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Abstract
Semantic Table Interpretation (STI), or Semantic Table Annotation, is the process of understanding the semantics of tabular
data with reference information identified in knowledge graphs (KG). In this paper, we first present insights gained from the
design and implementation of DAGOBAH SL, a top performing STI system in state-of-the-art benchmarks, and we discuss the
unsolved challenges that need to be addressed to make STI more effective in practice. Pre-trained generative Large Language
Models (LLMs) have demonstrated their powerful versatility in tackling a broad spectrum of natural language understanding
tasks. We envision their potential for improving STI systems. We describe several appealing research ideas that could lay the
foundation for future development of Generative Semantic Table Interpretation.
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1. Introduction
Tabular data, as found in spreadsheets, is one of the most
prevalent data structures used to store and present in-
formation on the Web and in industry [1, 2]. However,
despite its compactness and human-readability, the lack
of explicit semantics and the need for interpretation hin-
der its applications in dataset indexing, search and rec-
ommendation. To address this issue, Semantic Table In-
terpretation (STI) has emerged as an attractive research
topic in recent years: this process aims at understanding
the semantics of tables according to an ontology or a
knowledge graph (KG), and at generating machine inter-
pretable annotations. STI can typically refer to up to five
tasks: i) Cell-Entity Annotation (CEA) disambiguates a
cell mention by linking it to an entity in a KG such as
Wikidata. For example, in Figure 1, the mention Arse-
nal is associated with the entity Q9617-Arsenal FC; ii)
Column-Type Annotation (CTA) predicts semantic types
for a column (e.g. concept Q476028-associated football
club is assigned to column Col 0); iii) Columns-Property
Annotation (CPA) represents the relationship between
two columns using an existing property from a KG (e.g.
Column Col 0 relates to column Col 2 via the relation-
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Figure 1: Illustration of five Semantic Table Interpretation
tasks. The table is taken from the ToughTables [3] dataset.

ship P15-home venue); iv) Topic Detection seeks to iden-
tify the subject conveyed by the table (e.g. in Figure 1,
the table provides information on various football clubs-
Q847017); v) Row-to-Instance reads an entire row and
annotate it with an entity (e.g. the third row in Figure 1
represents the categorical entity Q8272924-Category: As-
ton Villa FC). This task is particularly useful in the case
where a table has no clear subject column (see Figure 9
in [1]).

The Semantic Web Challenge series on Tabular Data
to Knowledge Graph Matching (SemTab [4, 5, 6, 7]) has
fostered an increasing number of research works on STI
topic. While various models have achieved excellent
accuracy on most benchmark datasets, their applicabil-
ity in practice is still under investigation, due to multi-
ple challenges that remain, including the gap between
the table data used in the benchmark and real world
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scenarios, or the choice of algorithmic backbone [8, 9].
DAGOBAH SL [9, 10], the winning system of SemTab
over the last two years, has shown to perform efficiently
on well-formed relational tables (like the one in Figure 1)
thanks to incorporating a rich set of match-based heuris-
tics to evaluate the relevance between table context and
entity graph. However, it still struggles with enterprise
tables, heterogeneous tables that can be found in the wild
Web or tables that have a low encyclopedic coverage (e.g.
GitTables [11]).

This paper has two objectives. First, we present
the insights gained when designing and implementing
DAGOBAH SL, and we discuss the remaining scientific
barriers that need to be tackled to obtain a reliable and
generic annotation system. Second, in light of advance-
ments in pre-trained generative Large Language Models
(LLMs) [12] with emergent abilities and flexibility in solv-
ing a wide range of natural language understanding tasks,
we envision several future steps we plan to experiment
in leveraging LLM to fuel our table annotation system.
Specifically, we rely on fine-tuning or few-shot learning
techniques to adapt the model to table structure, inject
and update knowledge within LLMs and use knowledge
to generate auto-regressively the annotation in textual
form.

