
Typicality, Conditionals and a Probabilistic Semantics for
Gradual Argumentation

Mario Alviano1,*, Laura Giordano2,* and Daniele Theseider Dupré2,*

1DEMACS, University of Calabria, Via Bucci 30/B, 87036 Rende (CS), Italy
2DISIT, University of Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy

Abstract
In this paper we propose a general approach to define a many-valued preferential interpretation of gradual argumentation
semantics. The approach allows for conditional reasoning over arguments and boolean combination of arguments, with respect
to some chosen gradual semantics, through the verification of graded (strict or defeasible) implications over a preferential
interpretation. The paper also develops and discusses a probabilistic semantics for gradual argumentation, which builds on the
many-valued conditional semantics.

1. Introduction
Argumentation is one of the major fields in non-monotonic
reasoning (NMR) which has been shown to be very rel-
evant for decision making and for explanation [1]. The
relationships between preferential semantics of common-
sense reasoning [2, 3, 4, 5] and argumentation semantics
are very strong [6, 4]. While for Dung-style argumenta-
tion semantics and for Abstract Dialectical Frameworks,
the relationships with conditional reasoning have been
deeply investigated [7, 8, 9, 10], this is not the case for
gradual argumentation [11, 12, 13, 14, 15, 16, 17].

In a companion paper [18], we have proposed an ASP
approach for conditional reasoning over weighted argu-
mentation graphs in a specific gradual semantics (the 𝜙-
coherent semantics), through the verification of graded
conditional implications over arguments and over boolean
combinations of arguments. In this paper, we show that
the proposal can be generalized to a larger class of gradual
argumentation semantics.

The paper proposes a general approach to define a pref-
erential interpretation of an argumentation graph under a
gradual semantics (provided weak conditions on the do-
main of argument interpretation are satisfied), to allow for
conditional reasoning over the argumentation graph, by
formalizing conditional properties of the graph in a many-
valued logic with typicality: a many-valued propositional
logic in which arguments play the role of propositional
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variables, and a typicality operator is allowed, inspired by
the typicality operator proposed in the Propositional Typi-
cality Logic [19] as well as in Description Logics (DLs)
with typicality [20]. The operator allows for the defini-
tion of conditional implications T(𝐴1) → 𝐴2, meaning
that “normally argument 𝐴1 implies argument 𝐴2", in the
sense that “in the typical situations where 𝐴1 holds, 𝐴2

also holds". The truth degree of such implications can
be determined with respect to a preferential interpreta-
tion defined from a set of labellings of an argumentation
graph, according to a chosen (gradual) argumentation se-
mantics. They correspond to conditional implications
𝛼 |∼ 𝛽 in the KLM approach [21, 3]. More precisely, in
this paper we consider graded conditionals of the form
T(𝛼) → 𝛽 ≥ 𝑙, meaning that “normally argument 𝛼
implies argument 𝛽 with degree at least 𝑙", where 𝛼 and
𝛽 can be boolean combination of arguments. They are in-
spired by graded inclusion axioms in fuzzy DLs [22] and
in weighted defeasible knowledge bases in DLs [23]. The
satisfiability of such implications in the multi-preferential
interpretation 𝐼𝑆𝐺 of an argumentation graph 𝐺 (wrt. a
given semantics 𝑆), exploits multiple preference relations
<𝐴𝑖 over labellings, each one associated with an argu-
ment 𝐴𝑖.

We reformulate the KLM postulates of a preferential
consequence relation for graded conditionals and prove
that they are satisfied by the conditionals which hold in
the multi-preferential interpretation 𝐼𝑆𝐺, for some choice
of combination functions. We also prove that the satisfia-
bility of a graded conditional T(𝛼) → 𝛽 ≥ 𝑘 in a finite
preferential interpretation 𝐼𝑆𝐺 can be decided in polyno-
mial time in the size of the interpretation 𝐼𝑆𝐺 times the size
of the conditional formula.

The definition of a preferential interpretation 𝐼𝑆𝐺 as-
sociated with an argumentation graph 𝐺 and a gradual
semantics 𝑆 also sets the ground for the definition of a
probabilistic interpretation of gradual semantics 𝑆. For
the gradual semantics with domain of argument valuation
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in the unit real interval [0, 1], we propose a probabilistic
argumentation semantics, which builds on a gradual se-
mantics and is inspired by Zadeh’s probability of fuzzy
events [24]. As we will see it can be regarded as a gen-
eralization of the probabilistic semantics in [25] to the
gradual case.

2. A preferential interpretation of
gradual argumentation
semantics

Given an argumentation graph 𝐺 and some gradual argu-
mentation semantics 𝑆, we define a preferential (many-
valued) interpretation of the argumentation graph 𝐺, with
respect to the gradual semantics 𝑆. We generalize the
approach proposed in [18] for weighted argumentation
graphs, without assuming a specific gradual semantics. In
the following, we will consider both weighted and non-
weighted argumentation graphs.

We follow Baroni, Rago and Toni [16, 26] (in their
definition of a Quantitative Bipolar Argumentation Frame-
work, QBAF) in the choice of the domain of argument
interpretation, letting it to be a set 𝒟, equipped with a
preorder relation ≤, an assumption which is considered
general enough to include the domain of argument valua-
tions in most gradual argumentation semantics. As usual,
we let 𝑥 < 𝑦 iff 𝑥 ≤ 𝑦 and 𝑦 ̸≤ 𝑥.

As in [16], we do not assume 𝒟 contains a minimum
element and a maximum element. However, if a minimum
element and a maximum element belong to 𝒟, we will
denote them by 0𝒟 and 1𝒟 (or simply 0 and 1), respec-
tively. If not, we will add the two elements 0𝒟 and 1𝒟
at the bottom and top of the values in 𝒟, respectively.
We will also call 𝒟 the truth value set (or the truth de-
gree set). For instance, 𝒟 may be unit interval [0, 1]
or, in the finitely-valued case (as in [18]), the finite set
𝒞𝑛 = {0, 1

𝑛
, . . . , 𝑛−1

𝑛
, 1}, for some integer 𝑛 ≥ 1.

