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Abstract
Given a conditional sentence 𝜙 ⇒ 𝜓 (if 𝜙 then 𝜓) and respective facts, four different types of inferences are observed in
human reasoning. Affirming the antecedent (AA) (or modus ponens) reasons 𝜓 from 𝜙; affirming the consequent (AC) reasons
𝜙 from 𝜓; denying the antecedent (DA) reasons ¬𝜓 from ¬𝜙; and denying the consequent (DC) (or modus tollens) reasons
¬𝜙 from ¬𝜓. Among them, AA and DC are logically valid, while AC and DA are logically invalid and often called logical
fallacies. Nevertheless, humans often perform AC or DA as pragmatic inference in daily life. In this paper, we realize AC, DA
and DC inferences in answer set programming. Eight different types of completion are introduced and their semantics are given
by answer sets. We investigate formal properties and characterize human reasoning tasks in cognitive psychology.
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1. Introduction
People use conditional sentences and reason with them in
everyday life. From an early stage of artificial intelligence
(AI), researchers represent conditional sentences as if-
then rules and perform deductive inference using them.
Production systems or logic programming are examples
of this type of systems. However, human conditional
reasoning is not always logically valid. In psychology and
cognitive science, it is well known that humans are more
likely to perform logically invalid but pragmatic inference.
For instance, consider the following three sentences:

𝑆: If the team wins the first round tournament,
then it advances to the final round.

𝑃 : The team wins the first round tournament.
𝐶: The team advances to the final round.

Given the conditional sentence 𝑆 and the premise 𝑃 , af-
firming the antecedent (AA) (or modus ponens) concludes
the consequence 𝐶. Given 𝑆 and the negation of the con-
sequence ¬𝐶, denying the consequent (DC) (or modus
tollens) concludes the negation of the premise ¬𝑃 . AA
and DC are logically valid. On the other hand, people
often infer 𝑃 from 𝑆 and 𝐶 or infer ¬𝐶 from 𝑆 and
¬𝑃 . The former is called affirming the consequent (AC)
and the latter is called denying the antecedent (DA). Both
AC and DA are logically invalid and often called logical
fallacies.
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In the pragmatics of conditional reasoning, it is as-
sumed that a conditional sentence is often interpreted as
bi-conditional, that is, ‘if ’ is interpreted as ‘if and only if ’,
and such conditional perfection produces AC or DA as
invited inference [16, 19]. Psychological studies empiri-
cally show that a conditional sentence “𝑝 if 𝑞" is rephrased
into the form “𝑝 only if 𝑞" with greater frequency for per-
mission/obligation statements [6, 5]. For instance, the
sentence “a customer can drink an alcoholic beverage if
he is over 18" is rephrased into “a customer can drink
an alcoholic beverage only if he is over 18". It is also
reported that AA is easier than DC when a conditional is
given as “if 𝑝 then 𝑞". When a conditional is given as “𝑝
only if 𝑞", on the other hand, it is rephrased as “if not 𝑞
then not 𝑝" and this paraphrase yields a directionality op-
posite which makes DC easier than AA [3]. The fact that
people do not necessarily make inferences as in standard
logic brings several proposals of new interpretation of con-
ditional sentences in cognitive psychology. Mental logic
[4] interprets ‘if ’ as conveying supposition and introduces
a set of pragmatic inference schemas for if-conditionals.
Mental model theory [22], on the other hand, considers
that the meanings of conditionals are not truth-functional,
and represents the meaning of a conditional sentence by
models of the possibilities compatible with the sentence.
A probabilistic approach interprets a conditional sentence
𝑝⇒ 𝑞 in terms of conditional probability 𝑃 (𝑞 | 𝑝), then
the acceptance rates of four conditional inferences are
represented by their respective conditional probabilities
[29]. Eichhorn 𝑒𝑡 𝑎𝑙. [13] use conditional logic and define
inference patterns as combination (AA, DC, AC, DA) of
four inference rules. Given a conditional sentence “if 𝑝
then 𝑞", four possible worlds (combination of truth values
of 𝑝 and 𝑞) are considered. An inference in each pattern
is then defined by imposing corresponding constraints on
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the plausibility relation over the worlds.
In this way, the need of considering the pragmatics

of conditional reasoning has been widely recognized in
psychology and cognitive science. On the other hand,
relatively little attention has been paid for realizing such
pragmatic inferences in computational logic or logic pro-
gramming [33, 24]. From a practical perspective, however,
people would expect AI to reason like humans, that is, one
would expect AI to conclude 𝑃 from 𝑆 and 𝐶, or ¬𝐶
from 𝑆 and ¬𝑃 in the introductory example, rather than
conclude 𝑢𝑛𝑘𝑛𝑜𝑤𝑛. Logic programming is a context-
independent language and has a general-purpose infer-
ence mechanism by its nature. By contrast, pragmatic
inference is governed by context-sensitive mechanisms,
rather than context-free and general-purpose mechanisms
[6, 9]. As argued by [11], computational approaches to
explain human reasoning should be cognitively adequate,
that is, they appropriately represent human knowledge
(conceptually adequate) and computations behave simi-
larly to human reasoning (inferentially adequate). Then if
we use logic programming for representing knowledge in
daily life, it is useful to have a mechanism of automatic
transformation of a knowledge base to simulate human
reasoning depending on the context in which conditional
sentences are used. That is, transform a program to a
conceptually adequate form in order to make computation
in the program inferentially adequate.

In this paper, we realize human conditional reasoning
in answer set programming (ASP) [17]. ASP is one of the
most popular frameworks that realize declarative knowl-
edge representation and commonsense reasoning. ASP
is a language of logic programming and conditional sen-
tences are represented by rules in a program. Inference
in ASP is deduction based on default logic [31], while
modus tollens or DC is not considered in ASP. AC and
DA are partly realized by abductive logic programming
[23] and program completion [7], respectively. As will be
argued in this paper, however, AC and DA produce dif-
ferent results from them in general. We realize pragmatic
AC and DA inferences as well as DC inference in ASP
in a uniform and modular way. We introduce the notions
of AC completion, DC completion, DA completion and
their variants. We investigate formal properties of those
completions and characterize human reasoning tasks in
cognitive psychology.

The rest of this paper is organized as follows. Section 2
reviews basic notions of ASP programs considered in this
paper. Section 3 introduces different types of completions
for human conditional reasoning, and Section 4 presents
their variance as default reasoning. Section 5 discusses
related works and Section 6 summarizes the paper. Due
to page limitation, proofs of propositions are omitted in
this paper. They are found in the full paper1.

