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Abstract
We introduce novel classes of fully rational contraction operators for belief bases. These operators are founded on a plausibility
relation on models, called tracks, that allow distinguishing between suitable and unsuitable models. We obtain two main
representation theorems: the first one semantically characterizes the class of partial-meet operators, which are related to the
rationality postulate of relevance; while the second one semantically characterizes the class of smooth kernel contraction
operators, which are related to the postulates of core-retainment and relative closure. For the supplementary postulates
(conjunction and intersection), we strengthen such operators by imposing the mirroring condition on the track relations. We
consider logics that are both Tarskian and compact.
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1. Introduction
The field of Belief Change [2, 3, 4] studies how an agent
should rationally modify its corpus of beliefs in response
to incoming pieces of information. The two most impor-
tant kinds of change are: contraction, which relinquishes
undesirable/obsolete information; and revision, which
accommodates new information with the caveat of keep-
ing the corpus of beliefs consistent. Each of these kinds
of changes is governed by sets of rationality postulates,
split into basic and supplementary rationality postulates,
which prescribe adequate behaviours of change. Such
rationality postulates are motivated by the principle of
minimal change: in response to a piece of information,
say 𝛼, an agent should remove only beliefs that either
conflict with 𝛼 (in the case of revision), or that contribute
to entail 𝛼 (in case of contraction).

Several classes of belief change operators were pro-
posed that abide by such rationality postulates, called
rational belief change operators (see [4], for a list). These
classes of operators can be split into two main kinds:
syntactic operators and semantic operators. Operators
belonging to the first kind select sentences from the lan-
guage, while operators of the second kind select models.
Examples of syntactic operators are partial meet opera-
tors [2] and smooth kernel operators [5], while Grove’s
system of spheres [6, 3] and the faithful pre-orders of
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Katsuno and Mendelzon [7] are the main frameworks for
constructing semantic operators. In the most fundamen-
tal case, when an agent’s corpus of beliefs is represented
as a logically closed set of sentences, called a theory,
all these classes of operators are characterised by the
rationality postulates of contraction/revision.

Theories, however, are very restrictive, as they do not
distinguish between explicit and implicit beliefs. One can
achieve this distinction by dropping the logical closure
requirement, and simply representing an agent’s corpus
of beliefs as a set of sentences, called a belief base [4].
For bases, however, very few belief change operators are
capable of satisfying the rationality postulates of belief
change. The two foremost classes of syntactic opera-
tors are smooth kernel contraction and partial-meet. On
theories, these two classes are equivalent, whereas on
bases only partial meet remains rational for belief bases
[4, 5]. On bases, smooth kernel contraction corresponds
to a more permissive version of contraction. As a result,
research on belief base change has focused on partial
meet operators or other similar syntactic operators [4, 8].
This poses a severe limitation in advancing belief base
change, as syntactic operators are highly dependent on
the assumptions made about the underlying logic used to
represent an agent’s knowledge, as for instance, impos-
ing that the language is closed under classical negation
[9]. By devising belief change operators via models, such
conditions upon the language of the logics can be easily
waived.

In this work, we devise three novel classes of seman-
tic operators for belief base contraction. Our approach
consists in imposing a pre-order, called a track, upon the
models of the logics. A track indicates the most plausible
models, which in turn are selected to perform a contrac-
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tion. We call such operators that follow this strategy
tracked contraction operators. We show a representation
theorem between the basic rationality postulates of belief
base contraction and such a novel class of contraction
operators. Equivalently, the tracked contraction opera-
tors correspond to the semantic counterpart of the partial
meet operators. We then impose the mirroring condition
[10] upon such tracks, and we show that tracks satisfy-
ing mirroring induce belief base contraction operators
that capture the supplementary postulates of belief con-
traction. It is worth highlighting that, except for safe
contraction [11], the study of the supplementary postu-
lates on belief bases has been neglected. As contraction
is a central operation in belief change, our result can be
extended to provide semantic operators for other kinds
of belief change such as revision.

We also characterize semantically the smooth kernel
contraction operators for bases. For this, we explore
some properties of the track relations which unveil the
permissive behaviour of smooth kernel contraction on
models. We then relax the tracked contraction operators
in order to capture such behaviour.

Road map: Section 2 introduces some basic notations
and definitions that will be used throughout this work.
In Section 3, we briefly review belief contraction, in-
cluding both basic and supplementary rationality pos-
tulate of contraction as well as the smooth kernel and
partial meet contraction operators. For semantic oper-
ators, we review the faithful pre-orders of Katsuno and
Mendelzon [7] for revision, and we translate them in
terms of belief contraction. We show that such operators,
though fully rational for theories, are not rational for
belief bases. In Section 4, we introduce two novel classes
of contraction operators and the representation theorem
connecting tracks and the basic rationality postulates of
contraction. In Section 5, we semantically characterize
the smooth kernel contraction operators using the track
relations. Finally, in Section 6 we conclude the work and
discuss some future works. We sketch the proofs of the
most important results. The full proofs are available in
the appendix at https://jandsonribeiro.github.io/home/
appendix/NMR_23_appendix.pdf

2. Notation and Technical
Background

The power set of a set 𝐴 is denoted by 𝒫(𝐴). We treat
a logic as a pair ⟨ℒ, 𝐶𝑛⟩, where ℒ is a language, and
𝐶𝑛 : 𝒫(ℒ) → 𝒫(ℒ) is a logical consequence operator
that indicates all the formulae that are entailed from a
set of formulae in ℒ. We limit ourselves to logics whose
consequence operator 𝐶𝑛 satisfies:

monotonicity: if 𝐴 ⊆ 𝐵 then 𝐶𝑛(𝐴) ⊆ 𝐶𝑛(𝐵);

inclusion: 𝐴 ⊆ 𝐶𝑛(𝐴);

idempotency: 𝐶𝑛(𝐶𝑛(𝐴)) = 𝐶𝑛(𝐴);

compactness: if 𝜙 ∈ 𝐶𝑛(𝐴) then there is some finite
set 𝐴′ ⊆ 𝐴 such that 𝜙 ∈ 𝐶𝑛(𝐴′).

Consequence operators that satisfy the first three con-
ditions above are called Tarskian. Likewise, consequence
operators satisfying the compactness property will be
called compact. Sometimes we say that the logic itself
is Tarskian or compact. Throughout this work, unless
otherwise stated, all the presented results regard logics
whose consequence operators are Tarskian and satisfy
compactness. A theory is a set of formulae 𝑋 ⊆ ℒ such
that 𝑋 = 𝐶𝑛(𝑋).

As we are interested to define semantic operators, we
exploit the semantics of the logics. Given a logic ⟨ℒ, 𝐶𝑛⟩
and a set of structuresℐ , an interpretation or a model is an
element of ℐ that gives meaning to the formulae ofℒ; ℐ is
called an interpretation domain of that logic, whereas each
subset of ℐ is called an interpretation set. For instance, an
interpretation domain for the Propositional Logic is the
power set of the propositional symbols of the language.
A satisfaction relation |= ⊆ ℐ × ℒ is used to indicate on
which interpretations a formula is satisfied. If 𝑀 |= 𝛼,
then we say that 𝑀 is a model of 𝛼. If an interpretation
𝑀 does not satisfy a formula 𝛼, denoted by 𝑀 ̸|= 𝛼,
then we say that 𝑀 is a counter-model of 𝛼. The set
of all models of 𝛼 is given by J𝛼K, while the set of all
counter-models of 𝛼 is given by J𝛼K.

