the features of the data. In these works, the datasets used
for evaluation usually contain many numerical values,
such as financial data or healthcare analytics data.

The goal of our work is to define table attacks against
TaLMs which are used for TI tasks. To the best of our
knowledge, we present the first work on adversarial at-
tacks targeting these models. Our research differentiates
from the prior work w.r.t (1) the model observed, (2) the
technique employed for generating adversarial samples,
and (3) the evaluation task.

3. CTA Adversarial Attack
We define a table as a tuple 𝑇 = (𝐸, 𝐻), where 𝐸 =
{𝑒1,1, 𝑒1,2, … , 𝑒𝑖,𝑗, … , 𝑒𝑛,𝑚} is the set of table body entities
for 𝑛 rows and 𝑚 columns. The table header 𝐻 =
{ℎ1, ℎ2, … , ℎ𝑚} is the set of corresponding 𝑚 column
header cells. We use 𝑇[𝑖,∶] to refer to the 𝑖-th row, e.g.,
𝐻 = 𝑇[0,∶] and 𝑇[∶,𝑗] = {ℎ𝑗, 𝑒1,𝑗, … , 𝑒𝑛,𝑗} to refer to the 𝑗-
th column of 𝑇.

CTA Model Let 𝒯 be the input space of tables and let
𝐽 be the space of all possible column indices, i.e., 𝐽 ⊆ ℕ.
Let 𝒞 be the output space, denoting the set of semantic
types. A CTAmodel is a multilabel classification function

ℎ ∶ 𝒯 × 𝐽 −→ 𝑃(𝒞 ), i.e., given a table 𝑇 ∈ 𝒯 and a
column index 𝑗 ∈ 𝐽 the CTA task is to assign a subset
of classes from the power set of 𝒞 to the corresponding
column 𝑇[∶,𝑗].

CTA Attack Given classification model ℎ, the goal of
a CTA attack is to transform a (correctly classified) test
input (𝑇 , 𝑗) ∈ 𝒯 × 𝐽 into an (untargeted) adversarial sam-
ple (𝑇 ′, 𝑗) such that ℎ(𝑇 , 𝑗)⋂ ℎ(𝑇 ′, 𝑗) = ∅. In addition
to fooling the classification model, the transformation
from 𝑇 to 𝑇 ′ should also be imperceptible for a human
observer. In the CTA setting we define the impercepti-
bly condition to be met if all entities in column 𝑇 ′[∶,𝑗] are
of the same class as the unmodified column. Formally,
∀𝑒′ ∈ 𝑇 ′[∶,𝑗]∀𝑒 ∈ 𝑇[∶,𝑗] ∶ 𝑐(𝑒′) = 𝑐(𝑒), where 𝑐 ∈ 𝒞 repre-
sents the most specific class assigned to the column 𝑇[∶,𝑗].

3.1. Entity Swap Attack
In principle, a CTA attack can apply transformations to
the full table 𝑇; however, most importantly, it should
focus on 𝑇[∶,𝑗]. Our attack, called entity-swap, follows
a two-step approach inspired by adversarial attacks on
LLMs [6, 14]. First, it picks a set of key entities {𝑒𝑖 ∈
𝑇[∶,𝑗]}. The number of key entities can be controlled as
a percentage 𝑝 of the entities in the original column.
In a second step, every key entity 𝑒𝑖 is swapped with
an adversarial entity 𝑒𝑖 = 𝑒′𝑖 that most likely changes
the predicted class from the ground truth. The proposed
attack is a black-box attack, meaning we only have access
to the predictions scores of the classifier.

3.2. Key Entities
Finding which are the key entities to swap can increase
the rate of success of the attack. In the case of the CTA
task, the most informative entities are those which, when
replaced, the model will misclassify the column. To find
those entities, we calculate an importance score for every
entity in the attacked column.

The output from the classificationmodel ℎ for a column
𝑇[∶,𝑗] is the logit vector oh(𝑇 , 𝑗) ∈ ℝ𝑘, where 𝑘 is the
number of ground-truth classes assigned to (𝑇 , 𝑗). We
calculate the importance score for entity 𝑒𝑖 ∈ 𝑇[∶,𝑗] as the



Figure 2: Calculation of importance scores.

difference between the logit output of the model for the
ground truth classes when the entity is in the column,
denoted as oh, and the logit output of the model when
the entity is replaced with the [MASK] token, denoted as
oh\ei. Since, the CTA task is evaluated under the multi-
label setting, we always take the maximum importance
score for an entity.

𝑠𝑐𝑜𝑟𝑒(𝑒𝑖) = 𝑚𝑎𝑥(oh − oh\ei) (1)

Figure 2 shows an example of how the importance
score is calculated. We calculate oh as the logit output
of the model without any perturbation, while oh/e1 rep-
resents the logit output of the model when the entity
Rafael Nadal is masked. After calculating the importance
score for every entity in the column, we select the top 𝑝
percent of entities (𝑝 ∈ 20, 40, 60, 80, 100) based on their
importance scores and substitute them with adversarial
entities. By sorting the entities according to their im-
portance scores, we ensure that the attack consistently
targets the key entities within the targeted column.