For the definition of an argumentation graph, we con-
sider the definition of edge-weighted QBAF by [27], for a
generic domain 𝒟. As we want to capture both weighted
and non-weighted argumentation graphs, in the following,
we will let the label of edges of the graph be +1 or −1 to
denote support and attack in the non-weighted case (see
below).

We let a (weighted) argumentation graph to be a quadru-
ple 𝐺 = ⟨𝒜,ℛ, 𝜎0, 𝜋⟩, where 𝒜 is a set of arguments,
ℛ ⊆ 𝒜×𝒜 a set of edges, 𝜎0 : 𝒜 → 𝒟 assigns a base
score of arguments, and 𝜋 : ℛ → R is a weight function
assigning a positive or negative weight to edges. An exam-
ple of weighted argumentation graph is in Figure 1, where
the base score (i.e., the initial valuation of arguments) is
not represented.

A pair (𝐵,𝐴) ∈ ℛ is regarded as a support of argu-

Figure 1: Example weighted argumentation graph 𝐺
from [18]

ment 𝐵 to argument 𝐴 when the weight 𝜋(𝐵,𝐴) is posi-
tive and as an attack of argument 𝐵 to argument 𝐴 when
𝜋(𝐵,𝐴) is negative. In case the graph is non-weighted,
we let 𝜋(𝐵,𝐴) = −1 mean that argument 𝐵 attacks ar-
gument 𝐴, and 𝜋(𝐵,𝐴) = +1 mean that argument 𝐵
supports argument 𝐴.

Bipolar argumentation has been studied in the literature
[28, 16, 26, 27] through different frameworks. We refer
to the Quantitative Bipolar Argumentation Framework
(QBAF) by Baroni, Rago and Toni [16, 26] for a classi-
fication and the properties of gradual semantics, when
the argumentation graph is non-weighted, and to Potyka’s
work [27] for the framework of edge-weighted QBAFs
and its properties. The properties of edge-weighted argu-
mentation graphs with weights in the unit interval [0, 1]
have as well been studied in the gradual semantics frame-
work by Amgoud and Doder [17].

Whatever semantics 𝑆 is considered for an argumen-
tation graph 𝐺, we will assume that 𝑆 identifies a set
Σ𝑆 of labellings of the graph 𝐺 over a domain of ar-
gument valuation 𝒟. A labelling 𝜎 of 𝐺 over 𝒟 is a
function 𝜎 : 𝒜 → 𝒟, which assigns to each argument
an acceptability degree (or a strength) in the domain of
argument valuation 𝒟.1 In some cases, we may omit the
base score 𝜎0, and consider the set of labellings Σ𝑆 of a
graph 𝐺 = ⟨𝒜,ℛ, 𝜋⟩, for all the possible choices of the
base score, or a subset of them.

As an example, we refer to (without providing its defi-
nition) the 𝜙-coherent semantics [29, 30] of graph 𝐺 in
Figure 1.

Example 1 ([18]). As an example, in the 𝜙-coherent se-
mantics for weighted argumentation graphs, in the finitely-
valued case, for 𝒟 = 𝒞𝑛 with 𝑛 = 5, the graph 𝐺 in
Figure 1 has 36 labellings, while, for 𝑛 = 9, 𝐺 has 100 la-
bellings. For instance, 𝜎 = (0, 4/5, 3/5, 2/5, 2/5, 3/5)
(meaning that 𝜎(𝐴1) = 0, 𝜎(𝐴2) = 4/5, and so on) is a

1Clearly, not any mapping qualifies as a labelling of a gradual seman-
tics 𝑆, as a gradual semantics is intended to satisfy some principles,
such as those identified in the different frameworks mentioned above
[16, 26, 17, 27] for the non-weighted and for the weighted case. For
our concerns, in the following, we will assume that, whatever the
concrete definition of a semantics 𝑆 might be, the semantics 𝑆 can
be regarded, abstractly, as a pair (𝒟,Σ𝑆): a domain of argument
valuation 𝒟 and a set of labellings Σ𝑆 over the domain.
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labelling for 𝑛 = 5.

In the following, we introduce a propositional language
to represent boolean combination of arguments and a
many-valued semantics for it over the domain 𝒟 of ar-
gument valuation. Then, we extend the language with a
typicality operator, to introduce defeasible implications
over boolean combinations of arguments and define a
(multi-)preferential interpretation associated with the ar-
gumentation graph 𝐺 and a set of labellings Σ𝑆 .

Given an argumentation graph 𝐺 = ⟨𝒜,ℛ, 𝜎0, 𝜋⟩, we
introduce a propositional language ℒ, whose set of propo-
sitional variables 𝑃𝑟𝑜𝑝 is the set of arguments 𝒜. We
assume our language ℒ contains the connectives ∧, ∨,
¬ and →, and that formulas are defined inductively, as
usual. Formulas built from the propositional variables
in 𝒜 correspond to a boolean combination of arguments
(denoted 𝛼, 𝛽, 𝛾), which are considered, for instance, by
Hunter, Polberg and Thimm in [31].

We consider a many-valued semantics for boolean com-
bination of arguments, with 𝒟 as the truth degree set. Let
⊗, ⊕, ▷ and ⊖ be the truth degree functions in 𝒟 for the
connectives ∧, ∨, ¬ and → (respectively). When 𝒟 is
[0, 1] or the finite set 𝒞𝑛, as in our case of study [18], ⊗, ⊕,
▷ and ⊖ can be chosen as a t-norm, s-norm, implication
function, and negation function in some system of many-
valued logic [32]; for instance, in Gödel logic, that we will
consider later, 𝑎⊗ 𝑏 = 𝑚𝑖𝑛{𝑎, 𝑏}, 𝑎⊕ 𝑏 = 𝑚𝑎𝑥{𝑎, 𝑏},
𝑎▷ 𝑏 = 1 if 𝑎 ≤ 𝑏 and 𝑏 otherwise; and ⊖𝑎 = 1 if 𝑎 = 0
and 1 otherwise.