In Tarskian logics, the consequence operator can be
semantically defined as: a formula 𝜙 ∈ 𝐶𝑛(𝑋) iff every
model that satisfies all formulae in𝑋 also satisfies 𝜙 [12].
Let ℐ be an interpretation domain of a logic ⟨ℒ, 𝐶𝑛⟩, and
𝑀 a model in ℐ . The set of all formulae of ℒ satisfied
by 𝑀 is the theory 𝑇ℎ(𝑀) = {𝜙 ∈ ℒ | 𝑀 |= 𝜙}.
Generalising, given a set of models 𝐴, 𝑇ℎ(𝐴) = {𝜙 |
∀𝑀 ∈ 𝐴,𝑀 |= 𝜙} is the theory of the formulae satisfied
by all models in 𝐴. Moreover, given a set 𝑋 ⊆ ℒ, the set
of models that satisfy all formulae in 𝑋 is J𝑋K = {𝑀 ∈
ℐ | ∀𝜙 ∈ 𝑋,𝑀 |= 𝜙}. For simplicity, given a set of
formulae 𝑋 and a model 𝑀 , we will write 𝑀 |= 𝑋 to
mean that 𝑀 satisfies every formula in 𝑋 .

Throughout this paper, we will provide examples to
support the intuition of the proposed contraction opera-
tors. Due to its simplicity, we will use classical proposi-
tional logics to construct such examples. Observe, how-
ever, that our results are not confined to classical proposi-
tional logics. As usual, the formulae of classical proposi-
tional logics are Boolean formulae constructed from a set
𝐴𝑃 of atomic propositional symbols, via the operators
of conjunction (∧), disjunction (∨) and classical negation
(¬). The models are subsets of 𝐴𝑃 , and the satisfaction
relation is defined as usual.
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A pre-order on a domain𝒟 is binary relation⩽: 𝒟×𝒟
that satisfies transitivity and reflexivity. The minimal ele-
ments of a set𝐴 ⊆ 𝒟 w.r.t a binary relation ⩽: 𝒟×𝒟 is
min⩽(𝐴) = {𝑎 ∈ 𝐴 | if 𝑏 ⩽ 𝑎 then 𝑎 ⩽ 𝑏, for all 𝑏 ∈
𝐴}. We write 𝑎 < 𝑏 to denote that 𝑎 ⩽ 𝑏 but 𝑏 ̸⩽ 𝑎. We
also write 𝑎 ∼ 𝑏 as a shorthand for 𝑎 ⩽ 𝑏 and 𝑏 ⩽ 𝑎.

3. Belief Contraction
We assume that an agent’s corpus of beliefs is represented
as a belief base, which will be denoted by the letter 𝒦.
The term belief base has been used in the literature with
two main purposes: (i) as a finite representation of an
agent’s beliefs [13, 14, 15], and (ii) as a more general
and expressive approach that distinguishes explicit from
implicit beliefs [16, 4]. We follow the latter approach,
and therefore a belief base can be infinite.

Let 𝒦 be a belief base, a contraction function for 𝒦
is a function −̇ : ℒ → 𝒫(ℒ) that given an unwanted
piece of information 𝛼, outputs a subset of 𝒦 which does
not entail 𝛼. A contraction function is subject to the
following basic rationality postulates [17, 5]:

(success): if 𝛼 ̸∈ 𝐶𝑛(∅) then 𝛼 ̸∈ 𝐶𝑛(𝒦 −̇ 𝛼);

(inclusion): 𝒦 −̇ 𝛼 ⊆ 𝒦;

(vacuity): if 𝛼 ̸∈ 𝐶𝑛(𝒦) then 𝒦 −̇ 𝛼 = 𝒦;

(uniformity): if for all 𝒦′ ⊆ 𝒦 it holds that 𝛼 ∈
𝐶𝑛(𝒦′) iff 𝛽 ∈ 𝐶𝑛(𝒦′), then 𝒦 −̇ 𝛼 = 𝒦 −̇ 𝛽;

(core-retainment): if 𝛽 ∈ 𝒦 ∖ (𝒦 −̇𝛼) then there is a
𝒦′ ⊆ 𝐾 s.t 𝛼 ̸∈ 𝐶𝑛(𝒦′) but 𝛼 ∈ 𝐶𝑛(𝒦′∪{𝛽});

(relative closure): 𝒦 ∩ 𝐶𝑛(𝒦 −̇ 𝛼) ⊆ 𝒦 −̇ 𝛼;

(relevance): if 𝛽 ∈ 𝒦 ∖ (𝒦 −̇ 𝛼) then there is some
𝒦′ such that 𝒦−̇𝛼 ⊆ 𝒦′ ⊆ 𝒦, 𝛼 ̸∈ 𝐶𝑛(𝒦′) but
𝛼 ∈ 𝐶𝑛(𝒦′ ∪ {𝛽}).

For a discussion on the rationale of these postulates,
see [4]. The postulate of uniformity guarantees that con-
traction is not syntax sensitive: if two formulae, say 𝛼
and 𝛽, are entailed exactly by the same subsets of 𝒦 (we
say 𝛼 and 𝛽 are 𝒦-uniform), then 𝛼 and 𝛽 must present
the same contraction result. We call the set of rationality
postulates listed above the basic rationality postulates
of contraction. A contraction function that satisfies all
the basic rationality postulates above will be dubbed a
rational contraction function. It is worth highlighting that
relevance implies core-retainment. Moreover, in Tarskian
logics, relevance also implies relative closure [4].

There are other two postulates, called supplementary
postulates [2, 18, 4]:

(intersection) 𝒦 −̇ 𝜙 ∩ 𝒦 −̇ 𝜓 ⊆ 𝒦 −̇ 𝜙 ∧ 𝜓

(conjunction) If 𝜙 ̸∈ 𝐶𝑛(𝒦 −̇ 𝜙 ∧ 𝜓) then
𝒦 −̇ (𝜙 ∧ 𝜓) ⊆ 𝒦 −̇ 𝜙.

It is important to stress that the study of the supplemen-
tary postulates has been confined to theories, and very
little is known about their behaviours on belief bases.
Rational contraction operators that satisfy the supple-
mentary postulates will be dubbed fully rational.

3.1. Partial Meet and Smooth Kernel
Contractions

Several rational contraction operators were proposed in
the literature. The two most influential ones are partial
meet (Definition 4), and Smooth Kernel (Definition 9).
Partial meet makes use of remainders.

Definition 1. Given a belief base 𝒦 and formula 𝛼, an
𝛼-remainder of 𝒦 is a set 𝑋 ⊆ 𝒦 such that: 𝛼 ̸∈ 𝐶𝑛(𝑋),
and if 𝑋 ⊂ 𝑌 ⊆ 𝒦, then 𝛼 ∈ 𝐶𝑛(𝑌 ). The set of all
𝛼-remainders of 𝒦 is denoted by 𝒦 ⊥ 𝛼.

