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Abstract
Synthesizing information from collections of tables embedded within scientific and technical documents is increasingly
critical to emerging knowledge-driven applications. Given their structural heterogeneity, highly domain-specific content,
and diffuse context, inferring a precise semantic understanding of such tables is traditionally better accomplished through
linking tabular content to concepts and entities in reference knowledge graphs. However, existing tabular data discovery
systems are not designed to adequately exploit these explicit, human-interpretable semantic linkages. Moreover, given the
prevalence of misinformation, the level of confidence in the reliability of tabular information has become an important, often
overlooked, factor in discovery over open datasets. We describe a preliminary implementation of a discovery engine that
enables table-based semantic search and retrieval of tabular information from a linked knowledge graph of scientific tables.
We discuss the viability of semantics-guided tabular data analysis operations, including on-the-fly table generation under
reliability constraints, within discovery scenarios motivated by intelligence production from documents.
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1. Introduction
Tables are ubiquitous across domains in organizing and
concisely communicating information in a structured
form. Increasing democratization of generative AI tech-
niques and the popularity of their application in the com-
prehension, creation, and refinement of complex multi-
modal digital content such as technical documents is
triggering a fresh revisit of tables—often, a key struc-
tured data component embedded within various kinds
of published documents ranging from scientific papers
and preprint articles to patents and contractual agree-
ments to intelligence reports and impact assessment state-
ments. We use the term “scientific tables” to denote this
sub-category of tabular data objects whose primary role
(alongside other structured artifacts like charts) is one
of supplementing a document’s textual content with vi-
tal visual cues, and whose access and interpretation is
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significantly driven by how they are organized within
their containing documents. While extensive research
[1, 2, 3, 4] has addressed advanced challenges in discov-
ering, analyzing, and integrating large-scale, diverse tab-
ular data that exists within enterprise data systems or
as web tables and open data published on the web, sci-
entific tables pose a unique combination of challenges
that necessitate a deeper exploration of such tables to
support the information discovery and analysis needs of
emerging applications like AI research assistants [5] and
intelligence report generation [6].

As part of a broader initiative to help understand and
systematically explore scientific tables, we developed
an end-to-end framework to: (i) harvest tables and as-
sociated metadata on-demand from online open-access
scientific publications (such as those hosted by PubMed
Central [7]), (ii) infer the intended meaning of scien-
tific tables via a two-stage semantic table interpretation
process that links tabular data to reference knowledge
graphs, (iii) further contextualize scientific tables with
provenance-based estimates of their information relia-
bility, and (iv) support rich semantic search capabilities
over the ensuing knowledge graph of scientific tables.

While our prior work [8, 9] highlighted the knowledge
extraction and knowledge graph (KG) construction as-
pects of our framework, this paper specifically addresses
the relatively under-explored problem of data discovery
from a scientific-tables-centric KG, and describes our ap-
proach and preliminary implementation of a tabular data
discovery system driven by knowledge graph technology.
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2. Scientific Tables
Tables in scientific documents often capture a point-in-
time summary view ormeta-analysis over amore compre-
hensive set of information—–including over large struc-
tured datasets hosted across diverse locations on the web
(e.g., open data portals, datamarkets, research data reposi-
tories, etc.). While these latter datasets typically feed data
preparation tasks aimed at automating data science and
analysis pipelines, we focus more on the former kind of
tables to automate technical content generation pipelines.
Specifically, we seek to enable technical experts and ana-
lysts to (i) efficiently discover useful information in ex-
isting scientific tables, (ii) analyze knowledge extracted
from across these tables in the wider context of their
visual appearance and reliability, and (iii) present their
learnings and valuable information (again, in the form of
scientific tables) for possible inclusion in new documents
or reports. Our work is motivated by how intelligence
community standards instruct analysts to “incorporate
effective visual presentations” of information (including
via tables) to enhance the overall usefulness of intelli-
gence reports [10]. Additionally, we derive inspiration
from a recent trend of scientists resorting to AI and con-
versational search engines as an evolving modern-day
lazyweb personification for generating tabular content
in lieu of conducting the research themselves.

2.1. Characteristics and Challenges
The very practices seeking to ease human comprehension
of scientific tables also introduce challenges for machine-
driven table understanding. Scientific tables exhibit cer-
tain distinctive characteristics borne out of the general
circumstances of their creation:

1. High structural heterogeneity: Constrained by
‘publication real estate’ and desire to place tables in
close proximity to any accompanying text, collections
of scientific tables display high structural variability,
even more so than web tables. Data discovery and
integration systems with data and schema matching
techniques that assume ‘well-structured’ or relational
tables do not adequately address this complexity.