1http://web.wakayama-u.ac.jp/~sakama/hcr2023.pdf

2. Preliminaries
In this paper, we consider logic programs with disjunc-
tion, default negation, and explicit negation. A general
extended disjunctive program (GEDP) [25, 20] is a set of
rules of the form:

𝐿1 ; · · · ; 𝐿𝑘 ; 𝑛𝑜𝑡𝐿𝑘+1 ; · · · ; 𝑛𝑜𝑡𝐿𝑙

← 𝐿𝑙+1, . . . , 𝐿𝑚, 𝑛𝑜𝑡 𝐿𝑚+1, . . . , 𝑛𝑜𝑡 𝐿𝑛 (1)

where 𝐿𝑖’s (1 ≤ 𝑖 ≤ 𝑛) are (positive or negative)
literals and 0 ≤ 𝑘 ≤ 𝑙 ≤ 𝑚 ≤ 𝑛. A program
might contain two types of negation: default negation
(or negation as failure) 𝑛𝑜𝑡 and explicit negation ¬. For
any literal 𝐿, 𝑛𝑜𝑡𝐿 is called an NAF-literal and define
¬¬𝐿 = 𝐿. We often use the letter ℓ to mean either
a literal 𝐿 or an NAF-literal 𝑛𝑜𝑡𝐿. The left of ← is
a disjunction of literals and NAF-literals (called head),
and the right of← is a conjunction of literals and NAF-
literals (called body). Given a rule 𝑟 of the form (1),
define ℎ𝑒𝑎𝑑+(𝑟) = {𝐿1, . . . , 𝐿𝑘}, ℎ𝑒𝑎𝑑−(𝑟) =
{𝐿𝑘+1, . . . , 𝐿𝑙}, 𝑏𝑜𝑑𝑦+(𝑟) = {𝐿𝑙+1, . . . , 𝐿𝑚}, and
𝑏𝑜𝑑𝑦−(𝑟) = {𝐿𝑚+1, . . . , 𝐿𝑛}. A rule (1) is called a
fact if 𝑏𝑜𝑑𝑦+(𝑟) = 𝑏𝑜𝑑𝑦−(𝑟) = ∅; and it is called a con-
straint if ℎ𝑒𝑎𝑑+(𝑟) = ℎ𝑒𝑎𝑑−(𝑟) = ∅. A GEDP Π is
called 𝑛𝑜𝑡-free if ℎ𝑒𝑎𝑑−(𝑟) = 𝑏𝑜𝑑𝑦−(𝑟) = ∅ for each
rule 𝑟 in Π.

A GEDP Π coincides with an extended disjunctive pro-
gram (EDP) of [17] if ℎ𝑒𝑎𝑑−(𝑟) = ∅ for any rule 𝑟 in Π.
An EDP Π is called (i) an extended logic program (ELP)
if |ℎ𝑒𝑎𝑑+(𝑟) | ≤ 1 for any 𝑟 ∈ Π; and (ii) a normal dis-
junctive program (NDP) if Π contains no negative literal.
An NDP Π is called (i) a positive disjunctive program
(PDP) if Π contains no NAF-literal; and (ii) a normal
logic program (NLP) if |ℎ𝑒𝑎𝑑+(𝑟) | ≤ 1 for any 𝑟 ∈ Π.
In this paper, we consider ground programs containing no
variable and a program means a (ground) GEDP unless
stated otherwise.

Let 𝐿𝑖𝑡 be the set of all ground literals in the language
of a program. A set of ground literals 𝑆 ⊆ 𝐿𝑖𝑡 satisfies
a ground rule 𝑟 of the form (1) iff 𝑏𝑜𝑑𝑦+(𝑟) ⊆ 𝑆 and
𝑏𝑜𝑑𝑦−(𝑟) ∩ 𝑆 = ∅ imply either ℎ𝑒𝑎𝑑+(𝑟) ∩ 𝑆 ̸= ∅
or ℎ𝑒𝑎𝑑−(𝑟) ̸⊆ 𝑆. The answer sets of a GEDP are
defined by the following two steps. First, let Π be a
𝑛𝑜𝑡-free GEDP and 𝑆 ⊆ 𝐿𝑖𝑡. Then, 𝑆 is an answer
set of Π iff 𝑆 is a minimal set satisfying the condi-
tions: (i) 𝑆 satisfies every rule from Π, that is, for each
ground rule: 𝐿1 ; · · · ; 𝐿𝑘 ← 𝐿𝑙+1, . . . , 𝐿𝑚 from Π,
{𝐿𝑙+1, . . . , 𝐿𝑚} ⊆ 𝑆 implies {𝐿1, . . . , 𝐿𝑘} ∩ 𝑆 ̸= ∅.
In particular, for each constraint← 𝐿𝑙+1, . . . , 𝐿𝑚 from
Π, {𝐿𝑙+1, . . . , 𝐿𝑚} ̸⊆ 𝑆. (ii) If 𝑆 contains a pair of
complementary literals 𝐿 and ¬𝐿, then 𝑆 = 𝐿𝑖𝑡.

Second, let Π be any GEDP and 𝑆 ⊆ 𝐿𝑖𝑡. The reduct
Π𝑆 of Π by 𝑆 is a 𝑛𝑜𝑡-free EDP obtained as follows: a
rule 𝑟𝑆 of the form: 𝐿1 ; · · · ; 𝐿𝑘 ← 𝐿𝑙+1, . . . , 𝐿𝑚 is
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in Π𝑆 iff there is a ground rule 𝑟 of the form (1) from Π
such that ℎ𝑒𝑎𝑑−(𝑟) ⊆ 𝑆 and 𝑏𝑜𝑑𝑦−(𝑟) ∩ 𝑆 = ∅. For
programs of the form Π𝑆 , their answer sets have already
been defined. Then, 𝑆 is an answer set of Π iff 𝑆 is an
answer set of Π𝑆 .

When a program Π is an EDP, the above definition of
answer sets coincides with that given in [17]. It is shown
that every answer set of a GEDP Π satisfies every rule
from Π [20]. An answer set is consistent if it is not 𝐿𝑖𝑡.
A program Π is consistent if it has a consistent answer
set; otherwise, Π is inconsistent. When a program Π is
inconsistent, there are two different cases. If Π has the
answer set 𝐿𝑖𝑡, Π is called contradictory; else if Π has no
answer set, Π is called incoherent. The difference of two
cases is illustrated by the following example.