Each member of 𝒦 ⊥ 𝛼 is called a remainder, and
it is a maximal subset of 𝒦 that does not entail 𝛼. A
partial meet operator works by selecting remainders and
intersecting them. As a remainder set might have many
remainders, a choice must be made about which ones are
the best to perform the contraction. This choice is done
via an extra-logical mechanism called a selection function:

Definition 2. A selection function 𝛾 picks some remainder
from 𝒦 ⊥ 𝛼 such that,

(i) 𝛾(𝒦 ⊥ 𝛼) ̸= ∅; and

(ii) 𝛾(𝒦 ⊥ 𝛼) ⊆ 𝒦 ⊥ 𝛼, if 𝒦 ⊥ 𝛼 ̸= ∅; and

(iii) 𝛾(𝒦 ⊥ 𝛼) = {𝒦}, if 𝒦 ⊥ 𝛼 = ∅.

A selection function works as an extra-logical mecha-
nism that realises the agent’s epistemic preferences. In
the original work of [2], the authors propose to repre-
sent an agent’s preferences as a binary relation ⩽ on
all remainders. Precisely, a pair 𝐴 ⩽ 𝐵 means that the
remainder 𝐴 is at least as preferable as 𝐵. The agent
picks the most preferable 𝛼-remainders w.r.t ⩽.

Definition 3. A selection function 𝛾 is relational iff there
exists some binary relation ⩽ on all remainders such that
𝛾(𝒦 ⊥ 𝛼) = min⩽(𝒦 ⊥ 𝛼), for all 𝒦 ⊥ 𝛼 ̸= ∅. If ⩽ is
transitive then 𝛾 is called transitive relational.

Remainder sets and selection functions are used to de-
fine a contraction operator called partial meet contraction:

Definition 4. Given a belief base 𝒦, and a selection func-
tion 𝛾, the operation −̇𝛾 defined as𝒦−̇𝛾𝛼 =

⋂︀
𝛾(𝒦 ⊥ 𝛼)

is a partial meet contraction function.
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Theorem 5. [19] A contraction operator is rational iff it
is a partial meet contraction operator.

For theories, the transitive relational partial meet op-
erators are characterised by all the rationality postulates
of contraction.

Theorem 6. [2] On theories, a contraction operator is
fully rational iff it is a transitive relational partial meet
contraction operator.

As Hansson [18] shows, the transitive relational par-
tial meet operators are not strong enough to satisfy the
two supplementary postulates on belief bases. Hansson
proposes to strengthen the transitive relations with a
property called maximising. However, a representation
theorem is not obtained.

Another influential class of rational contraction opera-
tions is the class of smooth kernel contraction operations,
which are defined on kernels and incision functions:

Definition 7. An 𝛼-kernel of a belief base 𝒦 is a set 𝑋
such that (1)𝑋 ⊆ 𝒦; (2) 𝛼 ∈ 𝐶𝑛(𝑋); and (3) if𝑋 ′ ⊂ 𝑋
then 𝛼 ̸∈ 𝐶𝑛(𝑋 ′).

An 𝛼-kernel of a belief base 𝒦 is a minimal subset
of 𝒦 that does entail 𝛼. The set of all 𝛼-kernels of a
belief base 𝒦 is denoted by 𝒦⊥⊥𝛼. Formulae that do not
appear in any 𝛼-kernel are not responsible for entailing
the formula 𝛼 to be contracted, and therefore they should
be kept intact. In contrast, only formulae that appear in
the kernels should be picked for removal. This choice of
removal is realised by an incision function:

Definition 8. Let 𝒞(𝒦) = {𝒦⊥⊥𝛼 | 𝛼 ∈ ℒ} be the set
of all kernel sets of 𝒦. An incision function on a belief base
𝒦 is a function 𝜎 : 𝒞(𝒦) → 𝒫(ℒ) such that

(1) 𝜎(𝒦⊥⊥𝛼) ⊆
⋃︀

𝒦⊥⊥𝛼;

(2) if 𝑋 ∈ 𝒦⊥⊥𝛼 and 𝑋 ̸= ∅ , then 𝑋 ∩𝜎(𝒦⊥⊥𝛼) ̸= ∅.

Intuitively, in order to contract a formula 𝛼, an agent
chooses at least one formula from each 𝛼-kernel, and
only formulae from such kernels. An incision function
works as an extra-logical device that realises an agent’s
epistemic preferences, and it chooses the least preferable
formulae in each 𝛼-kernel to be removed. A contraction
operation can be constructed by removing the formulae
picked by an incision function. Contraction operations
that follow this recipe are called kernel contractions:

Definition 9. [5] Given a belief base 𝒦 and an incision
function 𝜎 for 𝒦, the kernel contraction function −̇𝜎 is
defined as: 𝒦 −̇𝜎 𝛼 = 𝒦 ∖ 𝜎(𝒦⊥⊥𝛼).

Kernel contractions functions, however, are not strong
enough to satisfy relevance and relative closure. To
capture relative closure, Hansson [5] has proposed the
smoothness property for incision functions:

smoothness: if 𝒦′ ⊆ 𝒦, 𝜙 ∈ 𝐶𝑛(𝒦′) and 𝜙 ∈
𝜎(𝒦⊥⊥𝛼) then 𝒦′ ∩ 𝜎(𝒦⊥⊥𝛼) ̸= ∅.

Incision functions that satisfy smoothness are called
smooth incision function and the respective kernel con-
tractions are called smooth kernel contraction operations.
Intuitively, smoothness states that any removed formula
cannot be entailed by the remaining formulae.

The smooth kernel contraction operations are charac-
terised by the first six rationality postulates:

Theorem 10. [5, 20] A contraction function satisfies suc-
cess, inclusion, vacuity, uniformity, core-retainment, and
relative closure iff it is a smooth kernel contraction function.

3.2. Semantic Contraction Operators
We start by explaining how belief contraction works on
models when the agent’s corpora of beliefs are repre-
sented as theories. After that, we show why such strate-
gies do not work for belief bases.

In terms of models, in order to contract a formula 𝛼
from a theory 𝒦, it suffices to obtain a theory that is a
subset of 𝒦 (due to the inclusion postulate) and it is satis-
fied by some counter-models of 𝛼. This can be formalised
by taking a function 𝜇 : ℒ → 𝒫(ℐ) that picks, for ev-
ery non-tautological formula 𝛼, some counter-models of
𝛼. For tautological formulae 𝛼, we make 𝜇(𝛼) = ∅, as
tautologies have no counter-models. When 𝛼 ̸∈ 𝐶𝑛(𝒦),
there is nothing to be removed, and 𝒦 should be kept
untouched, according to vacuity. Therefore, in this case,
we make 𝜇(𝛼) = J𝛼K ∩ J𝒦K, that is, the most plausible
counter-models of 𝛼 are those ones that satisfy 𝒦. More-
over, if two formulae 𝛼 and 𝛽 are logically equivalent,
then 𝜇(𝛼) = 𝜇(𝛽). This guarantees that the choice func-
tion is not syntax sensitive. We say that 𝜇 is a model
choice function.

Definition 11. The contraction function induced by a
model choice function 𝜇 is the operator

𝒦 −̇𝜇 𝛼 = {𝜙 ∈ 𝒦 | 𝜇(𝛼) ⊆ J𝜙K}.

