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Abstract
Governments have initiated national programs to make government data publicly available with the
purpose of improving transparency and making it easier for general public to access information of
interest about many aspects of their countries. Thousands of datasets are being continuously published
in Open Government Data Portals (OGDP) for public use, which makes them an attractive data repository
for researchers to study data integration problem. One common application of data integration is join
operation to expand a table with additional columns, for which many studies have been proposed in
the literature. However, usefulness of end result after joining of potential table pairs is under-explored,
especially considering heterogeneous nature of OGDPs. To this end, we analyze joinability of tables
based on high value overlap in several, English-speaking OGDPs; Canada, Singapore, UK, and US. Our
analysis reveals that mainly due to high value repetition and nonexistence of key columns, vast majority
of the joinable table pairs are accidental, resulting in uninterpretable tables.
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1. Introduction
The launch of OGDPs, such as data.gov, open.canada.ca,
or data.gov.in, has popularized the open data movement
of the last decade. The overarching vision of OGDPs is to
make governments transparent so that journalists, policy
analysts, researchers, and the general public can easily
monitor how their societies are functioning. Achieving
this vision requires developing additional tools and ap-
plications over these datasets to discover, understand,
link, and integrate them. Excitingly, these are some of
the core research problems that interest the database and
information retrieval communities, and as such OGDPs
have become some of the most popular data repositories
(aka data lakes) to study [1, 2, 3, 4, 5, 6, 7, 8, 9].

An important prerequisite for building better data tools
around open datasets is to understand the properties of
these datasets. Previous empirical studies have focused
on analyzing either the metadata on the webpages that
publish these datasets [10, 11], or detailed technical as-
pects of the files that store these datasets, such as the
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delimiters used and the location of the headers of CSV
files [12].
In this paper, we focus on tabular datasets, and study

properties related to their contents. In particular, we ana-
lyze them from the perspective of data design and exam-
ine how these characteristics impact finding joinable ta-
ble candidates and resulting table after the join. We exam-
ine tabular datasets both programmatically and manually
from four OGDPs that publish in English and follow the
same publishing structure (CKAN1); Canada (CA) [13],
Singapore(SG) [14], UK(UK) [15], and USA(US) [16]. In
our large scale analysis, our main findings are as follows:

• Tables exhibit high-degree of denormalization re-
garding the perspective of data design; high value
repetition, plethora of functional dependencies (FD),
absence of key and more importantly identifying
columns, and prevalence of multi-attribute composite
keys.

• We found out that the denormalized nature of tables
has significant implications on data integration opera-
tions such as join. Overwhelmingmajority of joinable
pairs, even with a conservative, value-overlapping-
based approach, are accidental, i.e., useless. The joins
happen mostly between non-key columns, resulting
in significantly bigger tables in rows which is con-
trary to most common join case exercised in relational
databases, that is to expand a table with a column.
Even the joins that occur in the presence of a key

1https://ckan.org/
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Figure 1: Unique value count and uniqueness score distribu-
tions for columns across portals.

Figure 2: Distribution of candidate key sizes.

column are mostly accidental due to either columns
having the same domain from tables with irrelevant
context or key but non-identifying columns.

2. Analysis

2.1. Normalization Analysis
2.1.1. Uniqueness and Key Column Analysis

For a column 𝑐, let 𝑐’s uniqueness score be |𝑠𝑒𝑡(𝑐)|
|𝑐| , which

is the ratio of the number of unique values vs number
of values in 𝑐 (the latter is equivalent to the number of
rows in the table 𝑐 belongs to). Distributions of number
of unique value counts and uniqueness scores of columns
are depicted in Figure 1. We also recorded the median
unique value counts for all portals, which are 10, 23, 10,
and 30 for SG, CA, UK, and US, respectively.
There is a very high degree of value repetition across all
portals. Almost half of the columns for all the portals have
equal to or less than 20 unique value, which consequently
leads into non-descriptive columns with significantly low
uniqueness scores. For instance, 51% and 41% of the columns
in US and CA, respectively, have smaller than 0.1 unique-
ness score, i.e., each value in these columns are on average
repeated more than 10 times.
We next analyze the distributions of key columns. A