2. Domain-specific entities: Like open datasets, sci-
entific tables typically contain more numerical cell
content than text. Where they do contain text, it is
usually in the form of literals or idiomatic strings and
entities specific to a scientific domain. Data semantics
[11] play a key role in disambiguating such content.

3. As with web tables, scientific tables exhibit diffuse
context wherein one must draw upon additional con-
textual information that lies outside an individual
table cell (or, even an entire table body) to infer the

semantics of its content. Based on how tables are vi-
sually formatted to optimize informational content
for human consumption, this context may include in-
ferred semantics of other cells in a row or column,
table captions or other descriptive text (from within
the body of the containing documents) that refers to
these tables.

4. In this era of scientific misinformation and non-peer-
reviewed preprints, there is a dearth of approaches to
tackle the lack of information reliability of scien-
tific tables, as is the case with web tables and open
datasets.

In [8], we describe in detail our solution to address
some of these challenges via extensive structural char-
acterization of over 120,000 tables drawn from scientific
publications, and by matching tabular content to refer-
ence knowledge graphs with high precision. We also
developed a practical entity linker [9], adaptable to dif-
ferent domains, to efficiently match COVID-19-related
scientific tables to Wikidata [12].

2.2. Data Discovery from Scientific Tables
As an illustrative example, consider an analyst seeking
meta-analyses information about phase I clinical trials for
COVID-19 vaccines developed around the world. Unless
such information is centrally curated, it will be more
expeditiously available directly within scientific tables
in published documents (e.g., figure 1).

Figure 1: Snippet from a real table, (PMC8114590, Table 1)

.While some publisher search services [13] can specif-
ically return tables from relevant papers, such matches
are not based on tabular data. In reality, most tabular
content in scientific documents is not directly accessible
even in instances where they are internally maintained
as machine-readable (e.g., HTML-formatted) objects. As-
suming that analyst queries are best served by synthe-
sizing tabular responses and that the primary source of
information for doing so are existing scientific tables, one
could potentially adapt current semantic schema match-
ing techniques to help discover ranked lists of tables with
matching content. However, as with open datasets, it

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8114590/table/tbl0005/?report=objectonly
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8114590/


is unlikely that individual scientific tables will contain
all information requested by queries. Instead, relevant
“scientific views” must be composed on the fly by suitably
merging content from multiple scientific tables. We in-
troduce technical challenges with on-the-fly generation
of relational scientific tables in response to search re-
quests under contextual constraints and briefly describe
our heuristic approach to address them in section 3.3.

3. Technical Approach
Our high-level strategy for tabular data discovery is one
of knowledge-based analysis to generate new tables on
the fly using information integrated from multiple sci-
entific tables. Our goal is to populate a result table with
new knowledge, potentially even one cell at a time.

• We first constructed a KG from scientific tables
[8]—Specifically, we perform column type annota-
tion (CTA) and cell entity annotation (CEA) [14]—i.e.,
header and body cells are automatically annotatedwith
Wikidata concepts and entities respectively (e.g., the
cell with content ‘Platform’ from the table in figure 1 is
linked to entity with QID: Q108028785: “Vaccine Plat-
form”). Each table’s structural assessments, inferred
semantics, and provenance-based estimates of reliabil-
ity are all encoded as RDF triples in accordance with
linked data principles.

• We then designed and implemented a prototype system
for ultimately discovering tabular data from this KG
of scientific tables. As an initial step towards discov-
ery and on-the-fly generation [15], we first developed
foundational capabilities—including a querymodel and
discovery engine—to enable table-based search over
our KG under rich contextual constraints. Finally, we
extended these foundational capabilities with a pre-
liminary, heuristic approach to identify and fuse the
content of semantically compatible scientific tables on
the fly via union operations. Our overall approach
is analogous to the ‘reference architecture’ approach
described in [16] to discover project-join views.

3.1. Table-based Semantic Search
Search requests against our KG can take the form of a key-
word list or a (potentially partially-specified query-by-
example) [16]) input table—–which can then be semanti-
cally resolved to reduce ambiguity—along with any asso-
ciated contextual constraints. In response to a request,
we match the semantics of the query table with inferred
semantics of tables in our KG. Since KG queries operate at
the granularity of low-level subgraph triple patterns, we
elevate scientific tables and relational-style analysis oper-
ations on these tables to first-class citizens in our KG. We

parse an input table-based search request into an interme-
diate query plan comprising a set of abstract foundational
primitives: SELECT, FILTER, RANK (and FUSE). Akin to re-
lational algebra operators, SELECT logically returns a list
of identifiers for all tables that semantically match the
query table. FILTER prunes this list by applying one or
more temporal, cell coverage-based, or reliability-based
constraints on matching tables. RANK orthogonally re-
orders the list of tables based on some ranking criteria.
Any table-based search request can be expressed as a
query plan comprising these primitives.