Indeed, the basic rationality postulates of contraction
characterise such a class of semantic contraction op-
erators for theories, as long as the underlying logic is
Tarskian, compact and the language is closed under clas-
sical negation and disjunction[12, 10]1. Examples of such
logics include classical propositional logic, first-order
logic, a number of temporal logics, and several normal-
modal logics such as the systems 𝐾,𝑇 and 𝑆4.

Theorem 12. A contraction function −̇ on a theory 𝒦 is
rational iff it is induced by some model choice function 𝜇.

1The language of the logic contains the classical boolean operators
of negation and disjunction and they are interpreted as usual.
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For full rationality, there are two main classes of belief
operators: the revision operators based on faithful pre-
orders of Katsuno and Mendelzon (KM, for short) [7] and
the revision operators based on Grove’s spheres[6]. Al-
though both classes of operators were originally framed
for belief revision, they can be easily translated to con-
traction. In the following, we present a translation of
KM operators based on faithful pre-orders in terms of
contraction. Caridroit et al. [21] have shown a similar
translation, for classical propositional logic, where a the-
ory is represented as a single formula. The translation we
present below works directly on bases (sets of formulae
instead of a single formula).

Definition 13. [7]2 Given a belief base 𝒦, a pre-order ⩽𝒦
is faithful w.r.t 𝒦 iff it satisfies the two following conditions:

(1) if 𝑀,𝑀 ′ ∈ J𝒦K then 𝑀 ̸<𝒦 𝑀 ′;

(2) if 𝑀 ∈ J𝒦K and 𝑀 ′ ̸∈ J𝒦K then 𝑀 <𝒦 𝑀 ′.

Definition 14. Given a faithful pre-order ⩽𝒦 on a belief
base 𝒦, the faithful contraction operator founded on ⩽𝒦
is the operation −̇⩽𝒦 such that J𝒦 −̇⩽𝒦 𝛼K = J𝒦K ∪
min⩽𝒦(J𝛼K). If ⩽𝒦 is total then −̇⩽𝒦 is a total faithful
contraction operator.

A faithful pre-order works as an epistemic preference
relation on models. In order to contract a formula 𝛼,
the agent chooses exactly the most plausible counter-
models of 𝛼. In the current presentation, KM operators
are suitable only for theories, because, for belief bases,
there is no guarantee that 𝒦 −̇⩽𝒦 𝛼 outputs a subset of
𝒦, as the inclusion postulate demands. Towards this end,
in order to satisfy the inclusion postulate we need only to
rewrite faithful contraction in the spirit of Definition 11:
get the greatest subset of 𝒦 satisfied by the minimal
counter-models of the formula𝛼 to be contracted. Indeed,
within classical propositional logics, the KM operations
is a special kind of contraction induced by a model choice
function as per Definition 11. In classical propositional
logics, for theories, the faithful contraction operators on
total pre-orders are fully rational:

Theorem 15. [7, 21] In classical propositional logics, a
contraction operator on a theory 𝒦 is fully rational iff it is
a total faithful contraction operator.

Observe that the representation theorems above (Theo-
rem 12 and Theorem 15) are established only for theories.
Indeed, as Example 1 below illustrates, both represen-
tation theorems break down for bases, which is due to
violation of the relevance postulate.
2Originally, KM defines an assignment that maps each formula to
a pre-order, and defines such an assignment to be faithful. This
assignment has only the purpose to provide general contraction
operators. As here we focus on local contraction, we opt to remove
this complication and operate directly on the pre-orders.

Example 1. Consider the belief base 𝒦 = {𝑝, 𝑞, 𝑝 ∨
𝑞,¬𝑞 ∨ 𝑝}, expressed in classical propositional logics, with
𝐴𝑃 = {𝑝, 𝑞}. We want to contract the formula 𝑝 ∧ 𝑞.
There are only three rational contraction results:

𝐴1 = {𝑝, 𝑝 ∨ 𝑞,¬𝑞 ∨ 𝑝}, 𝐴2 = {𝑞, 𝑝 ∨ 𝑞},
𝐴3 = {𝑝 ∨ 𝑞}.

Not every model choice function, however, induces a ra-
tional contraction operator. To see this, note that we have
only four models

𝑀1 = {𝑝, 𝑞},𝑀2 = {𝑝},𝑀3 = {𝑞}, and 𝑀4 = ∅.

Observe that J𝑝 ∧ 𝑞K = {𝑀2,𝑀3,𝑀4}. Let ⩽𝒦 be the
following faithful pre-order on 𝒦:

𝑀1 ⩽𝒦 𝑀4 ⩽𝒦 𝑀3 ⩽𝒦 𝑀2.

Let 𝜎 be a model choice function such that 𝜎(𝑝 ∧ 𝑞) =

min⩽𝒦(J𝑝 ∧ 𝑞K) = {𝑀4}. The only formula of 𝒦 that
𝑀4 satisfies is ¬𝑞 ∨ 𝑝. Thus, 𝒦 −̇𝜎 𝑝 ∧ 𝑞 = {¬𝑞 ∨
𝑝}. However, this does not correspond to any of the three
possible rational contraction results listed above.

4. Tracks and Mirrors: Belief Base
Contraction on Models

In this section, we provide a novel class of semantic con-
traction operators for belief bases.

In terms of models, contracting a formula 𝛼 from a
theory 𝒦 consists in picking some counter-models of 𝛼
and maintaining the formulae in 𝒦 satisfied by all such
picked counter-models. While this strategy yield ratio-
nal contractions for theories (Theorem 12), it fails for
belief bases as Example 1 illustrates. This occurs because
some counter-models of 𝛼 might satisfy less formulae
than allowed by the relevance postulate. For instance,
looking back at Example 1, according to relevance the
formula 𝑝 ∨ 𝑞 must be kept. Observe that this formula
appears in all the three possible rational contraction re-
sults. The counter-model 𝑀4, however, does not satisfy
𝑝∨𝑞, which makes it unsuitable for performing a rational
contraction, as picking it would remove 𝑝 ∨ 𝑞. The main
hurdle is to properly distinguish between suitable and
unsuitable models. To solve this problem, we establish a
plausibility relation ⩽ on the models. Intuitively, a pair
𝑀 ⩽𝑀 ′ means that the model𝑀 is at least as plausible
as 𝑀 ′. Towards this end, in order to contract a formula
𝛼, only the most plausible counter-models of 𝛼 w.r.t ⩽
should be chosen, that is, only models within min⩽(J𝛼K).
The question at hand is which properties a pre-order on
models should satisfy in order to be an adequate plau-
sibility relation that distinguishes between suitable and
unsuitable models.
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Here, we propose such plausibility relations be defined
upon the notion of information preservation. Intuitively,
the more information from 𝒦 a model preserves the more
plausible it is. The set of all formulae from 𝒦 satisfied
by a model 𝑀 is given by the set Pres(𝑀 | 𝒦) = {𝜙 ∈
𝒦 | 𝑀 |= 𝜙}. Generalising, given a set 𝑋 of models,
Pres(𝑋 | 𝒦) = {𝜙 ∈ 𝒦 | 𝑀 |= 𝜙, for all 𝑀 ∈ 𝑋}.
Definition 16 below formalises a class of pre-orders based
on this notion, which we call tracks.