column 𝑐 with uniqueness score of 1.0 is a key column.
Key columns are desirable as they help identify a table’s
records. Furthermore, in data integration, joins of two
tables on two key columns lead to non-growing joins,
which are desirable as they effectively extend these ta-

bles with additional columns. For those tables that do not
have a key column, we searched for all possible 2-size
and 3-size candidate keys. The distribution of the mini-
mum candidate key columns of the tables are depicted in
Figure 2.
A very large number of tables, 58%, 53%, 50%, and 33% in
SG, CA, UK, and US, respectively, do not have any single
key columns. Therefore data systems, such as search en-
gines that index records, may need to find composite keys
to identify majority of the records in some portals. Fur-
thermore, 10% of the tables across all portals do not have a
candidate key of size 1, 2, or 3, which indicates the extent
of denormalization and value repetitions in these portals.

2.1.2. Functional Dependency (FD) Analysis

Next, we analyze the prevalence of non-trivial FDs in
OGDPs. Recall that an FD [17] in a table 𝑇 is an expres-
sion 𝑋 → 𝐴 where 𝑋 ⊆ 𝑎𝑡𝑡𝑟(𝑇 ) and 𝐴 ∈ 𝑎𝑡𝑡𝑟(𝑇 ), which
informally indicates that a specific set of 𝑋 values im-
ply the same 𝐴 values in 𝑇. Formally, 𝑋 → 𝐴 holds iff
for any pairs of tuples 𝑡𝑢, 𝑡𝑣 ∈ 𝑇 if 𝑡𝑢[𝑋] = 𝑡𝑣[𝑋], then
𝑡𝑢[𝐴] = 𝑡𝑣[𝐴]. 𝑋 → 𝐴 is trivial if 𝐴 ⊆ 𝑋 or if 𝑋 forms
candidate key. It is well known that existence of non-
trivial FDs indicates poor relation design and leads to
value repetitions that can be avoided by decomposing
the relation into Boyce Codd normal form (BCNF). In
the rest of this section, LHS and RHS stand for the left-
and right-hand side of an FD, respectively. While all our
previous analyses used all datasets in each OGDP, our
next analyses on composite keys and FDs require super-
linear computations and for these we used tables with
10 ≤ 𝑡 ≤ 10000 tuples and 5 ≤ 𝑐 ≤ 20 columns. The final
number of tables along with some other statistics from
the sample are provided in Table 1.
To find FDs in tables, we implemented the FUN algo-

rithm for finding FDs [18] and limited the algorithm to
find FDs whose LHS contain at most 4 attributes. Table 1
shows the percentages of the tables for which we found
at least 1 FD across all portals.
Majority of tables in each portal, and overwhelming major-
ity in UK (84.05%) and US (79.86%), have non-trivial FDs.
These percentages indicate that most of the table published
by OGDPs are not in Boyce Codd normal form, so up to
the common normalization standards of relational tables
in practice.

Finally, we note that in most of the tables, the FDs have
a simple structure where a single attribute on the LHS
implies columns on the RHS. Such FDs indicate a direct
dependency between two columns in a table. A classic
example of such FD is 𝐶𝑖𝑡𝑦 → 𝑃𝑟𝑜𝑣 𝑖𝑛𝑐𝑒, which is preva-
lent in the Canadian portal. As shown in Table 1 (“tables
with a non-trivial FD s.t |LHS|=1” lines), the majority of
the tables that have a non-trivial FD has a non-trivial FD
in this simple form.



Table 1
FD statistics of the tables.