Example 2.1. The program Π1 = { 𝑝← 𝑛𝑜𝑡 𝑞, ¬𝑝←
} is incoherent, while Π2 = { 𝑝← 𝑞, 𝑞 ←, ¬𝑝←} is
contradictory. Note that 𝐿𝑖𝑡 is not the answer set of Π1

because 𝐿𝑖𝑡 is not the answer set of Π𝐿𝑖𝑡
1 = {¬𝑝←}.

We write Π |=𝑐 𝐿 (resp. Π |=𝑠 𝐿 ) if a literal 𝐿 is
included in some (resp. every) consistent answer set of Π.
Two programs Π1 and Π2 are equivalent if they have the
same set of answer sets. Two programs Π1 and Π2 are
strongly equivalent if Π1 ∪Π and Π2 ∪Π are equivalent
for any program Π [26]. In particular, two rules 𝑟1 and
𝑟2 are strongly equivalent if Π ∪ {𝑟1} and Π ∪ {𝑟2} are
equivalent for any program Π.

An answer set of a GEDP is not always minimal, i.e., a
program Π may have two answer sets 𝑆 and 𝑇 such that
𝑆 ⊂ 𝑇 [25, 20]. This is in contrast with the case of EDPs
where every answer set is minimal.

Example 2.2. Let Π be the progam:

𝑝 ; 𝑛𝑜𝑡 𝑞 ←, 𝑞 ; 𝑛𝑜𝑡 𝑝← .

Then Π has two answer sets ∅ and {𝑝, 𝑞}.

Suppose a rule 𝑟 such that ℎ𝑒𝑎𝑑+(𝑟) = ∅:

𝑛𝑜𝑡𝐿𝑘+1 ; · · · ; 𝑛𝑜𝑡𝐿𝑙

← 𝐿𝑙+1, . . . , 𝐿𝑚, 𝑛𝑜𝑡 𝐿𝑚+1, . . . , 𝑛𝑜𝑡 𝐿𝑛. (2)

Define a rule 𝜂(𝑟) of the form:

← 𝐿𝑘+1, . . . , 𝐿𝑙, 𝐿𝑙+1, . . . , 𝐿𝑚,

𝑛𝑜𝑡 𝐿𝑚+1, . . . , 𝑛𝑜𝑡 𝐿𝑛 (3)

that is obtained by shifting 𝑛𝑜𝑡𝐿𝑘+1 ; · · · ; 𝑛𝑜𝑡𝐿𝑙 in
ℎ𝑒𝑎𝑑−(𝑟) to 𝐿𝑘+1, . . . , 𝐿𝑙 in 𝑏𝑜𝑑𝑦+(𝜂(𝑟)). The two
rules (2) and (3) are strongly equivalent under the answer
set semantics.

Proposition 2.1 ([20]). Let Π be a program and Φ =
{ 𝑟 | 𝑟 ∈ Π and ℎ𝑒𝑎𝑑+(𝑟) = ∅}. Also, let Π′ =
(Π∖Φ)∪{ 𝜂(𝑟) | 𝑟 ∈ Φ }. Then Π and Π′ have the same
answer sets.

Proposition 2.2. Let Π be a program and Ψ = { 𝑟 | 𝑟 ∈
Π, ℎ𝑒𝑎𝑑+(𝑟) = ∅ and ℎ𝑒𝑎𝑑−(𝑟) ∩ 𝑏𝑜𝑑𝑦−(𝑟) ̸= ∅}.
Then, Π and Π ∖Ψ have the same answer sets.

Example 2.3. For any Π, Π ∪ {𝑛𝑜𝑡 𝑝 ← 𝑞, 𝑛𝑜𝑡 𝑝 }
is equivalent to Π ∪ {← 𝑝, 𝑞, 𝑛𝑜𝑡 𝑝 } (Proposition 2.1),
which is further simplified to Π (Proposition 2.2).

Proposition 2.3. Let Π be a not-free GEDP. If there is a
constraint in Π, then Π is not contradictory.

3. Human Conditional Reasoning
in ASP

3.1. AC Completion
We first introduce a framework for reasoning by af-
firming the consequent (AC) in ASP. In GEDPs, a
conditional sentence 𝜙 ⇒ 𝜓 (if 𝜙 then 𝜓) is repre-
sented by the rule 𝜓 ← 𝜙 where 𝜓 is a disjunction
“𝐿1 ; · · · ; 𝐿𝑘 ; 𝑛𝑜𝑡𝐿𝑘+1 ; · · · ; 𝑛𝑜𝑡𝐿𝑙" and 𝜙 is a con-
junction “𝐿𝑙+1, . . . , 𝐿𝑚, 𝑛𝑜𝑡 𝐿𝑚+1, . . . , 𝑛𝑜𝑡 𝐿𝑛". To
realize reasoning backward from 𝜓 to 𝜙, we extend a
program Π by introducing new rules.

Definition 3.1 (AC completion). Let Π be a program
and 𝑟 ∈ Π a rule of the form (1). First, for each disjunct
in ℎ𝑒𝑎𝑑+(𝑟) and ℎ𝑒𝑎𝑑−(𝑟), converse the implication:

𝐿𝑙+1, . . . , 𝐿𝑚, 𝑛𝑜𝑡 𝐿𝑚+1, . . . , 𝑛𝑜𝑡 𝐿𝑛

← 𝐿𝑗 (1 ≤ 𝑗 ≤ 𝑘), (4)

𝐿𝑙+1, . . . , 𝐿𝑚, 𝑛𝑜𝑡 𝐿𝑚+1, . . . , 𝑛𝑜𝑡 𝐿𝑛

← 𝑛𝑜𝑡𝐿𝑗 (𝑘 + 1 ≤ 𝑗 ≤ 𝑙). (5)

In (4) and (5), the conjunction “𝐿𝑙+1, . . . , 𝐿𝑚,
𝑛𝑜𝑡𝐿𝑚+1, . . . , 𝑛𝑜𝑡 𝐿𝑛" appears on the left of ←.
The produced (4) (resp. (5)) is considered an
abbreviation of the collection of (𝑛 − 𝑙) rules:
(𝐿𝑙+1 ← 𝐿𝑗), . . . , (𝑛𝑜𝑡𝐿𝑛 ← 𝐿𝑗) (resp. (𝐿𝑙+1 ←
𝑛𝑜𝑡𝐿𝑗), . . . , (𝑛𝑜𝑡𝐿𝑛 ← 𝑛𝑜𝑡𝐿𝑗))2, hence we abuse
the term ‘rule’ and call (4) or (5) a rule. In particular,
(4) is not produced if ℎ𝑒𝑎𝑑+(𝑟) = ∅ or 𝑏𝑜𝑑𝑦+(𝑟) =
𝑏𝑜𝑑𝑦−(𝑟)=∅; and (5) is not produced if ℎ𝑒𝑎𝑑−(𝑟) = ∅
or 𝑏𝑜𝑑𝑦+(𝑟) = 𝑏𝑜𝑑𝑦−(𝑟) = ∅. The set of all rules (4)
and (5) is denoted as 𝑐𝑜𝑛𝑣(𝑟). Next, define