Definition 16. A track of a belief base 𝒦 is a pre-order
⩽𝒦 ⊆ ℐ × ℐ such that

(1) If Pres(𝑀 | 𝒦) = Pres(𝑀 ′ | 𝒦) then 𝑀 ′ ⩽𝒦 𝑀
and 𝑀 ⩽𝒦 𝑀 ′; and

(2) If Pres(𝑀 | 𝒦) ⊂ Pres(𝑀 ′ | 𝒦) then 𝑀 ′ <𝒦 𝑀 .

In short, a track relation imposes models that strictly
preserve more information to be strictly more plausible
(condition 2), while models that preserve the same set
of information are equally plausible (condition 1). Thus,
in every track for a belief a base 𝒦, the models of 𝒦 are
the most plausible ones, and they are also all equally
plausible.

A least track of a knowledge base 𝒦 is a least relation
satisfying all conditions of Definition 16. It is easy to see
that every belief base has a unique least track. We denote
the least track of a belief base 𝒦 as ⩽−

𝒦 .

Proposition 17. If 𝒦 is a consistent belief base and ⩽𝒦
is a track of 𝒦 then min⩽𝒦(ℐ) = J𝒦K.

Example 2 (continued from Example 1). The beliefs in
𝒦 = {𝑝, 𝑞, 𝑝 ∨ 𝑞, 𝑝 ∨ ¬𝑞} preserved by each of the four
models are:

Pres(𝑀1 | 𝒦) = 𝒦
Pres(𝑀2 | 𝒦) = {𝑝, 𝑝 ∨ 𝑞,¬𝑞 ∨ 𝑝}
Pres(𝑀3 | 𝒦) = {𝑞, 𝑝 ∨ 𝑞}
Pres(𝑀4 | 𝒦) = {¬𝑞 ∨ 𝑝}.

Fig. 1 (on the right ) illustrates the set inclusion relation
between the preservation sets of each model, while Fig. 1
(on the left) depicts the least track relation of 𝒦. As 𝑀1

is the only model of 𝒦, it is strictly more plausible than
all other models. Models 𝑀2 and 𝑀3 are incomparable,
since they preserve different beliefs in 𝒦. For the same
reason, 𝑀4 and 𝑀3 are incomparable. However, 𝑀2 is
strictly more plausible than 𝑀4, as 𝑀2 preserves strictly
more information than 𝑀4. At this point, we can see that
a track can distinguish between suitable and unsuitable
models. According to this track, both models 𝑀2 and 𝑀3

are the most plausible counter-models of 𝑝∧𝑞. If we choose
either 𝑀2 or 𝑀3 then we get a rational contraction: ei-
ther 𝐴1 = {𝑝, 𝑝 ∨ 𝑞,¬𝑞 ∨ 𝑝}, or 𝐴2 = {𝑞, 𝑝 ∨ 𝑞}. By
picking both models we get the last rational contraction
𝐴3 = {𝑝 ∨ 𝑞}. The only non-rational contractions are

those involving the model𝑀4 which is not among the most
plausible ones (the suitable ones). Also, observe that other
tracks exist: for instance, augmenting the illustrated track
by making 𝑀2 and 𝑀3 comparable or even 𝑀3 and 𝑀4

comparable. However, for any of the possible tracks, 𝑀4

is never among the suitable ones, as it must be strictly
less plausible than 𝑀2, due to condition 2 of the track’s
definition. This suggests that tracks can be used as an ade-
quate class of plausibility relations to distinguish between
suitable and unsuitable models.

𝑀1 = {𝑝, 𝑞}

𝑀2 = {𝑝} 𝑀3 = {𝑞}

𝑀4 = ∅

𝒦 ⩾ ⩽𝒦

⩽𝒦

Pres(𝑀1 | 𝒦) = 𝒦

Pres(𝑀2 | 𝒦) Pres(𝑀3 | 𝒦)

Pres(𝑀4 | 𝒦)

⊂ ⊃

⊃

Figure 1: The least track relation ⩽𝒦(on the left), and the set
inclusion relation on the preservation set of the models (on
the right).

As tracks establish an adequate notion of plausibil-
ity between models, the most plausible ones to contract
a formula 𝛼 are the minimal counter-models of 𝛼. In
classical propositional logics, such minimal models al-
ways exist, as there is only a finite number of models.
However, for more expressive logics, such as First Or-
der Logics and several Description Logics [22], there are
formulae with an infinite number of (counter-)models.
In the presence of an infinite amount of models, some
tracks arrange the models through infinite chains. In gen-
eral, these infinite chains prevent identifying the most
plausible counter-models for some formulae. Thus, we
need to constrain ourselves to tracks that do not present
such bad behaviour, that is, tracks that are founded:

Definition 18. A relation ⩽ ⊆ ℐ × ℐ is founded iff
min⩽(J𝛼K) ̸= ∅ for every non-tautological formula 𝛼.

Relying on founded tracks guarantees that for every
non-tautological formula 𝛼, there is at least one counter-
model to be picked to perform such a contraction. In fact,
as long as the underlying Tarskian logic satisfies com-
pactness, every belief base presents at least one founded
track: its least track.

Theorem 19. If a logic ⟨ℒ, 𝐶𝑛⟩ is Tarskian and compact
then for every belief base 𝒦 ⊆ ℒ, the least track is founded.

We can then define a function that selects among the
most plausible models:

Definition 20. Let ⩽𝒦 be a founded track. A tracking
selection function on ⩽𝒦 is a function 𝛿⩽𝒦 : ℒ → 𝒫(ℐ)
such that

1. 𝛿⩽𝒦(𝛼) ⊆ min⩽𝒦(J𝛼K);
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2. 𝛿⩽𝒦(𝛼) ̸= ∅, if 𝛼 is not a tautology;

3. if 𝛼 and 𝛽 are 𝒦-uniform, 𝑀 ∈ 𝛿⩽𝒦(𝛼), 𝑀 ∼𝒦

𝑀 ′ and 𝑀 ′ ∈ min⩽𝒦(J𝛽K) then 𝑀 ′ ∈ 𝛿⩽𝒦(𝛽).

A tracking selection function works similarly to the
model choice function for theories. The main difference
is that model choice functions can choose any counter-
models of a formula 𝛼, while tracking selection functions
choose only among the most plausible (w.r.t a track re-
lation) counter-models of 𝛼. Condition 3 is related to
the postulate of uniformity, and guarantees that a track-
ing selection function is not syntax sensitive. Precisely,
it states that if two models 𝑀 and 𝑀 ′ are respectively
counter-models of 𝛼 and 𝛽 and they are equally prefer-
able, then picking 𝑀 to contract 𝛼 implies picking 𝑀 ′

to contract 𝛽. Example 3 illustrate a tracking selection
function and the role of this condition. When it is clear
from context, we drop the subscript ⩽𝒦 and write 𝛿.

Example 3. Let 𝒦 = {𝑝 ∨ 𝑞, 𝑝 ↔ 𝑞} be a knowledge
base. Observe that the formulae 𝑝 and 𝑞 are 𝒦-uniform.
There are only three possible results to contract either 𝑝 or
𝑞 that satisfy relevance, which are

𝐴1 = {𝑝 ∨ 𝑞}, 𝐴2 = {𝑝↔ 𝑞} and 𝐴3 = ∅.