A labelling 𝜎 : 𝒜 → 𝒟 of graph 𝐺, assigning to each
argument 𝐴𝑖 ∈ 𝒜 a truth degree in 𝒟, can be regarded as
a many-valued valuation. A valuation 𝜎 can be inductively
extended to all propositional formulas of ℒ as follows:
𝜎(𝛼∧𝛽) = 𝜎(𝛼)⊗𝜎(𝛽) 𝜎(𝛼∨𝛽) = 𝜎(𝛼)⊕𝜎(𝛽)
𝜎(𝛼 → 𝛽) = 𝜎(𝛼)▷ 𝜎(𝛽) 𝜎(¬𝛼) = ⊖𝜎(𝛼)
Based on the choice of the combination functions, a la-
belling 𝜎 uniquely assigns a truth degree to any boolean
combination of arguments. We will assume that the false
argument ⊥ and the true argument ⊤ are formulas of 𝐿
and that 𝜎(⊥) = 0𝒟 and 𝜎(⊤) = 1𝒟 , for all labellings
𝜎.

Definition 1. Given a set of labellings Σ, for each argu-
ment 𝐴𝑖 ∈ 𝒜 , we define a preference relation <𝐴𝑖 on Σ,
as follows: for 𝜎, 𝜎′ ∈ Σ,

𝜎 <Σ
𝐴𝑖

𝜎′ iff 𝜎′(𝐴𝑖) < 𝜎(𝐴𝑖),

Labelling 𝜎 is preferred to 𝜎′ with respect to argument
𝐴𝑖 (or 𝜎 is more plausible than 𝜎′ for argument 𝐴𝑖), when
the degree of truth of 𝐴𝑖 in 𝜎 is greater than the degree of
truth of 𝐴𝑖 in 𝜎′. The preference relation <Σ

𝐴𝑖
is a strict

partial order relation on Σ. We will be simply write <𝐴𝑖 ,
omitting Σ, when it is clear from the context.

The definition of preference over arguments which is in-
duced by a set of labellings Σ also extends to the boolean

combination of arguments 𝛼 in the obvious way, based on
the choice of combination functions. A set of labellings Σ
induces a preference relation <𝛼 on Σ, for each boolean
combination of arguments 𝛼, as follows: for all 𝜎, 𝜎′ ∈ Σ,

𝜎 <𝛼 𝜎′ iff 𝜎′(𝛼) < 𝜎(𝛼).

When the set Σ𝑆 of labellings of a graph in an argu-
mentation semantics 𝑆 is infinite, the preference relations
<𝐴𝑖 (and <𝛼) are not guaranteed to be well-founded, as
there may be infinitely-descending chains of labellings.
In the following, we will restrict our consideration to set
of labellings Σ𝑆 such that both <𝐴𝑖 and <¬𝐴𝑖 are well-
founded for all arguments 𝐴𝑖 in Σ. We will call such a set
of labellings Σ𝑆 a well-founded set of labellings. From
the monotonicity properties of t-norms and s-norms, and
the antitonicity property of negation functions, it follows
that, for any well-founded set of labellings Σ𝑆 , <𝛼 is also
well-founded for any boolean combinations of arguments
𝛼.

We can now define the preferential interpretation of a
graph with respect to a set of labellings.

Definition 2. Given an argumentation graph 𝐺, a gradual
semantics 𝑆 with domain of argument valuation 𝒟, and
the set of labellings Σ𝑆 of 𝐺 wrt 𝑆, we let the preferential
interpretation of 𝐺 wrt 𝑆 to be the pair 𝐼𝑆𝐺 = (𝒟,Σ𝑆).

The preference relations <𝛼 in the preferential inter-
pretation 𝐼𝑆𝐺 are left implicit, as they are induced by the
labellings in Σ𝑆 (according to Definition 1). Often, we
will simply write 𝐼𝑆 or 𝐼 , rather than 𝐼𝑆𝐺.

Language ℒT is obtained by extending language ℒ with
a unary typicality operator T. Intuitively, “a sentence
of the form T(𝛼) is understood to refer to the typical
situations in which 𝛼 holds" [19]. The typicality operator
allows the formulation of conditional implications (or
defeasible implications) of the form T(𝛼) → 𝛽 whose
meaning is that "normally, if 𝛼 then 𝛽", or "in the typical
situations when 𝛼 holds, 𝛽 also holds". They correspond
to conditional implications 𝛼 |∼ 𝛽 of KLM preferential
logics [3]. As in PTL [19], the typicality operator cannot
be nested. When 𝛼 and 𝛽 do not contain occurrences of
the typicality operator, an implication 𝛼 → 𝛽 is called
strict. In the language ℒT, we allow general implications
𝛼 → 𝛽, where 𝛼 and 𝛽 may contain occurrences of the
typicality operator.

The interpretation of a typicality formula T(𝛼) is de-
fined with respect to a preferential interpretation 𝐼 =
(𝒟,Σ) with Σ well-founded.

Definition 3. Given a preferential interpretation 𝐼 =
(𝒟,Σ), and a labelling 𝜎 ∈ Σ, the valuation of a propo-
sitional formula T(𝛼) in 𝜎 is defined as follows:

𝜎(T(𝛼)) =

{︂
𝜎(𝛼) if 𝜎 ∈ 𝑚𝑖𝑛<𝛼(Σ)
0𝒟 otherwise (1)
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where 𝑚𝑖𝑛<𝛼(Σ) = {𝜎 : 𝜎 ∈ Σ and ∄𝜎′ ∈ Σ s.t.
𝜎′ <𝛼 𝜎}.

When 𝜎(T(𝐴)) > 0𝒟 , 𝜎 is a labelling assigning a
maximal degree of acceptability to argument 𝐴 in 𝐼 , i.e.,
it maximizes the acceptability of argument 𝐴, among all
the labellings in 𝐼 .

Given a preferential interpretation 𝐼 = (𝒟,Σ), we can
now define the satisfiability in 𝐼 of a graded implication,
having form 𝛼 → 𝛽 ≥ 𝑙 or 𝛼 → 𝛽 ≤ 𝑢, with 𝑙 and 𝑢 in
𝒟 and 𝛼 and 𝛽 boolean combination of arguments. We
first define the truth degree of an implication 𝛼 → 𝛽 wrt
a preferential interpretation 𝐼 as follows:

Definition 4. Given a preferential interpretation 𝐼 =
(𝒟,Σ) of an argumentation graph 𝐺, the truth degree of
an implication 𝛼 → 𝛽 wrt. 𝐼 is defined as:

(𝛼 → 𝛽)𝐼 = 𝑖𝑛𝑓𝜎∈Σ(𝜎(𝛼)▷ 𝜎(𝛽)).