𝑎𝑐(Π) = { Σ1 ; · · · ; Σ𝑝 ← ℓ𝑗 |

Σ𝑖 ← ℓ𝑗 (1 ≤ 𝑖 ≤ 𝑝) is in
⋃︁
𝑟∈Π

𝑐𝑜𝑛𝑣(𝑟) }

where each Σ𝑖 (1 ≤ 𝑖 ≤ 𝑝) is a conjunction of literals
and NAF-literals, and ℓ𝑗 is either a literal 𝐿𝑗 (1 ≤ 𝑗 ≤ 𝑘)
or an NAF-literal 𝑛𝑜𝑡𝐿𝑗 (𝑘 + 1 ≤ 𝑗 ≤ 𝑙). The AC
completion of Π is then defined as:

𝐴𝐶(Π) = Π ∪ 𝑎𝑐(Π).
2We often use the parenthesis ‘()’ to improve the readability.
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(4) and (5) in 𝑐𝑜𝑛𝑣(𝑟) represent converse implications
from the disjunction in the head of 𝑟 to the conjunction in
the body of 𝑟. 𝑎𝑐(Π) collects rules Σ𝑖 ← ℓ𝑗 (1 ≤ 𝑖 ≤ 𝑝)
having the same (NAF-)literal ℓ𝑗 on the right of←, and
constructs “Σ1 ; · · · ; Σ𝑝 ← ℓ𝑗", which we call an
extended rule. Introducing 𝑎𝑐(Π) to Π realizes reasoning
by AC in Π.

The set 𝑎𝑐(Π) contains an extended rule having a dis-
junction of conjunctions in its head, while it is transformed
to rules of a GEDP. That is, the extended rule:

(ℓ11, . . . , ℓ
1
𝑚1

) ; · · · ; (ℓ𝑝1, . . . , ℓ
𝑝
𝑚𝑝

)← ℓ𝑗

is identified with the set of 𝑚1 × · · · ×𝑚𝑝 rules of the
form: ℓ1𝑖1 ; · · · ; ℓ

𝑝
𝑖𝑝
← ℓ𝑗 (1 ≤ 𝑖𝑘 ≤ 𝑚𝑘; 1 ≤ 𝑘 ≤ 𝑝).

By this fact, 𝐴𝐶(Π) is viewed as a GEDP and we do not
distinguish extended rules and rules of a GEDP hereafter.
The semantics of 𝐴𝐶(Π) is defined by its answer sets.

Example 3.1. Let Π={𝑝 ;𝑛𝑜𝑡 𝑞 ← 𝑟, 𝑛𝑜𝑡 𝑠, 𝑝 ← 𝑞}.
Then, 𝑎𝑐(Π) = { (𝑟, 𝑛𝑜𝑡 𝑠) ; 𝑞 ← 𝑝, 𝑟, 𝑛𝑜𝑡 𝑠 ←
𝑛𝑜𝑡 𝑞 } where the 1st rule “(𝑟, 𝑛𝑜𝑡 𝑠) ; 𝑞 ← 𝑝" is identi-
fied with “𝑟 ; 𝑞 ← 𝑝" and “𝑛𝑜𝑡 𝑠 ; 𝑞 ← 𝑝"; and the 2nd
rule “𝑟, 𝑛𝑜𝑡 𝑠 ← 𝑛𝑜𝑡 𝑞" is identified with “𝑟 ← 𝑛𝑜𝑡 𝑞"
and “𝑛𝑜𝑡 𝑠← 𝑛𝑜𝑡 𝑞". 𝐴𝐶(Π) ∪ {𝑝←} has two answer
sets {𝑝, 𝑞} and {𝑝, 𝑟}.

By definition, if there is more than one rule having the
same (NAF-)literal in the heads, they are collected to pro-
duce a single converse rule. For instance, Π = { 𝑝 ←
𝑞, 𝑝 ← 𝑟 } produces 𝑎𝑐(Π) = { 𝑞 ; 𝑟 ← 𝑝 } but not
Λ = { 𝑞 ← 𝑝, 𝑟 ← 𝑝 }. Then, 𝐴𝐶(Π) ∪ {𝑝 ←} has
two answer sets {𝑝, 𝑞} and {𝑝, 𝑟}. Suppose that the new
fact ¬ 𝑞 ← is added to Π. Put Π′ = Π ∪ {¬ 𝑞 ←}.
Then 𝐴𝐶(Π′) ∪ {𝑝←} has the answer set {𝑝, 𝑟}, which
represents the result of AC reasoning in Π′. If Λ is used
instead of 𝑎𝑐(Π), however, Π′ ∪ Λ ∪ {𝑝 ←} has the
answer set 𝐿𝑖𝑡. The result is too strong because 𝑟 is con-
sistently inferred from Π′ ∪ {𝑝←} by AC reasoning. As
a concrete example, put 𝑝 = 𝑤𝑒𝑡-𝑔𝑟𝑎𝑠𝑠, 𝑞 = 𝑟𝑎𝑖𝑛, and
𝑟 = 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟-𝑜𝑛. Then 𝐴𝐶(Π′) ∪ {𝑤𝑒𝑡-𝑔𝑟𝑎𝑠𝑠 ←}
has the answer set {𝑤𝑒𝑡-𝑔𝑟𝑎𝑠𝑠,¬ 𝑟𝑎𝑖𝑛, 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟-𝑜𝑛 },
while Π′ ∪ Λ ∪ {𝑤𝑒𝑡-𝑔𝑟𝑎𝑠𝑠←} has the answer set 𝐿𝑖𝑡.
AC completion derives an antecedent from a consequent,
but it does not derive negation of antecedent by its na-
ture. For instance, given Π = { 𝑝 ; 𝑞 ← 𝑟, 𝑝 ←},
𝐴𝐶(Π) |=𝑠 𝑟 but 𝐴𝐶(Π) ̸|=𝑐 ¬ 𝑞.