3.2. Tabular Data Discovery Engine
Intermediate query plans are automatically translated
into subgraph triple pattern-matching queries for exe-
cution against our KG of scientific tables. We built a
tabular data discovery engine to incrementally construct
SPARQL queries by adding or modifying ad hoc graph
patterns corresponding to each primitive instance in a
query plan. As depicted in figure 2, the discovery of rel-
evant existing scientific tables without on-the-fly table
generation requires a single pass over the engine’s com-
ponents. This engine is also responsible for packaging
the results of SPARQL query execution in the form of
relational result tables for easy consumption.

By translating query plans into SPARQL as shown,
our engine is effectively emulating “database-like” anal-
ysis against tables in our KG—where each primitive’s
implementation is driven by explicit semantic linkages
automatically inferred for each table. SELECT compares
the set of header-cell QIDs for the query table against
those for each KG table. If the two sets of QIDs over-
lap completely, or if set overlap exceeds some thresh-
old specified in the request, then the candidate table is
deemed semantically similar and included in the results.
By default, RANK sorts a list of result tables based on this
header-cell coverage metric (i.e., tables with maximum
QID set overlap are ranked higher). Besides exact com-
parison of header-cell QIDs, the engine also optionally
supports QID similarity based on pre-trained knowledge
graph embeddings from Wembedder [17].

While a detailed algorithmic description of query trans-
lation is beyond the scope of this paper, in general, given
a search request, a Query Parser identifies and assembles
(in a specific order) all information needed to formulate
a SPARQL SELECT query—including: return variables
and limits, (subject, predicate and object) for base triple
patterns, entire subgraph patterns (if applicable), vari-
able bindings and clauses for the query constraints, and
ranking preferences. A SPARQL Formulator then acts on
these inputs one by one in the prescribed order, expand-
ing them into actual triple patterns, nested sub-queries,
and clauses (FILTER, HAVING, OPTIONAL, etc.) as re-
quired, to produce a functional SPARQL query.

https://www.wikidata.org/wiki/Q108028785


Figure 2: Discovery Engine: High-level system architecture

.

3.3. On-the-fly Table Generation
On-the-fly generation of tables or views by fusing the rel-
evant portions of a list of existing tables brings additional
complex challenges to knowledge-based analysis, e.g., de-
termining if a pair of candidate tables are compatible for
merge operations based on their inferred semantics, de-
termining the order in which a list of candidate tables
must be merged to produce an optimal tabular response,
assessing the order in which different kinds of merge
operations (e.g., union, join, cell-expand) need to be ap-
plied on the tables, etc. Moreover, the context needed to
effectively merge content across tables may come from
other sources like reliability assessments captured in our
KG. Knowledge derived from other modalities such as
text may act as a ‘bridge’ between a pair of tables where
compatibility may not be established based on semantics
of table content alone.

To demonstrate on-the-fly table generation capability,
we implemented a preliminary dynamic approach to fuse
content of relevant tables via union operations. Ours is a
heuristic-based approach that greedily seeks to maximize
the amount of populated cells in the result table via new
rows while satisfying provenance-based reliability con-
straints. Our engine breaks up a list of initial candidate
tables into groups where tables in each group have iden-
tical header-cell set overlap with the query table. It then
performs a union of tables within each group to create
super-tables. If there is partial set overlap across super-
tables, it performs a union across groups in decreasing
order of their set overlap sizes. Finally, these merged

tables are returned as query results ranked in decreasing
order of their number of rows.

4. Conclusions
Supporting tabular data discovery over collections of ta-
bles published in scientific documents presents unique
challenges that require use of the explicit meaning of
scientific tables as inferred by linking them to reference
knowledge graphs. We described our approach and im-
plementation of a novel engine that can discover tabular
data from knowledge graphs of scientific tables with early
support for automatically merging content from multiple
tables on the fly via union operations. While preliminary,
we believe our approach is foundational and can be highly
effective when expanded to cover on-the-fly cell-based
table expansion techniques. We believe this work will
motivate new research directions in knowledge-guided
scientific table generation and analysis at large scales.
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