Recall that ⩽−
𝒦 denotes the least track of 𝒦. Assume we

want the solution 𝐴1 for contracting either the formulae
𝑝 or 𝑞. Thus, a track selection function 𝛿⩽−

𝒦
can pick only

counter-models that satisfy 𝐴1, when contracting such
formulae. We have only four models:

𝑀1 = {𝑝, 𝑞} 𝑀2 = {𝑝}
𝑀3 = {𝑞} 𝑀4 = ∅.

Fig. 2 illustrates the least track ⩽−
𝒦 on the base 𝒦. For

clarity, in Fig. 2, we depict within rectangles the formulae
from 𝒦 that are satisfied by each model. The counter-
models of 𝑝 are 𝑀3 and 𝑀4, and the only one satisfying
𝐴1 is 𝑀3. So, we make 𝛿⩽−

𝒦
(𝑝) = {𝑀3}. As 𝑝 and 𝑞

are 𝒦-uniform, their contraction must coincide. Ideally,
we would make 𝛿⩽𝒦(𝑝) = 𝛿⩽𝒦(𝑞). However, this is not
possible, as 𝑀3 is not a counter-model of 𝑞. In fact, the
only counter-models of 𝑞 are 𝑀2 and 𝑀4. Observe that
𝑀2 is the only counter-model of 𝑞 that satisfy 𝐴1. There-
fore, the track selection function must choose 𝑀2, that
is, 𝛿⩽−

𝒦
(𝑞) = {𝑀2}. Not surprisingly, 𝑀2 and 𝑀3 are

equally preferable modulo ⩽−
𝒦 , and according to Condition

3 from the definition of track selection function 𝑀2 must
be picked for contracting 𝑞, since 𝑀1 was chosen to con-
tract 𝑝. This condition, as this example illustrates, ensures
uniformity.

Following the same strategy as for theories, a contrac-
tion on a belief base is performed by keeping the formulae
from the current belief base that are satisfied by all the
counter-models selected by a tracking selection function.

𝒦𝑀1 :

{𝑝 ∨ 𝑞}
𝑀2 :

{𝑝 ∨ 𝑞}
𝑀3 :

{𝑝 ↔ 𝑞}
𝑀4 :

Figure 2: The least track on the base of Example 3.

Definition 21. Let 𝛿 be a tracking selection function. The
tracked contraction founded on 𝛿 is defined as

𝒦 −̇𝛿 𝛼 = {𝜙 ∈ 𝒦 | 𝛿(𝛼) ⊆ J𝜙K}.

Example 4 (continued from Example 2). Let ⩽−
𝒦 be the

least track of the belief base 𝒦 = {𝑝, 𝑞, 𝑝 ∨ 𝑞,¬𝑞 ∨ 𝑝}.
Observe that min⩽−

𝒦
(𝑝 ∧ 𝑞) = {𝑀2,𝑀3}. Then, we can

choose any combination of 𝑀2 and 𝑀3 to contract 𝑝 ∧ 𝑞.
Let 𝛿1, 𝛿2 and 𝛿3 be tracked selection functions founded on
⩽−

𝒦 such that 𝛿1(𝑝∧𝑞) = {𝑀2}, 𝛿2(𝑝∧𝑞) = {𝑀3} and
𝛿3(𝑝∧𝑞) = {𝑀2,𝑀3}. They induce the following tracked
contraction operators: 𝒦−̇𝛿1 ¬𝑞∨𝑝 = {𝑝, 𝑝∨ 𝑞,¬𝑞∨𝑝},
𝒦−̇𝛿2 ¬𝑞∨𝑝 = {𝑞, 𝑝∨𝑞}, and 𝒦−̇𝛿3 ¬𝑞∨𝑝 = {𝑝∨𝑞}.
As one can easily check, each one of them is a rational
contraction operator.

Theorem 22. Every tracked contraction function is ratio-
nal.

Proof sketch. Postulates of success, inclusion, vacuity and
uniformity are easy to prove. We focus on relevance.
Let 𝛽 ∈ 𝒦 ∖ (𝒦 −̇𝛿⩽ 𝛼). Thus, there is some model
𝑀 ∈ 𝛿⩽𝒦(𝛼) such that 𝑀 ̸|= 𝛽. As 𝑀 ∈ 𝛿⩽𝒦(𝛼), we
have that 𝑀 |= 𝒦 −̇𝛿⩽ 𝛼 and 𝑀 ∈ min⩽𝒦(J𝛼K). Thus,

𝒦 −̇𝛿⩽ 𝛼 ⊆ Pres(𝑀 | 𝒦) ⊆ 𝒦.

Let us suppose for contradiction that 𝛼 ̸∈ 𝐶𝑛(Pres(𝑀 |
𝒦) ∪ {𝛽}). Thus, there is some model 𝑀 ′ ∈ J𝛼K such
that

𝑀 ′ |= Pres(𝑀 | 𝒦) ∪ {𝛽},

which implies Pres(𝑀 | 𝒦) ∪ {𝛽} ⊆ Pres(𝑀 ′ | 𝒦).
As 𝑀 ̸|= 𝛽, we have that 𝛽 ̸∈ Pres(𝑀 | 𝒦). Therefore,
Pres(𝑀 | 𝒦) ⊂ Pres(𝑀 | 𝒦) ∪ {𝛽}. This means
that Pres(𝑀 | 𝒦) ⊂ Pres(𝑀 ′ | 𝒦) which implies that
𝑀 ′ <𝒦 𝑀 . Therefore, 𝑀 ̸∈ min⩽𝒦(J𝛼K), which is a
contradiction.

Theorem 23. Every rational base contraction function is
a tracked contraction function.

Since a track establishes a plausibility relation between
models, it is natural to expect that a track also works as
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an epistemic preference relation. Therefore, instead of
simply picking some of the most plausible models w.r.t a
track, it would be rational to pick all such most plausible
models. We will call contraction operators that follow
this strategy full tracked contraction:

Definition 24. Let ⩽𝒦 be a founded tracking of a belief
base𝒦. The full tracked selection of⩽𝒦 is the function 𝜈⩽𝒦

such that 𝜈⩽𝒦(𝛼) = min⩽𝒦(J𝛼K). Tracked contraction
operators founded on full tracking selection functions are
full tracked contraction operators.

Full tracked contraction operators do satisfy intersec-
tion, due to the transitivity of tracks.

Theorem 25. Every full tracked contraction satisfies in-
tersection.

Although tracks capture intersection, they are not
strong enough to capture conjunction. Observe that tracks
form a special case of faithful pre-orders (Definition 14).
It would be natural then to simply impose totality upon
the tracks in the hope of capturing conjunction. Totality,
however, has been criticised in the literature for being
too demanding, as an agent might be indifferent or igno-
rant on how to grade some of its beliefs [23]. Moreover,
works such as [10, 24] have observed that totality is not
strong enough to capture conjunction, even for theories,
in more expressive logics. As a solution, Ribeiro et al.
[10] has introduced mirroring:

mirroring: if 𝐴 ̸⩽ 𝐵 and 𝐵 ̸⩽ 𝐴 but 𝐶 ⩽ 𝐴
then 𝐶 ⩽ 𝐵.