2. DAGOBAH SL
DAGOBAH SL [9, 10] (SL standing for Semantic
Lookup) is a framework for interpreting relational tables
automatically via a two-stage pipeline: i) preprocessing is
performed to clean the table and extract metadata, such
as orientation, header, key column, column primitive
typing (e.g. units, URL, email, etc). Importantly, this step
can automatically detect {cells, columns, column pairs}
targets that require annotation; ii) annotation follows
a retrieve-then-rerank strategy where the retrieve
phase searches for relevant KG entity candidates for a
target cell mention via a keyword-based entity lookup,
and then the rerank phase sorts out the most relevant
entity for the cell (CEA task). The cell annotations are
subsequently leveraged to predict the column types
(CTA) and column-pair relations (CPA). The strength of
DAGOBAH SL lies in two points:

A powerful keyword-based entity lookup service, built
on Elasticsearch, indexing every label/alias of every
entity in the alias table into an inverted index. It
is capable of covering diverse surface forms of cell
mentions such as acronyms, synonyms or typos through
alias table enrichment, which results in a high recall
within a few retrieved candidates. It incorporates three
ranking factors: two similarity scores between mention
and entity label/aliases calculated using edit distance and

BM25, and a page-rank score quantifying the popularity
of an entity. DAGOBAH SL currently supports various
snapshots of DBpedia and Wikidata knowledge graphs.

An iterative cell entity/column type/column pairs rela-
tion disambiguation that leverages mutual interaction
between table elements to optimize the re-ranking of
candidate entities/column type/relations. For example,
the types of a column can guide the ranking of entity
candidates in cells associated with that column, and vice
versa. The compatibility between table context and entity
graph is evaluated thoroughly using a comprehensive set
of matching rules including: i) semantic context plays
more important role than literal context, ii) in the table,
a neighboring column that is highly connected to tar-
get column should have higher contextual weight, iii)
entity representation is expressed by a multi-hop graph
centered around the entity, allowing the exploitation of
richer context, iv) the semantic correlation between col-
umn header and cell entity’s description is exploited via
a BERT-based cross-encoder.

Furthermore, DAGOBAH SL is packaged in a RESTful
API [2] and user-friendly Web UI [13] to facilitate the
usage of STI framework.

3. Lessons Learned and Challenges
Tabular data is highly heterogeneous. Relational
table, as shown in Figure 1, is not the sole type of table.
There are other types with different topology of the se-
mantic connection between the cells, such as entity table1

or matrix table2. In view of layout structure, tables can
have multiple headers, splitted cells, merged cells or cells
containing multiple values (e.g. a list). A more detailed
table taxonomy is provided in [1].

Arguably, an annotation algorithm designed for a spe-
cific table type or table layout may not be suitable nor
efficient for other types or layouts. DAGOBAH SL is built
upon intuitions and assumptions derived from relational
tables where i) each row corresponds to the description
of a specific entity with columns providing its attributes;
ii) a semantic cell (i.e. a cell that contains a mention that
can be disambiguated) is fully represented by an entity;
iii) tables have either no header or only a single header.
However, the former intuition does not hold for matrix
table and the two later assumptions hinder DAGOBAH
SL from handling splitted cells and multivalued cells.

Knowledge Base (KB) Indexing and Exploitation.
As a closed Information Extraction application [14], STI
systems rely on a knowledge base (e.g. a knowledge
graph, an ontology or a catalog of entity definitions) to

1See Fig. 1b in webtables for an example of entity table
2See Fig. 1c in webtables for an example of matrix table
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constrain and guide the annotation process. A typical
KB consists of millions of entities, requiring a proper
indexing strategy for efficient retrieval and exploitation.
The usage of a KB in information extraction tasks may
imply two aspects: i) entity attributes to be indexed and
exploited: entity can be characterized by labels/aliases,
description or contextual information within a graph.
These attributes are leveraged partly or fully to retrieve
and disambiguate relevant entity candidates, ii) skew-
ness of entity/relation distribution: entities and relations
vary significantly in term of popularity and expressive-
ness, which may challenge the consistency in model
performance. Heuristic-based annotation system, like
DAGOBAH SL, relying on inverted indexes associated
with flexible matching mechanism (e.g. exact matching
or fuzzy matching) can work effectively and efficiently on
tables that exhibit a high degree of literal similarity with
entity’s attributes. On the other hand, representation
learning-based models learn the underlying semantics of
table and entity through embeddings, making them more
robust to noise and ambiguous/incomplete context. How-
ever, their performance depends strongly on the quality
of training data and can differ greatly between frequently
occurring entities/relations and rare ones.