Note that in Definition 3.1 the converse of con-
straints and facts are not considered. When
ℎ𝑒𝑎𝑑+(𝑟) = ℎ𝑒𝑎𝑑−(𝑟) = ∅, 𝑟 is considered a
rule with false in the head, then (4) and (5) become
“𝐿𝑙+1, . . . , 𝐿𝑚, 𝑛𝑜𝑡 𝐿𝑚+1, . . . , 𝑛𝑜𝑡 𝐿𝑛 ← false"
which has no effect as a rule. On the other hand, when
𝑏𝑜𝑑𝑦+(𝑟) = 𝑏𝑜𝑑𝑦−(𝑟) = ∅, 𝑟 is considered a rule with
true in the body, then (4) and (5) become “𝑡𝑟𝑢𝑒 ←
𝐿𝑗 (1 ≤ 𝑗 ≤ 𝑘) and “𝑡𝑟𝑢𝑒 ← 𝑛𝑜𝑡𝐿𝑗 (𝑘 + 1 ≤ 𝑗 ≤ 𝑙),

respectively. We do not include this type of rules for con-
structing 𝑎𝑐(Π) because it would disable AC reasoning.
For instance, transforming Π = { 𝑝 ← 𝑞, 𝑝 ←} into
Π ∪ {𝑞 ; 𝑡𝑟𝑢𝑒← 𝑝} produces the answer set {𝑝}, then 𝑞
is not obtained. With this reason, constraints and facts are
not completed at the first step of Definition 3.1. Note also
that the result of AC completion is syntax-dependent in
general. That is, two (strongly) equivalent programs may
produce different AC completions.

Example 3.2. Let Π1 = {𝑛𝑜𝑡 𝑝 ← 𝑞 } and Π2 =
{← 𝑝, 𝑞 }. By Proposition 2.1, Π1 and Π2 are strongly
equivalent, but 𝐴𝐶(Π1) = Π1 ∪ { 𝑞 ← 𝑛𝑜𝑡 𝑝 } and
𝐴𝐶(Π2) = Π2. As a result, 𝐴𝐶(Π1) has the answer set
{𝑞} while 𝐴𝐶(Π2) has the answer set ∅.

In the above example, “𝑛𝑜𝑡 𝑝 ← 𝑞" is a conditional
sentence which is subject to AC inference, while “← 𝑝, 𝑞"
is a constraint which is not subject to AC inference by
definition. For instance, given the conditional sentence “if
it is sunny, the grass is not wet" and the fact “the grass is
not wet", people would infer “it is sunny" by AC inference.
On the other hand, given the constraint “it does not happen
that wet-grass and sunny-weather at the same time" and
the fact “the grass is not wet", the number of people who
infer “it is sunny" by AC would be smaller because the
cause-effect relation between “sunny" and “not wet" is
not explicitly expressed in the constraint.

Reasoning by AC is nonmonotonic in the sense that
Π |=𝑐 𝐿 (or Π |=𝑠 𝐿) does not imply 𝐴𝐶(Π) |=𝑐 𝐿 (or
𝐴𝐶(Π) |=𝑠 𝐿) in general.

Example 3.3. Π = { 𝑝 ← 𝑛𝑜𝑡 𝑞, 𝑟 ← 𝑞, 𝑟 ←
} has the answer set {𝑝, 𝑟}, while 𝐴𝐶(Π) = Π ∪
{𝑛𝑜𝑡 𝑞 ← 𝑝, 𝑞 ← 𝑟 } has the answer set {𝑞, 𝑟}.

In Example 3.3, reasoning by AC produces 𝑞 which
blocks deriving 𝑝 using the first rule in Π. As a concrete
example, an online-meeting is held on time if no network
trouble arises. However, it turns that the web browser
is unconnected and one suspects that there is some trou-
ble on the network. Put 𝑝=“online-meeting is held on
time", 𝑞=“network trouble", 𝑟=“the web browser is un-
connected". In this case, one may withdraw the conclusion
𝑝 after knowing 𝑟. As such, additional rules 𝑎𝑐(Π) may
change the results of Π. One can see the effect of AC
reasoning in a program Π by comparing answer sets of Π
and 𝐴𝐶(Π).

A consistent program Π may produce an inconsistent
𝐴𝐶(Π). In converse, an inconsistent Π may produce a
consistent 𝐴𝐶(Π).

Example 3.4. Π1 = { 𝑝 ← ¬ 𝑝, 𝑝 ←} is consis-
tent, but 𝐴𝐶(Π1) = Π1 ∪ {¬ 𝑝 ← 𝑝 } is contradictory.
Π2 = {← 𝑛𝑜𝑡 𝑝, 𝑞 ← 𝑝, 𝑞 ←} is incoherent, but
𝐴𝐶(Π2) = Π2 ∪ { 𝑝← 𝑞 } is consistent.
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A sufficient condition for the (in)consistency of𝐴𝐶(Π)
is given below.

Proposition 3.1. If a PDP Π contains no constraint, then
𝐴𝐶(Π) is consistent. Moreover, for any answer set 𝑆 of
Π, there is an answer set 𝑇 of 𝐴𝐶(Π) such that 𝑆 ⊆ 𝑇 .

Proposition 3.2. If a program Π is contradictory, then
𝐴𝐶(Π) is contradictory.

3.2. DC Completion
We next introduce a framework for reasoning by denying
the consequent (DC) in ASP. There are two ways for
negating a literal—one is using explicit negation and the
other is using default negation. Accordingly, there are
two ways of completing a program for the purpose of
reasoning by DC.

Definition 3.2 (DC completion). Let Π be a program.
For each rule 𝑟 ∈ Π of the form (1), define 𝑤𝑑𝑐(𝑟) as the
rule:

𝑛𝑜𝑡𝐿𝑙+1; · · · ;𝑛𝑜𝑡𝐿𝑚 ; 𝐿𝑚+1; · · · ;𝐿𝑛

← 𝑛𝑜𝑡𝐿1, . . . , 𝑛𝑜𝑡 𝐿𝑘, 𝐿𝑘+1, . . . , 𝐿𝑙 (6)

and define 𝑠𝑑𝑐(𝑟) as the rule:

¬𝐿𝑙+1; · · · ;¬𝐿𝑚 ; 𝐿𝑚+1; · · · ;𝐿𝑛

← ¬𝐿1, . . . ,¬𝐿𝑘, 𝐿𝑘+1, . . . , 𝐿𝑙. (7)

In particular, (6) or (7) becomes a fact if ℎ𝑒𝑎𝑑+(𝑟) =
ℎ𝑒𝑎𝑑−(𝑟) = ∅; and it becomes a constraint if
𝑏𝑜𝑑𝑦+(𝑟) = 𝑏𝑜𝑑𝑦−(𝑟) = ∅. The weak DC comple-
tion and the strong DC completion of Π are respectively
defined as:

𝑊𝐷𝐶(Π) = Π ∪ {𝑤𝑑𝑐(𝑟) | 𝑟 ∈ Π },
𝑆𝐷𝐶(Π) = Π ∪ { 𝑠𝑑𝑐(𝑟) | 𝑟 ∈ Π }.