As a special case, for conditional implications, we have
that: (T(𝛼) → 𝛽)𝐼 = 𝑖𝑛𝑓𝜎∈Σ(𝜎(T(𝛼))▷ 𝜎(𝛽)).

We can now define the satisfiability of a graded impli-
cation in an interpretation 𝐼 = (𝒟,Σ).

Definition 5. Given a preferential interpretation 𝐼 =
(𝒟,Σ) of an argumentation graph 𝐺, 𝐼 satisfies a graded
implication 𝛼 → 𝛽 ≥ 𝑙 (written 𝐼 |= 𝛼 → 𝛽 ≥ 𝑙) iff
(𝛼 → 𝛽)𝐼 ≥ 𝑙; 𝐼 satisfies a graded implication 𝛼 →
𝛽 ≤ 𝑢 (written 𝐼 |= 𝛼 → 𝛽 ≤ 𝑢) iff (𝛼 → 𝛽)𝐼 ≤ 𝑢.

Example 2 ([18]). As mentioned before, for the weighted
argumentation graph in Figure 1, there are 36 labellings
in case 𝑛 = 5. The following graded conditionals are
among the ones satisfied in the interpretation:

T(𝐴1 ∧𝐴2 ∧ ¬𝐴3) → 𝐴6 ≥ 1
(with 4 preferred labellings);

T(𝐴1 ∧𝐴2) → 𝐴6 ≥ 4/5 (12 preferred labellings);
T(𝐴6) → 𝐴1 ∧𝐴2 ≥ 4/5 (1 preferred labelling).

On the other hand, for instance, the strict implication
𝐴6 → 𝐴1 ∧𝐴2 ≥ 1/5 does not hold.

For instance, this means that the strict implication
𝐴6 → 𝐴1 ∧ 𝐴2 has a very low degree but, in the sit-
uations (labellings) which maximize the acceptability of
argument 𝐴6, implication 𝐴6 → 𝐴1 ∧ 𝐴2 holds with a
degree not lower that 4/5, i.e., roughly speaking, in the
labellings maximizing the acceptability of argument 𝐴6,
arguments 𝐴1 and 𝐴2 are likely to hold.

Notice that the valuation of a graded implication (e.g.,
𝛼 → 𝛽 ≥ 𝑙) in a preferential interpretation 𝐼 is two-
valued, that is, either the graded implication is satisfied in
𝐼 (i.e., 𝐼 |= 𝛼 → 𝛽 ≥ 𝑙) or it is not (i.e., 𝐼 ̸|= 𝛼 → 𝛽 ≥
𝑙). Hence, it is natural to consider boolean combinations
of graded implications, such as (T(𝐴1) → 𝐴2 ∧ 𝐴3 ≤
0.7) ∧ (T(𝐴3) → 𝐴4) ≥ 0.6) → (T(𝐴1) → 𝐴4) ≥
0.6), and define their satisfiability in an interpretation 𝐼

in the obvious way, based on the semantics of classical
propositional logic.

The preferential interpretation 𝐼𝑆𝐺 can be used to val-
idate (under the semantics 𝑆) properties of interest of
an argumentation graph 𝐺, expressed by graded implica-
tions (including strict or defeasible implications or their
boolean combination) based on the semantics 𝑆. When
the preferential interpretation 𝐼𝑆𝐺 is finite (contains a finite
set of labellings), the satisfiability of graded implications
(or their boolean combinations) can be verified by model
checking over the preferential interpretation 𝐼𝑆𝐺 (see sec-
tion 4). In case there are infinitely many labellings of
the graph in the semantics 𝑆, which may give rise to non
well-founded preference relations, approximations of the
semantics 𝑆 over a finite domain can be considered for
proving properties of the argumentation graph. In [18]
we have developed an ASP approach for defeasible rea-
soning over an argumentation graph under the 𝜙-coherent
semantics in the finitely-valued case.

3. KLM properties of conditionals
In this section we reformulate the KLM properties of
a preferential consequence relation in the many-valued
setting and prove that, for the choice of combination func-
tions as in Gödel logic, they are satisfied by the set of
graded conditionals of the form T(𝛼) → 𝛽 ≥ 1, which
hold in a given interpretation 𝐼𝑆 = (𝒮,Σ𝑆).

The KLM postulates of a preferential consequence
relations [21, 3, 33] can be reformulated by replacing
a conditional 𝛼 |∼ 𝛽 with the conditional implication
T(𝛼) → 𝛽 ≥ 1, as follows:

(Reflexivity) T(𝛼) → 𝛼 ≥ 1
(LeftLogicalEquivalence) If |= 𝛼 ↔ 𝛽 and

T(𝛼) → 𝛾 ≥ 1, then T(𝛽) → 𝛾 ≥ 1
(RightWeakening) If |= 𝛾 → 𝛽 and T(𝛼) →

𝛾 ≥ 1, then T(𝛼) → 𝛽 ≥ 1
(And) If T(𝛼) → 𝛾 ≥ 1 and T(𝛼) → 𝛽 ≥ 1, then

T(𝛼) → 𝛾 ∧ 𝛽 ≥ 1
(Or) If T(𝛼) → 𝛾 ≥ 1 and T(𝛽) → 𝛾 ≥ 1, then

T(𝛼 ∨ 𝛽) → 𝛾 ≥ 1
(CautiousMonotonicity) If T(𝛼) → 𝛾 ≥ 1 and

T(𝛼) → 𝛽 ≥ 1, then T(𝛼 ∧ 𝛽) → 𝛾 ≥ 1.