Mirroring is similar to the modular relations intro-
duced at [23] which was based on the modular partial
orders of Lehmann and Magidor [25]. Though modular
relations are defined as partial orders, we do not impose
such restrictions. According to mirroring, if two models
are incomparable then they should agree upon their pref-
erences. We will show here that by employing mirroring
upon tracks, conjunction is also captured for belief bases.

Theorem 26. If a founded track ⩽𝒦 satisfies mirroring
than its full tracked contraction operator satisfies conjunc-
tion.

5. Smooth Kernel Contraction: A
Semantic Perspective

In this section, we characterise semantically the class of
smooth kernel contraction operations. In terms of ra-
tionality postulates, we are capturing core-retainment
and relative closure. While semantic operators satisfy-
ing relevance, as shown in the previous section, select
only countermodels of the formula 𝛼 being contracted;

some operations satisfying core-retainment do incorpo-
rate models of 𝛼. This exhibits the permissive and drastic
behaviour of smooth kernel contraction for bases. Exam-
ple 5 illustrates this behaviour.

Example 5. Let 𝒦 = {𝑝, 𝑝→ 𝑞, 𝑝 ∨ 𝑞, 𝑟}, and suppose
that we want to contract ‘𝑞’. There are only four possi-
ble solutions satisfying both core-retainment and relative
closure:

𝐴1 = {𝑝, 𝑝 ∨ 𝑞, 𝑟} 𝐴2 = {𝑝→ 𝑞, 𝑟}
𝐴3 = {𝑝 ∨ 𝑞, 𝑟} 𝐴4 = {𝑟}.

Solutions 𝐴1, 𝐴2 and 𝐴4 satisfy relevance, while 𝐴3 does
not satisfy relevance but core-retainment. The base 𝐴3 can
only be obtained selecting the models {𝑝, 𝑟} and {𝑞, 𝑟}.
Observe that the latter model satisfies 𝑞. Therefore, in
order to capture core-retainment, it is necessary to relax
the selection functions to choose both models and counter-
models of the formulae to be contacted.

As Example 5 illustrates, we need to allow selection
functions to pick not only counter-models but also mod-
els of the formulae being contracted. However, even for
core-retainment, not all models can be chosen. For in-
stance, although𝑀 ′ = {𝑞} is a model of ‘𝑞’, 𝑀 ′ violates
all the four rational solution for contracting 𝑞 in Exam-
ple 5, as 𝑀 ′ violates 𝑟. On one hand, we need to relax
the selection functions to pick models of the formulae be-
ing contracted. On the other hand, we need to constrain
the selection function so we do not choose unsuitable
models. The tracks still capture enough information to al-
low distinguishing between such suitable and unsuitable
models. We slightly modify the definition of the tracking
selection function to capture this permissive behaviour:

Definition 27. A permissive selection function on a
founded track ⩽𝒦 is a map 𝜆⩽𝒦 : ℒ → 𝒫(ℐ) such that

(1) 𝜆⩽𝒦(𝛼) = ∅, if 𝛼 is a tautology;

(2) 𝜆⩽𝒦(𝛼) ∩ J𝛼K ̸= ∅, if 𝛼 is not a tautology;

(3) 𝜆⩽𝒦(𝛼) = 𝜆⩽𝒦(𝛽), if 𝛼 and 𝛽 are 𝒦-uniform;

(4) permissiveness: if 𝑀 ∈ 𝜆⩽𝒦(𝛼), then
Pres(min⩽𝒦(J𝛼K) | 𝒦) ⊆ Pres(𝑀 | 𝒦).

As tautologies cannot be contracted, Condition 1 en-
forces that no model will be picked for tautologies. Con-
dition 2 relaxes the selection mechanism to choose both
models and counter-models, while enforcing that at least
one counter-model will be chosen, so the contraction is
successful. Condition 3 is related to the uniformity pos-
tulate, and states that 𝒦-uniform formulae present the
same choice. Since models are allowed to be picked, the
last condition, permissiveness, dictates how permissive
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𝒦𝑀1 :

{𝑝 → 𝑞, 𝑝 ∨ 𝑞, 𝑟}𝑀2 :

{𝑝 → 𝑞, 𝑟}
𝑀4 :

{𝑝 → 𝑞}
𝑀8 :

{𝑝, 𝑝 ∨ 𝑞, 𝑝 → 𝑞}
𝑀5 :

{𝑝, 𝑝 ∨ 𝑞, 𝑟}
𝑀3 :

{𝑝, 𝑝 ∨ 𝑞}
𝑀7 :

{𝑝 → 𝑞, 𝑝 ∨ 𝑞}
𝑀6 :

Figure 3: The least track on the base of Example 6. The
relation is transitive, but to avoid visual pollution we omit
edges obtained by transitivity.

the selection mechanism can be. While contracting a for-
mula 𝛼, instead of picking only the best models w.r.t the
track relation, permissiveness allows any (counter)model
𝑀 to be chosen, as long as 𝑀 preserves as much infor-
mation as the best counter-models of 𝛼. For clarity, we
will omit the subscript ⩽𝒦 and simply write 𝜆.

Example 6. (continued from Example 5). We have eight
models in total:

𝑀1 = {𝑝, 𝑞, 𝑟} 𝑀5 = {𝑝, 𝑞}
𝑀2 = {𝑞, 𝑟} 𝑀6 = {𝑞}
𝑀3 = {𝑝, 𝑟} 𝑀7 = {𝑝}
𝑀4 = {𝑟} 𝑀8 = ∅.

Fig. 3 illustrates the least track ⩽−
𝒦 for the knowledge base

𝒦. For clarity, in Fig. 3, we depict within rectangles the
formulae from 𝒦 that are satisfied by each model. Observe
that the counter-models of 𝑞 are {𝑀3,𝑀4,𝑀7,𝑀8}, and
min⩽−

𝒦
(J𝑞K) = {𝑀3,𝑀4} which are coloured in gray. A

selection function that picks only 𝑀3 or 𝑀4 yields respec-
tively the solutions𝐴1 and𝐴2, while picking both𝑀3 and
𝑀4 yields the solution𝐴4. The solution𝐴3, which satisfies
core-retainment but fails relevance, can only be obtained
by choosing the model 𝑀2. Observe that 𝑀2 preserves as
much as 𝑀3 and 𝑀4 combined, that is,

Pres(𝑀3 | 𝒦) ∩ Pres(𝑀4 | 𝒦) ⊆ Pres(𝑀2 | 𝒦).

Therefore, according to permissiveness, a selection function
can choose any of the models in {𝑀2,𝑀3,𝑀4}. Notice
that 𝑀2 is a model of ‘𝑞’, while 𝑀3 and 𝑀4 are counter-
models of ‘𝑞’. The models that preserve as much infor-
mation as 𝑀3 and 𝑀4 combined are depicted within the
dashed lines.

The contraction function is defined analogously to the
tracked contractions:

Definition 28. Let 𝜆 be a permissive selection function
on a track ⩽𝒦. The permissive contraction founded on 𝜆 is
defined as 𝒦 −̇𝜆 𝛼 = {𝜙 ∈ 𝒦 | 𝜆(𝛼) ⊆ J𝜙K}.

The permissive contraction operators are as rational
as smooth kernel contraction operators:

Theorem 29. Every permissive contraction function satis-
fies success, inclusion, vacuity, uniformity, core-retainment
and relative closure.