3.3. Adversarial Entities
After identifying the key entities, the next step involves
sampling adversarial entities for swapping. In order to
adhere to the perceptibility assumption, we constrain the
search space to include only entities belonging to the
same class as the attacked column. Subsequently, we use
a similarity-based strategy to sample adversarial entities.
Let 𝑒𝑖 ∈ 𝑇[∶,𝑗] be the key entity from the attacked col-

umn, and let 𝑐 ∈ 𝒞 be the most specific class of this
column. We use an embedding model to generate a con-
textualized representation for both the original entity,
ei, and all entities of the same class 𝐴𝑐 = {e′1, e′2, … , e′k},
such that 𝑐(𝑒𝑖) = 𝑐(𝑒′𝑘) where 𝑒′𝑘 ∈ 𝐴𝑐. Next, we calcu-
late the cosine similarity between the original entity and
each entity from the set 𝐴𝑐. As an adversarial exam-
ple, we take the most dissimilar entity from the original
entity, such that 𝑒′𝑖 = argmax𝑒′𝑘CosineSimilarity(ei, e′k).
We then swap the original entity 𝑒𝑖 with the adversarial
entity 𝑒′𝑖 .

As we describe in the introduction, there is a substan-
tial overlap of entities between the train and test set.
Therefore, we propose two different sampling sets for
adversarial entities. The first, is the set of entities per
class from the WikiTables test dataset [3]; we refer to
this set as test set. The second set contains only novel
entities, i.e., entities that also appear in the training set,
are removed from the test set. We refer to this set as the
filtered set.

Metadata Attack In addition to the proposed attack
method for column values, we also introduce an attack
specifically targeting column headers, considering that
they often indicate the class of a column. However, in this
case, we use an independent embedding model to identify
similar entities instead of swapping with column names
from the same class. For the generation of adversarial
samples in the column headers, we first generate embed-
dings for the original column names and then substitute
the column names with their synonyms. The library Tex-
tAttack [14] was used to generate the embeddings, and
based on the embeddings to retrieve the synonyms for
the column names.

4. Evaluation
Model We evaluate the performance of the CTA attack
on the TURL model [3], which has been fine-tuned for
the CTA task and uses only entity mentions. We use
the WikiTables dataset for evaluation. We follow their
evaluation procedure and report the achieved F1 score,
precision, and recall.

To evaluate the influence of the proposed strategy for
sampling adversarial samples, we compare it to a random
sampling of adversarial entities. Similarly, to evaluate
the influence of the importance scores, we compare with
random sampling when choosing which entities to swap.

4.1. Results
Table 2 shows the results of the CTA attack when swap-
ping entities by their importance scores and sampling



% perturb. F1 P R
0 (original) 88.86 90.54 87.23

20 83.4 (6%) 90.3 (0.2%) 77.8 (11%)
40 72.0 (19%) 87.9 (3%) 60.9 (30%)
60 55.3 (38%) 80.4 (11%) 42.1 (52%)
80 39.9 (55%) 67.7 (25%) 28.4 (67%)
100 26.5 (70%) 50.8 (44%) 17.9 (80%)

Table 2
Adversarial attack on the entities. The adversarial entities are
sampled by their semantic similarity from the original entity.

Figure 3: Adversarial samples from the test set, replacing
entities at random vs using the importance scores.

adversarial entities using the similarity-based strategy
from the filtered set. We notice that as we increase the
percentage of swapped entities, the performance of the
model drops, even though the perturbed entities are of
the same semantic type as the original entities. Another
observation is that the drop in the F1 score is attributed
to the sharp decline of the recall.

Effect of the importance score Figure 3 shows the
benefit of using the importance scores. We notice that
the drop in F1 score is around 3% higher when using the
importance scores. This is consistent, regardless if we are
substituting 20% or 80% of the entities, which suggests
that the importance scores consistently identify entities
that have a greater influence on the model’s performance.

Effect of the sampling strategy Figure 4 shows the
difference in F1 score drop when sampling adversarial en-
tities from the test set versus the filtered set. The original
F1 score is represented by the red line. Additionally, here
we illustrate the advantages of using the similarity-based
strategy over a random-based sampling of adversarial
examples. For both cases, when sampling adversarial
entities from the test and filtered set, the similarity-based
strategy for sampling induces sharper drop of the F1 score.
This suggests that this approach is successful in selecting
entities that are more likely to cause misclassifications

Figure 4: Sampling adversarial entities from the test set vs
the filtered set, at random and using the similarity strategy.

% F1 P R
0 (original) 90.24 89.91 90.58

20 78.4 (13%) 81.1 (10%) 76.0 (16%)
40 77.1 (15%) 80.7 (10%) 73.8 (19%)
60 75.2 (17%) 79.1 (12%) 72.2 (20%)
80 65.1 (28%) 71.4 (22%) 60.4 (33%)
100 51.2 (43%) 60.4 (33%) 44.4 (51%)

Table 3
Attack on the column names where the adversarial samples
are their synonyms.

or confusion for the classification model.

Effect of perturbing the table metadata To evalu-
ate the relevance of the column header for the CTA task,
we also propose an adversarial attack specific to the TURL
model [3], which uses only the table metadata. Table 3
shows the effect of perturbing the table metadata. We ob-
serve similar results here, as we increase the percentage
of perturbed column names, all the evaluation metrics de-
cline. This indicates that the model’s reliance on specific
column names, affects its ability to accurately classify
and predict the correct class.

5. Conclusion
In this paper, we introduce the formalization of an adver-
sarial attack targeting TaLMs. Additionally, we identify
and highlight an issue concerning the evaluation of the
CTA task. The evaluation showed that TaLMs are sus-
ceptible to adversarial attacks. Even subtle modifications
to the entities, guided by similarity, can lead to signifi-
cant changes in the model’s predictions and subsequently
affect the F1 score. In future, we will extend our evalua-
tion with more sophisticated attacks, targeting also other
models used for table interpretation tasks.
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