Here, we also reinterpret |= 𝛼 → 𝛽 as the requirement
that 𝛼 → 𝛽 ≥ 1 is satisfied in all interpretations 𝐼 =
(𝒮,Σ), that is, 𝜎(𝛼)▷ 𝜎(𝛽) ≥ 1 holds for any labelling
𝜎 ∈ Σ, in any interpretation 𝐼 = (𝒮,Σ). |= 𝐴 ↔ 𝐵 is
interpreted as |= 𝛼 → 𝛽 and |= 𝛽 → 𝛼

Concerning the meaning of the postulates in this con-
text, for instance, the meaning of (And) is that, if
T(𝛼) → 𝛾 ≥ 1 and T(𝛼) → 𝛽 ≥ 1 are both satis-
fied in 𝐼𝑆 , then T(𝛼) → 𝛾∧𝛽 ≥ 1 is also satisfied in 𝐼𝑆 .
The meaning of (RightWeakening) is that, if it holds
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that |= 𝛾 → 𝛽 (i.e., 𝜎(𝛾)▷ 𝜎(𝛽) ≥ 1 for any labelling 𝜎
in any interpretation 𝐼), and T(𝛼) → 𝛾 ≥ 1 is satisfied
in 𝐼𝑆 then T(𝛼) → 𝛽 ≥ 1 is also satisfied in 𝐼𝑆 .

Given the interpretation 𝐼𝑆 = (𝒮,Σ𝑆), associated with
an argumentation semantics 𝑆 of a graph 𝐺, we can prove
the following result.

Proposition 1. Under the choice of combination functions
as in Gödel logic, interpretation 𝐼𝑆 satisfies the KLM
postulates of a preferential consequence relation given
above.

Proof (Sketch). Let 𝐼𝑆 = (𝒮,Σ𝑆) be the interpretation
associated with an argumentation semantics 𝑆 of a graph
𝐺 where the t-norm, s-norm, implication function and
negation functions are as in Gödel logic (i.e., 𝑎 ⊗ 𝑏 =
𝑚𝑖𝑛{𝑎, 𝑏}, 𝑎⊕ 𝑏 = 𝑚𝑎𝑥{𝑎, 𝑏}, 𝑎▷ 𝑏 = 1 if 𝑎 ≤ 𝑏 and
𝑏 otherwise; and ⊖𝑎 = 1 if 𝑎 = 0 and 1 otherwise). We
proceed by cases.

(Reflexivity) To prove that T(𝛼) → 𝛼 ≥ 1 is satisfied
in 𝐼𝑆 , we have to prove that 𝑖𝑛𝑓𝜎∈Σ𝑆 𝜎(T(𝛼))▷𝜎(𝛼) ≥
1. Let us prove that for all 𝜎 ∈ Σ𝑆 , 𝜎(T(𝛼))▷𝜎(𝛼) ≥ 1.

We consider two cases: 𝜎(T(𝛼)) = 0, and 𝜎(T(𝛼)) >
0.

If 𝜎(T(𝛼)) = 0, 𝜎(T(𝛼)) ▷ 𝜎(𝛼) = 0 ▷ 𝜎(𝛼) = 1,
and the thesis holds trivially.

If 𝜎(T(𝛼)) > 0, by definition 𝜎(T(𝛼)) = 𝜎(𝛼).
Hence, 𝜎(T(𝛼))▷ 𝜎(𝛼) = 1, and the thesis holds.

(RightWeakening) Assume |= 𝛾 → 𝛽 holds, i.e.,
𝜎(𝛾)▷ 𝜎(𝛽) ≥ 1 holds for all labellings 𝜎 in any prefer-
ential interpretation 𝐼 = (𝒮,Σ). Hence, 𝑖𝑛𝑓𝜎∈Σ 𝜎(𝛾)▷
𝜎(𝛽) ≥ 1 and, for all 𝜎 ∈ Σ, 𝜎(𝛾) ▷ 𝜎(𝛽) ≥ 1. This
implies that, for all 𝐼 = (𝒮,Σ), and for all 𝜎 ∈ Σ,
𝜎(𝛾) ≤ 𝜎(𝛽) (in particular, this must hold for all 𝜎 in
Σ𝑆).

Let us assume that T(𝛼) → 𝛾 ≥ 1 is satisfied in 𝐼𝑆 ,
i.e., 𝑖𝑛𝑓𝜎∈Σ𝑆 𝜎(T(𝛼)) ▷ 𝜎(𝛾) ≥ 1 holds. Hence, for
all 𝜎 ∈ Σ𝑆 , 𝜎(T(𝛼)) ▷ 𝜎(𝛾) ≥ 1 holds. Thus, for
all 𝜎 ∈ Σ𝑆 , 𝜎(T(𝛼)) ≤ 𝜎(𝛾) and, then, 𝜎(T(𝛼)) ≤
𝜎(𝛾) ≤ 𝜎(𝛽). From this it follows that T(𝛼) → 𝛽 ≥ 1
is satisfied in 𝐼𝑆 .

(Or) Let us assume that T(𝛼) → 𝛾 ≥ 1 and T(𝛽) →
𝛾 ≥ 1 are satisfied in 𝐼𝑆 . Then, 𝑖𝑛𝑓𝜎∈Σ𝑆 𝜎(T(𝛼)) ▷
𝜎(𝛾) ≥ 1 and 𝑖𝑛𝑓𝜎∈Σ𝑆 𝜎(T(𝛽)) ▷ 𝜎(𝛾) ≥ 1 hold.
Hence, for all 𝜎 ∈ Σ𝑆 , 𝜎(T(𝛼)) ▷ 𝜎(𝛾) ≥ 1 and
𝜎(T(𝛽))▷ 𝜎(𝛾) ≥ 1 also hold.

As we have seen above, this implies that: for all 𝜎 ∈
Σ𝑆 , 𝜎(T(𝛼)) ≤ 𝜎(𝛾) and 𝜎(T(𝛽)) ≤ 𝜎(𝛾).

To prove that T(𝛼∨𝛽) → 𝛾 ≥ 1 is satisfied in 𝐼𝑆 , we
prove that for all 𝜎 ∈ Σ𝑆 , 𝜎(T(𝛼 ∨ 𝛽)) ≤ 𝜎(𝛾).

If 𝜎(T(𝛼 ∨ 𝛽)) = 0, the thesis follows trivially.
If 𝜎(T(𝛼 ∨ 𝛽)) > 0, 𝜎 maximizes the acceptability

degree for 𝛼 ∨ 𝛽, and there is no 𝜎′ ∈ Σ𝑆 such that
𝜎′(T(𝛼 ∨ 𝛽)) > 𝜎(T(𝛼 ∨ 𝛽)).