By definition, 𝑊𝐷𝐶(Π) and 𝑆𝐷𝐶(Π) introduce con-
trapositive rules in two different ways. In (6), literals
𝐿𝑖 (1 ≤ 𝑖 ≤ 𝑘; 𝑙 + 1 ≤ 𝑖 ≤ 𝑚) are negated using
default negation 𝑛𝑜𝑡 and NAF-literals 𝑛𝑜𝑡𝐿𝑗 (𝑘 + 1 ≤
𝑖 ≤ 𝑙; 𝑚 + 1 ≤ 𝑖 ≤ 𝑛) are converted to 𝐿𝑗 . In (7), on
the other hand, literals 𝐿𝑖 (1 ≤ 𝑖 ≤ 𝑘; 𝑙 + 1 ≤ 𝑖 ≤ 𝑚)
are negated using explicit negation ¬ and NAF-literals
𝑛𝑜𝑡𝐿𝑗 (𝑘 + 1 ≤ 𝑖 ≤ 𝑙; 𝑚 + 1 ≤ 𝑖 ≤ 𝑛) are converted
to 𝐿𝑗 . 𝑊𝐷𝐶(Π) and 𝑆𝐷𝐶(Π) are GEDPs and their
semantics are defined by their answer sets. In particular,
𝑆𝐷𝐶(Π) becomes an EDP if Π is an EDP. The WDC
and SDC produce different results in general.

Example 3.5. Let Π = { 𝑝 ← 𝑛𝑜𝑡 𝑞 }. Then,
𝑊𝐷𝐶(Π) = { 𝑝 ← 𝑛𝑜𝑡 𝑞, 𝑞 ← 𝑛𝑜𝑡 𝑝 } and
𝑆𝐷𝐶(Π) = { 𝑝 ← 𝑛𝑜𝑡 𝑞, 𝑞 ← ¬ 𝑝 }. 𝑊𝐷𝐶(Π)
has two answer sets {𝑝} and {𝑞}, while 𝑆𝐷𝐶(Π) has the
single answer set {𝑝}.

Example 3.5 shows that WDC is nonmonotonic as
Π |=𝑠 𝑝 but 𝑊𝐷𝐶(Π) ̸|=𝑠 𝑝. SDC is also nonmono-
tonic (see Example 3.8). The result of DC completion is
syntax-dependent in general.

Example 3.6. Let Π1 = {𝑛𝑜𝑡 𝑝 ← 𝑞 } and Π2 =
{← 𝑝, 𝑞 }. Then, 𝑆𝐷𝐶(Π1) = Π1 ∪ {¬ 𝑞 ← 𝑝 }
and 𝑆𝐷𝐶(Π2) = Π2 ∪ {¬ 𝑝 ;¬ 𝑞 ←}. As a result,
𝑆𝐷𝐶(Π1) has the answer set ∅ while 𝑆𝐷𝐶(Π2) has
two answer sets {¬ 𝑝} and {¬ 𝑞}.

WDC keeps the consistency of the original program.

Proposition 3.3. If a program Π has a consistent answer
set 𝑆, then 𝑆 is an answer set of 𝑊𝐷𝐶(Π).

The converse of Proposition 3.3 does not hold in general.

Example 3.7. The program Π = {← 𝑛𝑜𝑡 𝑝 } has no
answer set, while 𝑊𝐷𝐶(Π) = {← 𝑛𝑜𝑡 𝑝, 𝑝←} has
the answer set {𝑝}.

Proposition 3.4. Let Π be a consistent program such
that every constraint in Π is 𝑛𝑜𝑡-free (i.e., ℎ𝑒𝑎𝑑+(𝑟) =
ℎ𝑒𝑎𝑑−(𝑟) = ∅ implies 𝑏𝑜𝑑𝑦−(𝑟) = ∅ for any 𝑟 ∈ Π).
Then 𝑆𝐷𝐶(Π) is not contradictory.

A program Π satisfying the condition of Proposition 3.4
may produce an incoherent 𝑆𝐷𝐶(Π).

Example 3.8. The program Π = { 𝑝← 𝑞, 𝑝← ¬𝑞,
¬ 𝑝←} has the answer set {¬ 𝑝}, but 𝑆𝐷𝐶(Π) = Π ∪
{¬ 𝑞 ← ¬ 𝑝, 𝑞 ← ¬ 𝑝, ← 𝑝 } is incoherent.

Proposition 3.5. If a program Π is contradictory, then
both 𝑊𝐷𝐶(Π) and 𝑆𝐷𝐶(Π) are contradictory.

In GEDPs contraposition of a rule does not hold in
general, so the program Π = { 𝑝 ← 𝑞, ¬ 𝑝 ←}
does not deduce ¬ 𝑞. 𝑆𝐷𝐶 completes the program as
𝑆𝐷𝐶(Π) = Π ∪ {¬ 𝑞 ← ¬ 𝑝, ← 𝑝 } and makes ¬ 𝑞
deducible. In this sense, SDC has the effect of making
explicit negation closer to classical negation in GEDP.

3.3. DA Completion
As a third extension, we introduce a framework for rea-
soning by denying the antecedent (DA) in ASP. As in the
case of DC completion, two different ways of completion
are considered depending on the choice of negation.

Definition 3.3 (weak DA completion). Let Π be a pro-
gram and 𝑟 ∈ Π a rule of the form (1). First, inverse the
implication:

𝑛𝑜𝑡𝐿𝑖 ← 𝑛𝑜𝑡𝐿𝑙+1 ; · · · ; 𝑛𝑜𝑡𝐿𝑚 ; 𝐿𝑚+1 ; · · · ; 𝐿𝑛 (8)

(1 ≤ 𝑖 ≤ 𝑘),

108



Chiaki Sakama CEUR Workshop Proceedings 104–114

𝐿𝑖 ← 𝑛𝑜𝑡𝐿𝑙+1 ; · · · ; 𝑛𝑜𝑡𝐿𝑚 ; 𝐿𝑚+1 ; · · · ; 𝐿𝑛 (9)

(𝑘 + 1 ≤ 𝑖 ≤ 𝑙).