Error Propagation from Detection to Annotation.
Like many other STI systems [15, 16, 17, 18], DAGOBAH
SL performs target detection (via preprocessing) and tar-
get annotation independently, hence suffers from error
accumulation where error caused by the first stage will
propagate to the later stage. Cases in which the system
fails to distinguish cells containing literal mentions and
cells containing semantic mentions, will lead to missing
or incorrect annotations. Moreover, most target detection
techniques are heuristic-based (e.g cells with string data
type are considered as CEA targets), or locally contex-
tualized (e.g. using only the single column to determine
whether the inner cells are linkable to KG entities). The
effectiveness of these techniques in various table scenar-
ios remains uncertain.

Candidate Generation is challenging. Entity candi-
date generation is critical for effective STI systems that
rely on the retrieve-then-rerank paradigm. Its goal is to
deal with huge number of entities and narrow down the
search space. DAGOBAH SL employs dictionary lookup
that computes the literal similarity between the table
mention (possibly with context) and entity’s attributes
(labels, aliases or descriptions). While this approach is
appealing for handling various surface forms of mentions
(e.g. acronym, synonym, typos), it lacks semantic under-
standing which can amplify the ambiguity within candi-
date sets and make the subsequent candidate re-ranking
phase more challenging. With the rise of pre-trained lan-

guage models, the embedding approach via contrastive
learning based on dual encoders is capable of capturing
both table and entity semantics, hence, can offer supe-
rior disambiguation capability. However, to the best of
our knowledge, there has been no work on investigating
the potential of dual encoders specifically on structured
tabular data. Moreover, the construction of negative sets
for contrastive learning is a non trivial task that impacts
the quality of learned embeddings. In addition, likewise
the target detection module, the candidate generation
exhibits the risk of propagating errors to the annotation
step. Hence, if the gold entity is not part of the retrieved
candidates, the corresponding table element will never
be correctly annotated.

4. Towards Generative Semantic
Table Interpretation

Pre-trained generative LLMs (or foundational language
models) have revolutionized numerous natural language
understanding tasks, including information extraction
(IE) tasks such as named entity recognition, entity link-
ing, relation extraction [19]. The present state-of-the-
art IE models leverage the flexibility of decoder-only or
encoder-decoder LLM architectures for structured predic-
tion, allowing for the joint handling of different IE tasks
in an end-to-end and unified manner [20, 21, 22, 23, 24].
While this approach is originally applied to unstructured
textual data, we argue it is still beneficial for structured
data. In line with [25, 26], we believe that LLMs will be
more and more adopted to tackle this task. This paper in-
troduces our vision towards generative close Information
Extraction tailored for tabular data, namely Generative
Semantic Table Interpretation (GenSTI, Figure 2). As a
stepping stone, we will aim to evaluate the potential of
LLMs in tackling challenges discussed in Section 3. The
desiderata are as follows:

Ability to handle simultaneously various table
types and layouts. By framing the STI tasks within
a unified seq-2-seq framework [27], generative LLMs
can be prompted with different table types/layouts and
can jointly solve CEA, CTA, CPA tasks. This framework
reveals the common multi-task learning that has been
successful in NLP. In particular, the model is fine-tuned
with a mix of table sets to perform multiple STI tasks at
once. Accordingly, it can facilitate knowledge transfer
between tasks and table structures, leading to the acqui-
sition of more robust and generalizable representations.
Inspired by generative information extractors for text, we
investigate two sequence modeling strategies: (i) serialize
table input and annotation outputs as plain text (text-2-
text) and solve with natural language LLMs (NL-LLMs)
(Figure 2-left) [20, 21, 23]. This flattening method ignores,



Figure 2: Generative Semantic Table Annotation with natural language-LLMs (left) and Code-LLMs (right).