Given that 𝜎(T(𝛼 ∨ 𝛽)) = 𝜎(𝛼 ∨ 𝛽) =
𝑚𝑎𝑥{𝜎(𝛼), 𝜎(𝛽)}, it follows that there is no 𝜎′ ∈ Σ𝑆

such that 𝑚𝑎𝑥{𝜎′(𝛼), 𝜎′(𝛽)} > 𝑚𝑎𝑥{𝜎(𝛼), 𝜎(𝛽)}.
Let us assume, without loss of generality, that

𝑚𝑎𝑥{𝜎(𝛼), 𝜎(𝛽)} = 𝜎(𝛽). Then, there cannot be a
𝜎′ ∈ Σ𝑆 such that 𝜎′(𝛽) > 𝜎(𝛽), that is, 𝜎 maximizes
the acceptability degree for 𝛽.

Furthermore, 𝜎(T(𝛽)) = 𝜎(𝛽) = 𝜎(T(𝛼 ∨ 𝛽))
From the hypothesis, we know that T(𝛽) → 𝛾 ≥ 1

is satisfied in 𝐼𝑆 and, hence, 𝜎(T(𝛽)) ≤ 𝜎(𝛾) holds. It
follows that 𝜎(T(𝛼 ∨ 𝛽)) = 𝜎(T(𝛽)) ≤ 𝜎(𝛾), and then
𝜎(T(𝛼 ∨ 𝛽))▷ 𝜎(𝛾) ≥ 1.

The case where 𝑚𝑎𝑥{𝐴𝐼(𝑥), 𝐵𝐼(𝑥)} = 𝐴(𝑥) is simi-
lar, and this concludes the case for 𝜎(T(𝛼 ∨ 𝛽)) > 0.

For the other postulates the proof is similar.

The KLM properties considered above do not depend
on the choice of the negation function. The same prop-
erties also hold for Zadeh’s logic. However, some of
the properties above might not hold depending on other
choices of combination functions. Note that whether the
KLM properties are intended or not, may depend on the
kind of conditionals and on the kind of reasoning one aims
at, and it is still a matter of debate [34, 35, 36, 37].

4. Model checking over finite
interpretations

In this section we show that, for a finite interpretation
𝐼𝑆 = (𝒮,Σ𝑆) associated with an argumentation seman-
tics 𝑆 of an argumentation graph 𝐺, the satisfiability of
a conditional T(𝛼) → 𝛽 ≥ 𝑘 in 𝐼𝑆 can be decided in
polynomial time in the size of Σ𝑆 times the size of the
formula T(𝛼) → 𝛽.

To verify the satisfiability of a graded conditional
T(𝛼) → 𝛽 ≥ 𝑘 in a preferential interpretation 𝐼𝑆 =
(𝒮,Σ𝑆) of the graph 𝐺, one has to check that for all
labellings 𝜎 ∈ Σ𝑆 , it holds that T(𝜎(𝛼)) ▷ 𝜎(𝛽) ≥
𝑘. In particular, one has to identify all the labellings
𝜎 ∈ Σ𝑆 which maximize the acceptability degree of the
boolean combination of arguments 𝛼 (i.e., those such
that 𝜎(T(𝛼)) = 𝑣 > 0) as, for all other labellings,
T(𝜎(𝛼)) = 0 and 0▷ 𝜎(𝛽) ≥ 𝑘 holds trivially.

Let |Σ𝑆 | be the size of Σ𝑆 . Identifying the labellings
which maximize the acceptability degree of 𝛼, requires to
evaluate the acceptability degree 𝜎′(𝛼) of 𝛼, for any 𝜎′ ∈
Σ𝑆 . For a given labelling 𝜎′ this evaluation is polynomial
in |𝛼|, the size of 𝛼 (the number of subformulas of 𝛼 is
polynomial in |𝛼|). Then, determinimg the acceptability
degree of 𝛼 for all labellings in Σ𝑆 , requires a polynomial
number of steps in |Σ𝑆 | × |𝛼|. In particular, a single scan
of the list of the labellings in Σ𝑆 , also allows to identify
the labellings maximizing the acceptability degree of 𝛼
(call them 𝜎1, . . . , 𝜎ℎ), the value 𝑣 = 𝜎1(𝛼) = . . . =
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𝜎ℎ(𝛼), and the acceptability degree of 𝛽 in each labelling.
Overall this requires a polynomial number of steps in
|Σ𝑆 | × (|𝛼|+ |𝛽|).

Considering that 𝑣 = T(𝜎1(𝛼)) = . . . = T(𝜎ℎ(𝛼)),
the verification that 𝑣 ▷ 𝜎𝑖(𝛽) ≥ 𝑘 holds, for all 𝑖 =
1, . . . , ℎ, may require in the worst case a polynomial
number of steps in |Σ𝑆 | × |𝛽|. Overall, the following
proposition holds.

Proposition 2. Given a finite interpretation 𝐼𝑆 =
(𝒮,Σ𝑆), associated with an argumentation semantics
𝑆 of a graph 𝐺. The satisfiability of a graded con-
ditional T(𝛼) → 𝛽 ≥ 𝑘 in 𝐼𝑆 can be decided in
𝑂(|Σ𝑆 | × (|𝛼|+ |𝛽|)).

Of course, whether the interpretation 𝐼𝑆 is finite or not
depends on the argumentation semantics 𝑆 under consid-
eration. For the finitely-valued 𝜙-coherent semantics, an
ASP based approach for the verification of graded condi-
tionals has been considered in [18], through a mapping
of an argumentation graph to a weighted knowledge base,
for which ASP encodings have been developed [38].

5. Towards a probabilistic
semantics for gradual
argumentation

When the domain of argument valuation is the inter-
val [0, 1], the definition of a preferential interpretation
𝐼𝑆 = (𝒟,Σ𝑆) associated with the gradual semantics 𝑆
of an argumentation graph 𝐺, which has been developed
in Section 2, also suggests a probabilistic argumentation
semantics, inspired to Zadeh’s probability of fuzzy events
[24]. The approach has been previously considered in
[39] for providing a probabilistic interpretation of Self-
Organising Maps [40] after training, by exploiting a recent
characterization of the continuous t-norms compatible
with Zadeh’s probability of fuzzy events (𝑃𝑍 -compatible
t-norms) by Montes et al. [41]. In this section we explore
this approach in the context of gradual argumentation, to
see that it leads to a generalization of the probabilistic
semantics presented in [25], and we discuss some advan-
tages and drawbacks of the approach.