In (8) and (9), the disjunction 𝑛𝑜𝑡𝐿𝑙+1 ; · · · ; 𝑛𝑜𝑡𝐿𝑚 ;
𝐿𝑚+1 ; · · · ; 𝐿𝑛 appears on the right of ←. The
produced (8) (resp. (9)) is considered an abbrevia-
tion of the collection of (𝑛 − 𝑙) rules: (𝑛𝑜𝑡𝐿𝑖 ←
𝑛𝑜𝑡𝐿𝑙+1), . . . , (𝑛𝑜𝑡𝐿𝑖 ← 𝐿𝑛) (resp. (𝐿𝑖 ←
𝑛𝑜𝑡𝐿𝑙+1), . . . , (𝐿𝑖 ← 𝐿𝑛)), hence we abuse the term
‘rule’ and call (8) or (9) a rule. In particular, (8) is not pro-
duced if ℎ𝑒𝑎𝑑+(𝑟) = ∅ or 𝑏𝑜𝑑𝑦+(𝑟) = 𝑏𝑜𝑑𝑦−(𝑟) = ∅;
and (9) is not produced if ℎ𝑒𝑎𝑑−(𝑟) = ∅ or 𝑏𝑜𝑑𝑦+(𝑟) =
𝑏𝑜𝑑𝑦−(𝑟) = ∅. The set of rules (8)–(9) is denoted as
𝑤𝑖𝑛𝑣(𝑟). Next, define

𝑤𝑑𝑎(Π) = { ℓ𝑖 ← Γ1, . . . ,Γ𝑝 |

ℓ𝑖 ← Γ𝑗 (1 ≤ 𝑗 ≤ 𝑝) is in
⋃︁
𝑟∈Π

𝑤𝑖𝑛𝑣(𝑟) }

where ℓ𝑖 is either a literal 𝐿𝑖 (𝑘 + 1 ≤ 𝑖 ≤ 𝑙) or an NAF
literal 𝑛𝑜𝑡𝐿𝑖 (1 ≤ 𝑖 ≤ 𝑘), and each Γ𝑗 (1 ≤ 𝑗 ≤ 𝑝) is
a disjunction of literals and NAF literals. The weak DA
completion of Π is defined as:

𝑊𝐷𝐴(Π) = Π ∪ 𝑤𝑑𝑎(Π).

(8) and (9) in 𝑤𝑖𝑛𝑣(𝑟) represent inverse implication
from the (default) negation of the conjunction in the body
of 𝑟 to the (default) negation of the disjunction in the head
of 𝑟. 𝑤𝑑𝑎(Π) collects rules ℓ𝑖 ← Γ𝑗 (1 ≤ 𝑗 ≤ 𝑝) having
the same (NAF-)literal ℓ𝑖 on the left of←, and constructs
“ℓ𝑖 ← Γ1, . . . ,Γ𝑝", which we call an extended rule. In-
troducing 𝑤𝑑𝑎(Π) to Π realizes reasoning by weak DA.
An extended rule has a conjunction of disjunctions in its
body, while it is transformed to rules of a GEDP as the
case of AC completion. That is, the extended rule:

ℓ𝑖 ← (ℓ11 ; · · · ; ℓ1𝑚1
) , . . . , (ℓ𝑝1 ; · · · ; ℓ

𝑝
𝑚𝑝

)

is identified with the set of 𝑚1 × · · · ×𝑚𝑝 rules of the
form: ℓ𝑖 ← ℓ1𝑗1 , . . . , ℓ

𝑝
𝑗𝑝

(1 ≤ 𝑗𝑘 ≤ 𝑚𝑘; 1 ≤ 𝑘 ≤ 𝑝).
By this fact, 𝑊𝐷𝐴(Π) is viewed as a GEDP and we
do not distinguish extended rules and rules of a GEDP
hereafter. The semantics of 𝑊𝐷𝐴(Π) is defined by its
answer sets.

Example 3.9. Let Π = { 𝑝 ; 𝑞 ← 𝑟, 𝑛𝑜𝑡 𝑠,
𝑞 ; 𝑛𝑜𝑡 𝑟 ← 𝑡, 𝑠 ←}. Then. 𝑤𝑑𝑎(Π) = {𝑛𝑜𝑡 𝑝 ←
𝑛𝑜𝑡 𝑟 ; 𝑠, 𝑛𝑜𝑡 𝑞 ← (𝑛𝑜𝑡 𝑟 ; 𝑠), 𝑛𝑜𝑡 𝑡, 𝑟 ← 𝑛𝑜𝑡 𝑡 }
where the first rule “𝑛𝑜𝑡 𝑝 ← 𝑛𝑜𝑡 𝑟 ; 𝑠" is identified
with “𝑛𝑜𝑡 𝑝 ← 𝑛𝑜𝑡 𝑟" and “𝑛𝑜𝑡 𝑝 ← 𝑠"; and the sec-
ond rule “𝑛𝑜𝑡 𝑞 ← (𝑛𝑜𝑡 𝑟 ; 𝑠), 𝑛𝑜𝑡 𝑡" is identified with
“𝑛𝑜𝑡 𝑞 ← 𝑛𝑜𝑡 𝑟, 𝑛𝑜𝑡 𝑡" and “𝑛𝑜𝑡 𝑞 ← 𝑠, 𝑛𝑜𝑡 𝑡". Then,
𝑊𝐷𝐴(Π) has the answer set {𝑠, 𝑟}.

As in the case of AC completion, if there is more than
one rule having the same (NAF-)literal in the heads, they

are collected to produce a single inverse rule. For in-
stance, Π = { 𝑝 ← 𝑞, 𝑝 ← 𝑟 } produces 𝑤𝑑𝑎(Π) =
{𝑛𝑜𝑡 𝑝 ← 𝑛𝑜𝑡 𝑞, 𝑛𝑜𝑡 𝑟 } but not Λ = {𝑛𝑜𝑡 𝑝 ←
𝑛𝑜𝑡 𝑞, 𝑛𝑜𝑡 𝑝 ← 𝑛𝑜𝑡 𝑟 }. Suppose the new fact 𝑟 ←
is added to Π. Put Π′ = Π ∪ {𝑟 ←}. Then 𝑊𝐷𝐴(Π′)
has the answer set {𝑝, 𝑟}. If Λ is used instead of 𝑤𝑑𝑎(Π),
however, Π′∪Λ is incoherent because the first rule of Λ is
not satisfied. The result is too strong because 𝑝 is deduced
by 𝑝← 𝑟 and 𝑟 ←, and it has no direct connection to DA
inference in the first rule of Λ. Hence, we conclude 𝑛𝑜𝑡 𝑝
if both 𝑞 and 𝑟 are negated in 𝑤𝑑𝑎(Π).