Portal
SG CA UK US

total # tables 701 7492 18864 9770
total # columns 4142 76976 189930 102118
avg # columns per table 5.91 10.27 10.07 10.45

# tables with a non-trivial FD 381 (54.35%) 5500 (73.41%) 15855 (84.05%) 7802 (79.86%)
# tables with a non-trivial FD s.t |LHS|=1 318 (45.36%) 3659 (48.83%) 12998 (68.90%) 5944 (60.84%)

Table 2
Main statistics of the joinable pairs for each portal.

Portal
SG CA UK US

total # joinable pairs 28770 268103 616956 3786199

total # tables 2376 14707 33359 25857
# joinable tables 1578 (66.4%) 8286 (56.3%) 16157 (48.4%) 14208 (54.9%)

total # columns 12428 194022 405093 374400
# joinable columns 1962 (15.8%) 25975 (13.4%) 48221 (11.9%) 66493 (17.8%)
# key joinable columns 410(20.9%) 5311(20.4%) 11722(24.3%) 11918(17.9%)
# non-key joinable columns 1552(79.1%) 20664(79.6%) 36499(75.7%) 54575(82.1%)

2.2. Joinability Analysis
Throughout our analyses, we define joinable pairs as
quadruplets (𝑡𝑖, 𝑐𝑖𝑘, 𝑡𝑗, 𝑐

𝑗
𝑙 ), where (𝑡𝑖, 𝑡𝑗) are found to be join-

able tables through the pair of joinable columns (𝑐𝑖𝑘, 𝑐
𝑗
𝑙 ).

Similar to many prior studies [1, 19, 20, 4, 21, 22], we con-
sider an equi-join operation. We use Jaccard similarity
as a metric of joinability, since in terms of precision it is
regarded as highly effective [21, 22]. We used all avail-
able tables from each portal and picked all joinable pairs
within the same portal, i.e., pairs of tables and joinable
columns (𝑡𝑖, 𝑐𝑖𝑘, 𝑡𝑗, 𝑐

𝑗
𝑙 ) and filtered out joinable pairs based

on two criteria:

• High Jaccard similarity: Since our overall goal is to
analyze useful joinable pairs, we wanted the resulting
joins to not filter many tuples from the tables and
picked pairs only if their join columns had very high,
at least 0.9, Jaccard similarity value.

• High unique values: We selected pairs only if their
columns had at least 10 unique values. Very small
domains tend to have high value repetitions and lead
to very large join outputs, which we assumed are not
useful in data integration operations.

2.2.1. General Characteristics of Joinable Pairs

Table 2 reports the general statistics of the joinable pairs
that we analyzed. Between 48.4% (UK) and 66.4% (SG)
of the total tables in each portal have at least one other
joinable table on some column. In contrast, only between
11.9% (UK) to 17.8% (US) of the columns have another

column they are joinable with, of which only 17.9% (US)
to 24.3% (UK) were key columns. We manually analyzed
some tables and columns with high-degree joinability
and observed three patterns:

• Tables with the same schema: There are large sets
of tables that have the same or almost the same
schema, e.g., because these are periodically published
tables, which refers to publication style prevalent in
OGDPs to store information weekly, monthly, annu-
ally. These tables tend to have many columns that
have exactly the same domain and tend to be all pair-
wise joinable.

• Tables in the same dataset: Another common publica-
tion style in OGDPs is to have multiple tables storing
information about different aspects about an entity,
which we refer to as semi-normalized tables. The
schemas of these tables tend to be different but still
have common columns with significant value over-
laps. These tables can be seen as normalized versions
of a larger table yet can still exhibit FDs.