Let Σ be the set of labellings of 𝐺 in a gradual argumen-
tation semantics 𝑆 with domain of argument valuation
in [0, 1], and 𝐼𝑆𝐺 the associated preferential interpreta-
tion. The probabilistic semantics we propose is inspired
to Zadeh’s probability of fuzzy events [24], as one can
regard an argument 𝐴 ∈ 𝒜 as a fuzzy event, with member-
ship function 𝜇𝐴 : Σ𝑆 → [0, 1], where 𝜇𝐴(𝜎) = 𝜎(𝐴).
Similarly, any boolean combination of arguments 𝛼 can as
well be regarded as a fuzzy event, with membership func-
tion 𝜇𝛼(𝜎) = 𝜎(𝛼), where the extension of labellings
to boolean combinations of arguments and to typicality
formulas has been defined in Section 2.

We restrict to a 𝑃𝑍-compatible t-norm ⊗ [41], with
associated t-conorm ⊕ and the negation function ⊖𝑥 =
1 − 𝑥. For instance, one can take the minimum t-norm,
product t-norm, or Lukasiewicz t-norm. Given 𝐼𝑆𝐺 =
⟨𝒟,Σ𝑆⟩, we assume a discrete probability distribution
𝑝 : Σ𝑆 → [0, 1] over Σ𝑆 , and define the probability of a
boolean combination of arguments 𝛼 as follows:

𝑃 (𝛼) =
∑︁

𝜎∈Σ𝑆

𝜎(𝛼) 𝑝(𝜎) (2)

For a single argument 𝐴 ∈ 𝒜, when labellings are two-
valued (that is, 𝜎(𝐴) is 0 or 1), the definition above be-
comes the following: 𝑃 (𝐴) =

∑︀
𝜎∈Σ𝑆∧𝜎(𝐴)=1 𝑝(𝜎),

which relates to the probability of an argument in the
probabilistic semantics by Thimm in [25]. Indeed, in [25]
the probability of an argument 𝐴 in 𝐴𝑟𝑔 is “the degree
of belief that 𝐴 is in an extension", defined as the sum of
the probabilities of all possible extensions 𝑒 that contain
argument 𝐴, i.e., 𝑃 (𝐴) =

∑︀
𝐴∈𝑒⊆𝐴𝑟𝑔 𝑝(𝑒), where an

extension 𝑒 ∈ 2𝐴𝑟𝑔 is a set of arguments in 𝐴𝑟𝑔, and 𝑝(𝑒)
is the probability that 𝑒 is an extension.

In Thimm’s semantics [25] a notion of p-justifiable
probability function is introduced to restrict to the “proba-
bility functions that agree with our intuition of argumen-
tation", so that relationships with classical argumentation
semantics can be established. Here, instead, for a given
gradual semantics 𝑆 with labellings Σ𝑆 , we only consider
probability functions on Σ𝑆 (rather than on the set of
all possible labellings over the domain). This forces the
adherence to the semantics 𝑆.

Following Smets [42], we let the conditional probabil-
ity of 𝛼 given 𝛽, where 𝛼 and 𝛽 are boolean combinations
of arguments, to be defined as 𝑃 (𝛼|𝛽) = 𝑃 (𝛼∧𝛽)/𝑃 (𝛽)
(provided 𝑃 (𝛽) > 0). As observed by Dubois and Prade
[43], this generalizes both conditional probability and the
fuzzy inclusion index advocated by Kosko [44].

Let us extend the language 𝐿T by introducing a new
proposition {𝜎}, for each 𝜎 ∈ Σ.2 We extend the valua-
tions 𝜎 to such propositions by letting: 𝜎({𝜎}) = 1 and
𝜎′({𝜎}) = 0, for any 𝜎′ ∈ Σ such that 𝜎′ ̸= 𝜎. It can be
proven (see [39]) that

𝑃 (𝐴|{𝜎}) = 𝜎(𝐴).

The result holds when the t-norm is chosen as in Gödel,
Łukasiewicz or Product logic. In such cases, 𝜎(𝐴) can be
interpreted as the conditional probability that argument
𝐴 holds, given labelling 𝜎, which can be regarded as a
subjective probability (i.e., the degree of belief we put
into 𝐴 when we are in a state represented by labelling 𝜎).

Under the assumption that the probability distribution
𝑝 is uniform over the set Σ of labellings, it holds that

2A proposition {𝜎} corresponds to a nominal in description logics
[45].

9



Mario Alviano et al. CEUR Workshop Proceedings 4–13

𝑃 (𝛼|𝛽) = 𝑀(𝛼 ∧ 𝛽)/𝑀(𝛽) (provided 𝑀(𝛽) > 0),
where 𝑀(𝛼) =

∑︀
𝑥∈Σ 𝜎(𝐴) is the size of the fuzzy event

𝛼. For a finite set of labellings Σ𝑆 = {𝜎1, . . . , 𝜎𝑚}
wrt. a given semantics 𝑆, assuming a uniform proba-
bility distribution, we have that 𝑃 (𝛼) = 𝑀(𝛼)/𝑚 =
(𝜎1(𝛼) + . . . + 𝜎𝑚(𝛼))/𝑚. We refer to [18] for an ex-
ample referring to the 𝜙-coherent semantics.

The notion of probability 𝑃 defined by equation (2)
satisfies Kolmogorov’s axioms for any 𝑃𝑍 -compatible t-
norm, with associated t-conorm, and the negation function
⊖𝑥 = 1 − 𝑥 [41]. However, there are properties of
classical probability which do not hold (depending on the
choice of t-norm), as a consequence of the fact that not all
classical logic equivalences hold in a fuzzy logic.