however, the structural information embedded in table
and output, due to the discrepancy between the datasets
used to finetune LLMs for STI tasks and the natural lan-
guage corpora that LLMs are pretrained on. To alleviate
this issue, we could rely on [24, 28] to (ii) cast STI tasks as
code generation (code-2-code) and solve with Code-LLMs
(Figure 2-right). Converting structured data into code is
easier and provides more informative representation than
transforming it into free-form text. Hence, this technique
narrows the gap between pre-training and fine-tuning
in Code-LLMs. Interestingly, by programming a table
as a two-dimensional list which is a common data type
in code and is expected to occur frequently during the
pre-training, the model could better capture the table’s
topology (i.e. facilitate the identification of the 𝑚𝑡ℎ row,
𝑛𝑡ℎ column or the cell at coordinates [𝑚, 𝑛]), compared
to NL-LLMs. [24, 28] have demonstrated the appealing
few-shot performance of Code-LLMs (i.e. Codex[29]) in
structured prediction task that involves no code at all
such as information extraction or argument graph gen-
eration. We argue that using Code-LLMs to tackle table-
related downstream tasks could be a promising future
research direction.

End-to-End Semantic Table Annotation. Instead of
performing the target detection and target annotation as
separate stages, end-to-end STI takes into account the mu-
tual dependence and cooperation between the two, which
could lead to significant performance improvement. This

concept has successfully inspired state-of-the-art models
in related applications such as entity linking [22, 30] or
information extraction [20, 23]. In the context of GenSTI,
there are two aspects related to arbitrary generation of
generative LLMs that need to be controlled to ensure a re-
liable end-to-end GenSTI: (i) Output structure consistency:
only generate valid tags and adhere to the predefined
schema. For example, in Figure 2, regarding CEA task,
NL-LLM has to follow the template: [CEA] | cell_mention
(entity_id) | ... where cell_mention is copied from the
table and is linked to the corresponding entity_id in the
KB; (ii) Semantic consistency: entity_id must be a valid en-
tity existing in the KB, [CPA] must generate a relation_id
rather than an entity_id. A solution to both challenges
is to endow LLMs with a decoding scheme constrained
by prefix-trees that forces the model to generate only
legal tokens at each decoding step [22, 23]. Interestingly,
even without such constraint decoding, we observe that
[24] still reports good few-shot performance for IE tasks,
suggesting that, to some extent, LLMs, especially Code-
LLMs, are capable of capturing the internal representa-
tions of the task, and generate relevant outputs without
guidelines. [31] made a similar observation when train-
ing a LLM to play Othello game by feeding it a naive
transcript recording interleaving moves of two players
without adding any knowledge of the game rules. The
model has effectively learned meaningful latent represen-
tations, enabling it to uncover the game and make legal
disc moves on the board.



Efficient KB indexing and exploitation. Recently,
Differentiable Search Index (DSI) [32, 33] has emerged as
a novel generative retrieval, deviating from the common
retrieve-then-rerank paradigm. One of our objectives
is to investigate whether DSI can serve as a viable so-
lution for efficient KB indexing and exploitation within
the GenSTI system. Specifically, entities and its graphs
(e.g. [34]) are directly encoded (or stored) into LLM’s
parameters (aka. indexing). The model then leverages
injected knowledge to predict autoregressively the entity
identifier through softmax calculations over vocabulary’s
tokens. This indexing mechanism helps to relax the Can-
didate Generation phase which consequently saves a
non-negligible computation cost and eliminate the need
of external space to store entity embeddings and the
need of meaningful negative samples for the learning, as
required by dual encoders-based candidate generation.
While working effectively on small KB, the behavior of
DSI when scaling to large KB (e.g. Wikidata with ∼ 100
millions entities) remains an open research challenge
[35], necessitating three key elements to be clarified: (i)
in the indexing phase, how many entities the model can
memorize [36]; (ii) can the model efficiently learn entities
and propagate its knowledge to support the generation
[37]; and (iii) the robustness to entity/relation skewness.
Generative Information Extraction [23] has shown to be
more robust than strong baselines for long-tail entities,
but is still far from being good. [38] proposes fine-tuning
the extractor on a more balanced dataset that remarkably
improves the macro performance.

5. Conclusion
This paper has first reflected on the work carried out
when designing DAGOBAH-SL over the last few years
and the lessons we learned in implementing a top per-
forming system for STI. This work is also the first step
in our journey towards Generative Semantic Table In-
terpretation (GenSTI). We plan to conduct intensive ex-
periments to uncover the challenges and gain a deeper
understanding of the contributions of LLMs to the STI
topic, as discussed in Sections 3 and 4.
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