• Common non-descriptive columns: Some columns,
such as state or year, exist in many tables and lead to
high joinability degrees.
We next analyzed the sizes of the outputs of the joins,
i.e., expansion ratio of the joins, which we define as:
output size of the join / the size of the larger table.
Expansion ratio distributions for all portals are de-
picted as letter-value plots in Figure 3. The biggest
box in each distribution represents values between
the 1st and 3rd quartiles. Vertical line in the biggest
box represents median expansion ratios, which we



Figure 3: Distribution of expansion ratios of joinable
pairs.

found as 1 for CA and UK, 2 for SG and 24 for US. As
shown in the plot, except in SG, very large fractions
of joinable pairs grow significantly, often beyond 10.
For example in the US, the majority grows beyond 24
and there are at least 25% of the pairs that have an
expansion ratio of above 100.
Although it is not possible to infer whether a particu-
lar join is useful only by inspecting its expansion ratio,
perhaps the most common motivating case for joins
is to extend one table with a new column, without
growing the table at all, e.g., to add a new property of
an entity in a table as a new column. If the expansion
rate of a join is very high it is safe to assume that the
joins are accidental.

2.2.2. Useful vs Accidental Pair Analysis

We sampled a large set of 450 pairs of tables (excluding
SG due to common publication practice skewing the sam-
ple) from all of the pairs, and manually labeled them as
accidental vs useful 2. For the sample, we omit pairs with
the same schema (i.e., list of column names), since these
dominate the joinable space and are better candidates
for union operation. We categorized the tables into 3 as
follows:

• Unrelated Tables and Accidental (U-Acc): These are
the clear false positive pairs of tables that come from
completely different domains (e.g., crime vs health)
and happen to have columns with high value overlaps.

• Related Tables and Accidental (R-Acc): These are
pairs that originate from the tables storing same or
similar information in a same context (e.g., health),
but the join is accidental because the join’s output
does not have a clear interpretation. Often, this hap-
pens because the join is on columns that do not rep-
resent the main entities but some other property of

2For reference, the final pairs we used along with their
annotated labels can be found at https://github.com/
arifusta/ogdpAnalysis

Table 3
Distribution of useful vs Accidental labels.

Join Result

Portal
accidental useful

U-Acc R-Acc total

CA 35.95% 50.33% 86.28% 13.72%

UK 31.79% 49.01% 80.80% 19.20%

US 62.67% 24.00% 86.67% 13.33%

these entities.
• Useful: These are the pairs where the output of the
table has a clear interpretation.

Table 3 shows the overall frequencies of the labels we
gave across portals. As we hypothesized, overwhelming
majority of the joinable pairs we sampled, whose columns
had close-to-perfect value overlaps are accidental, i.e.,
false positives. The frequency ranges between 80.8% and
86.7% across portals (and 100% in SG). Our results indicate
that value overlap alone can be a weak signal of useful
joins and applications offering join feature need to be
more selective in the tables they suggest to users.

In what follows, we list possible remediation strategies
for avoiding U-Acc and R-Acc pairs, respectively:

• In order to avoid U-Acc pairs, tools must take the
context of the tables forming the join into account
as well instead of solely relying on column similarity,
for which some metadata properties of datasets such
as description or subject can be utilized, if available.
Another alternative is to limit candidate joinable ta-
bles to be within the same dataset given the query
table to ensure the same context, as exercised in a
recent work [9].

• We argue that avoiding R-Acc pairs is what makes the
problem of finding useful joinable pairs more chal-
lenging, which can be a future research direction to
explore. Besides, uniqueness score of the columns
and expansion ratio of a prospective join can be lever-
aged as heuristics. However, such heuristics stan-
dalone may not accurately predict usefulness for cer-
tain cases, since they do not address the problem of
finding joins through identifying columns, which is
yet another research direction that can be delved into.

3. Conclusion
We studied 4 OGDPs with the goal of informing re-
searchers and developers that develop data systems over
OGDPs about normalization properties of the tabular
datasets and their impact in join operation in these por-
tals. Our analysis reveals that tabular datasets published
by OGDPs have unique characteristics that play role lead-
ing into false positive joins, which should be remedied
by embracing more selective join candidates.
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