Theorem 30. If −̇ satisfies success, inclusion, vacuity,
uniformity and core-retainment and relative closure, then
−̇ is a permissive contraction.

Our representation result follows from Theorem 29
and Theorem 30 which jointly state that the most basic
rationality postulates characterize the class of permissive
contraction operations. This result jointly with Theo-
rem 10 implies that smooth kernel contraction operations
and permissive contraction correspond to the same class
of operators: being the latter the semantic counterpart
of the former.

6. Conclusion and Future Works
While both syntactic and semantic operators are well
known for belief theory contraction (and other forms
of belief change), only syntactic operators are known
to be rational on belief bases. In this work, we have
introduced new classes of semantic contraction operators
for belief bases: tracked contraction operators, full tracked
contraction operators, and permissive tracked contraction
operators. These operators rely on plausibility relations
between models, called tracks.

In order to contract a formula 𝛼, the (full) tracked
contraction operators select among the most plausible
counter-models of 𝛼 w.r.t a track relation (the most reli-
able ones). The permissive tracked contraction relaxes
the selection mechanisms, allowing to pick models in-
stead of only counter-models, as long as some innocu-
ous requirements are satisfied. We have established two
important representation theorems: the first one con-
nects tracked contraction operations with relevance and
the other basic rationality postulates, while the second
one connects the permissive tracked contraction opera-
tors with core-retainment and the most basic rationality
postulates. Equivalently, the tracked contraction opera-
tions semantically characterize the partial meet opera-
tors, while the permissive tracked contraction operators
characterize semantically the smooth kernel contraction
operators. A track unveils an agent’s epistemic prefer-
ences: the most plausible models coincide with the most
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reliable ones, and therefore the agent should pick all
such models. Tracked contractions following this strat-
egy are called full tracked contractions. We have shown
that tracks that satisfy the mirroring condition yield full
tracked contraction satisfying the two supplementary
postulates.

As future work, we shall investigate if mirroring suf-
fices to establish a representation theorem between fully
tracked contractions and the supplementary postulates.
This connection with the supplementary postulates is
important, because the study of such postulates has been
restricted to belief change operators on theories. Par-
ticularly, the connection between contraction operators
and the supplementary postulates has been established
via epistemic preferences relations such as Epistemic En-
trenchment [3] and Hierarchies (for safe contraction) [4].
Although all such epistemic preferences work well for
theories, their connection with such rationality postu-
lates easily disappears for bases. The only known ex-
ception is safe contraction, which still connects with the
supplementary postulates only when a base 𝒦 is finite
and it is as expressive as its theory 𝐶𝑛(𝒦): for every
formula 𝛼 ∈ 𝐶𝑛(𝒦) there is a formula in 𝒦 logically
equivalent to 𝛼.

We shall extend our results for more expressive log-
ics by dispensing with compactness and widening our
results to Tarskian logics. Although we have focused
on contraction, our results can be easily translated to
revision: instead of selecting counter-models, one needs
only to select models of the formulae 𝛼 to be revised.

Acknowledgments
This research is supported by the German Research As-
sociation (DFG), project number 465447331.

References
[1] J. S. Ribeiro, Towards a semantic construction for

belief base contraction (A preliminary report), in:
FCR@KI, volume 3242 of CEUR Workshop Proceed-
ings, CEUR-WS.org, 2022, pp. 4–15.

[2] C. E. Alchourrón, P. Gärdenfors, D. Makinson, On
the logic of theory change: partial meet contraction
and revision functions, The Journal of Symbolic
Logic 50 (1985) 510–530.

[3] P. Gärdenfors, Knowledge in flux: Modeling the
dynamics of epistemic states., The MIT press, 1988.

[4] S. O. Hansson, A textbook of belief dynamics - the-
ory change and database updating, volume 11 of
Applied logic series, Kluwer, 1999.

[5] S. O. Hansson, Kernel contraction, J. Symb. Log. 59
(1994) 845–859.

[6] A. Grove, Two modellings for theory change, J.
Philos. Log. 17 (1988) 157–170.

[7] H. Katsuno, A. O. Mendelzon, Propositional knowl-
edge base revision and minimal change, Artificial
Intelligence 52 (1991) 263–294.

[8] J. S. Ribeiro, M. Thimm, Consolidation via tacit
culpability measures: Between explicit and implicit
degrees of culpability, in: KR 2021, 2021, pp. 529–
538.

[9] M. M. Ribeiro, R. Wassermann, G. Flouris, G. An-
toniou, Minimal change: Relevance and recovery
revisited, Artif. Intell. 201 (2013) 59–80.

[10] J. S. Ribeiro, A. Nayak, R. Wassermann, Towards
belief contraction without compactness, in: KR
2018, AAAI Press, 2018, pp. 287–296.

[11] C. E. Alchourrón, D. Makinson, On the logic of
theory change: Safe contraction, Studia Logica 44
(1985) 405–422.

[12] J. S. R. Santos, Belief change without compactness,
Ph.D. thesis, University of São Paulo, 2020.

[13] B. Nebel, Reasoning and Revision in Hybrid Repre-
sentation Systems, volume 422 of Lecture Notes in
Computer Science, Springer, 1990.

[14] S. E. Dixon, Belief revision: A computational ap-
proach, Ph.D. thesis, University of Sydney, 1994.

[15] M. Dalal, Investigations into a theory of knowledge
base revision, in: Proceedings of the 7th National
Conference on Artificial Intelligence, AAAI Press /
The MIT Press, 1988, pp. 475–479.

[16] A. Fuhrmann, Theory contraction through base
contraction, J. Philos. Log. 20 (1991) 175–203.

[17] S. O. Hansson, Belief contraction without recovery,
Stud Logica 50 (1991) 251–260.

[18] S. O. Hansson, Reversing the levi identity, J. Philos.
Log. 22 (1993) 637–669.

[19] S. O. Hansson, R. Wassermann, Local change, Stud
Logica 70 (2002) 49–76.

[20] J. S. Ribeiro, Kernel contraction and the order of
relevance, in: KR 2022, 2022, pp. 299–308.

[21] T. Caridroit, S. Konieczny, P. Marquis, Contraction
in propositional logic, Int. J. Approx. Reason. 80
(2017) 428–442.

[22] F. Baader, I. Horrocks, C. Lutz, U. Sattler, An Intro-
duction to Description Logic, Cambridge University
Press, 2017.

[23] T. A. Meyer, W. A. Labuschagne, J. Heidema, Re-
fined epistemic entrenchment, J. Log. Lang. Inf. 9
(2000) 237–259.

[24] J. S. Ribeiro, A. Nayak, R. Wassermann, Belief
update without compactness in non-finitary lan-
guages, in: IJCAI 2019, ijcai.org, 2019, pp. 1858–
1864.

[25] D. Lehmann, M. Magidor, What does a conditional
knowledge base entail?, Artif. Intell. 55 (1992) 1–60.

103


	1 Introduction
	2 Notation and Technical Background
	3 Belief Contraction
	3.1 Partial Meet and Smooth Kernel Contractions
	3.2 Semantic Contraction Operators

	4 Tracks and Mirrors: Belief Base Contraction on Models
	5 Smooth Kernel Contraction: A Semantic Perspective
	6 Conclusion and Future Works