For instance, the truth degree of 𝐴 ∧ ¬𝐴 in a labelling
𝜎 may be different from 0 depending on the t-norm (e.g.,
with Gödel and Product t-norms). Hence, it may be the
case that 𝑃 (𝐴∧¬𝐴) is different from 0. Similarly, it may
be the case that 𝑃 (𝐴∨¬𝐴) is different from 1 (e.g., with
Göedel t-norm) and that 𝑃 (𝐴|𝐴) = 𝑃 (𝐴 ∧ 𝐴)/𝑃 (𝐴)
is different from 1 (e.g., with Product t-norm). While
𝑃 (𝐴) +𝑃 (¬𝐴) = 1 holds (due to the choice of negation
function), 𝑃 (𝐴|𝐵) + 𝑃 (¬𝐴|𝐵) may be different from 1.

While this approach can be regarded as a simple gener-
alization of probabilistic semantics to the gradual case, on
the negative side, some properties of classical probability
are lost. Hence, we can consider this approach only as
a first step towards a probabilistic semantics for gradual
argumentation.

6. Conclusions
In this paper we have developed a general approach to
define a many-valued preferential interpretation of an ar-
gumentation graph, based on a gradual argumentation
semantics (i.e., a set of many-valued labellings). The
approach allows for graded (strict or conditional) impli-
cations involving arguments and boolean combination of
arguments (with typicality) to be evaluated in the prefer-
ential interpretation 𝐼𝑆 of the argumentation graph, which
can be defined based on a given gradual argumentation
semantics 𝑆. We have proven that graded conditionals of
the form T(𝛼) → 𝛽 ≥ 1, which are satisfied in 𝐼𝑆 , sat-
isfy the postulates of a preferential consequence relation
[21], under some choice of combination functions. When
the preferential interpretation 𝐼𝑆 is finite, the validation
of graded conditionals can be done by model-checking
over interpretation 𝐼𝑆 . The satisfiability of a conditional
T(𝛼) → 𝛽 ≥ 𝑘 in 𝐼𝑆 can be decided in polynomial time
in the size of Σ𝑆 times the size of the formula T(𝛼) → 𝛽.
For the gradual semantics with domain of argument valua-
tion in the unit real interval [0, 1], the paper also proposes
a probabilistic argumentation semantics, which builds on
a gradual semantics 𝑆 and on the preferential interpreta-

tion 𝐼𝑆 of 𝐺, and is inspired by Zadeh’s probability of
fuzzy events [24].

Concerning the relationships between argumentation
semantics and conditional reasoning, Weydert [7] has
proposed one of the first approaches for combining ab-
stract argumentation with a conditional semantics. He has
studied “how to interpret abstract argumentation frame-
works by instantiating the arguments and characterizing
the attacks with suitable sets of conditionals describing
constraints over ranking models”. In doing this, he has
exploited the JZ-evaluation semantics, which is based on
system JZ [46]. Our approach does not commit to any
specific gradual argumentation semantics, and aims at pro-
viding a preferential and conditional interpretation for a
large class of gradual argumentation semantics.

For Abstract Dialectical Frameworks (ADFs) [8], the
correspondence between ADFs and Nonmonotonic Con-
ditional Logics has been studied in [9] with respect to the
two-valued models, the stable, the preferred semantics
and the grounded semantics of ADFs.

In [10] Ordinal Conditional Functions (OCFs) are in-
terpreted and formalized for Abstract Argumentation, by
developing a framework that allows to rank sets of argu-
ments with respect to their plausibility. An attack from
argument a to argument b is interpreted as the conditional
relationship, “if a is acceptable then b should not be ac-
ceptable". Based on this interpretation, an OCF inspired
by System Z ranking function is defined. In this paper we
focus on the gradual case, based on a many-valued logic.

In [29, 30] an approach is presented which regards a
weighted argumentation graph as a weighted conditional
knowledge base in a fuzzy defeasible Description Logic.
In this approach, a pair of arguments (𝐵,𝐴) ∈ ℛ with
weight 𝑤𝐴𝐵 (representing an attack or a support), cor-
responds to a conditional implication T(𝐴) ⊑ 𝐵 with
weight 𝑤𝐴𝐵 . Based on this correspondence, some se-
mantics for weighted knowledge bases with typicality
[47] have inspired some argumentation semantics [29],
and vice-versa. In particular, in [18] we have developed
an ASP approach for defeasible reasoning over an argu-
mentation graph under the 𝜙-coherent semantics in the
finitely-valued case. In this paper, we have generalized
the approach beyond the 𝜙-coherent semantics, to deal
with a large class of gradual semantics.

In Section 5, we have proposed a probabilistic seman-
tics for gradual argumentation, which builds on the many-
valued interpretation of the argumentation graph, and is
inspired to Zadeh’s probability of fuzzy events [24]. Under
this semantics, the truth degree 𝜎(𝐴) of an argument 𝐴 in
a labelling 𝜎 can be regarded as the conditional probabil-
ity of 𝐴 given 𝜎. The proposed approach can be seen as
a generalization of the probabilistic semantics by Thimm
[25] to the gradual case, but with some differences. On
the one hand, our approach does not require to introduce
a notion of p-justifiable probability function, as it only

10



Mario Alviano et al. CEUR Workshop Proceedings 4–13

considers probability functions on the set of labellings Σ𝑆

of a graph in a given gradual semantics 𝑆. On the other
hand, as we have seen, some classical equivalences may
not hold (depending on the choice of combination func-
tions), and some properties of classical probability may
be lost. This requires further investigation. Alternative
approaches for combining conditionals and probabilities,
such as the one recently proposed by Flaminio et al. [48],
might suggest alternative ways of defining a probabilistic
semantics for gradual argumentation.

In this paper, we have adopted an epistemic approach
to probabilistic argumentation, and we refer to [49] for
a general survey on probabilistic argumentation. As a
generalization of the epistemic approach to probabilistic
argumentation, epistemic graphs [31] allow for epistemic
constraints, that is, for boolean combinations of inequali-
ties, involving statements about probabilities of formulae
built out of arguments. While the conditional many-valued
semantics in Section 2 allows for combining graded condi-
tionals, we have not considered graded conditionals in the
probabilistic semantics. This might be a possible direction
to extend the probabilistic semantics in Section 5.
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