The strong DA completion is defined in a similar way.

Definition 3.4 (strong DA completion). Let Π be a pro-
gram and 𝑟 ∈ Π a rule of the (1). First, inverse the
implication:

¬𝐿𝑖 ← ¬𝐿𝑙+1 ; · · · ; ¬𝐿𝑚 ; 𝐿𝑚+1 ; · · · ; 𝐿𝑛 (10)

(1 ≤ 𝑖 ≤ 𝑘),
𝐿𝑖 ← ¬𝐿𝑙+1 ; · · · ; ¬𝐿𝑚 ; 𝐿𝑚+1 ; · · · ; 𝐿𝑛 (11)

(𝑘 + 1 ≤ 𝑖 ≤ 𝑙).

As in the case of WDA, the produced (10) (resp. (11))
is considered an abbreviation of the collection of (𝑛 −
𝑙) rules: (¬𝐿𝑖 ← ¬𝐿𝑙+1), . . . , (¬𝐿𝑖 ← 𝐿𝑛) (resp.
(𝐿𝑖 ← ¬𝐿𝑙+1), . . . , (𝐿𝑖 ← 𝐿𝑛)), hence we call (10) or
(11) a rule. In particular, (10)–(11) are not produced when
their heads or bodies are empty. The set of rules (10)–(11)
is denoted as 𝑠𝑖𝑛𝑣(𝑟). Next, define

𝑠𝑑𝑎(Π) = { ℓ𝑖 ← Γ1, . . . ,Γ𝑝 |

ℓ𝑖 ← Γ𝑗 (1 ≤ 𝑗 ≤ 𝑝) is in
⋃︁
𝑟∈Π

𝑠𝑖𝑛𝑣(𝑟) }

where ℓ𝑖 is either a literal 𝐿𝑖 (𝑘 + 1 ≤ 𝑖 ≤ 𝑙) or ¬𝐿𝑖

(1 ≤ 𝑖 ≤ 𝑘), and each Γ𝑗 (1 ≤ 𝑗 ≤ 𝑝) is a disjunction of
positive/negative literals. The strong DA completion of Π
is defined as:

𝑆𝐷𝐴(Π) = Π ∪ 𝑠𝑑𝑎(Π).

As in the case of WDA, extended rules in 𝑠𝑑𝑎(Π) is trans-
formed to rules of a GEDP. Then 𝑆𝐷𝐴(Π) is viewed as
a GEDP and its semantics is defined by its answer sets. In
particular, 𝑆𝐷𝐴(Π) becomes an EDP if Π is an EDP.

The result of DA completion is syntax-dependent in
general.

Example 3.10. Let Π1 = {𝑛𝑜𝑡 𝑝← 𝑞 } and Π2 = {←
𝑝, 𝑞 }. Then, 𝑊𝐷𝐴(Π1) = Π1 ∪ { 𝑝 ← 𝑛𝑜𝑡 𝑞 } and
𝑊𝐷𝐴(Π2) = Π2. As a result, 𝑊𝐷𝐴(Π1) has the an-
swer set {𝑝} while 𝑊𝐷𝐴(Π2) has the answer set ∅.

Both WDA and SDA are nonmonotonic in general.
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Example 3.11. (1) Π1 = { 𝑝 ← 𝑛𝑜𝑡 𝑞, 𝑛𝑜𝑡 𝑞 ← 𝑝 }
produces 𝑊𝐷𝐴(Π1) = Π1 ∪ {𝑛𝑜𝑡 𝑝 ← 𝑞, 𝑞 ←
𝑛𝑜𝑡 𝑝 }. Then, Π1 |=𝑠 𝑝 but 𝑊𝐷𝐴(Π1) ̸|=𝑠 𝑝. (2)
Π2 = { 𝑝 ← 𝑛𝑜𝑡¬𝑟, 𝑟 ← 𝑛𝑜𝑡 𝑞, 𝑞 ←} produces
𝑆𝐷𝐴(Π2) = Π2 ∪ {¬ 𝑝 ← ¬ 𝑟, ¬ 𝑟 ← 𝑞 }. Then,
Π2 |=𝑐 𝑝 but 𝑆𝐷𝐴(Π2) ̸|=𝑐 𝑝.

When a program is a consistent EDP, the WDA does
not introduce a new answer set.

Proposition 3.6. Let Π be an EDP. If 𝑆 is a consistent
answer set of 𝑊𝐷𝐴(Π), then 𝑆 is an answer set of Π.

Proposition 3.7. If a program Π is contradictory, then
both 𝑊𝐷𝐴(Π) and 𝑆𝐷𝐴(Π) are contradictory.

As in the case of AC, a consistent program Π may pro-
duce an inconsistent𝑊𝐷𝐴(Π) or 𝑆𝐷𝐴(Π). In converse,
an incoherent Π may produce a consistent 𝑊𝐷𝐴(Π) or
𝑆𝐷𝐴(Π).

Example 3.12. (1) Π1 = {𝑛𝑜𝑡 𝑝← 𝑝 }, which is equiv-
alent to {← 𝑝 } (Proposition 2.1), is consistent, but
𝑊𝐷𝐴(Π1) = Π1 ∪ { 𝑝← 𝑛𝑜𝑡 𝑝 } is incoherent.

(2) Π2 = {¬ 𝑝 ← 𝑝, ¬ 𝑝 ←} is consistent, but
𝑆𝐷𝐴(Π2)= Π2 ∪ { 𝑝← ¬ 𝑝 } is contradictory.

(3) Π3 = {𝑛𝑜𝑡 𝑝 ← 𝑞, ← 𝑛𝑜𝑡 𝑝 }, which is equiva-
lent to {← 𝑝, 𝑞, ← 𝑛𝑜𝑡 𝑝 } (Proposition 2.1), is incoher-
ent, but 𝑊𝐷𝐴(Π3) = Π3 ∪ { 𝑝← 𝑛𝑜𝑡 𝑞 } is consistent
(having the answer set {𝑝}).

(4) Π4 = {← 𝑛𝑜𝑡 𝑝, ¬ 𝑝 ← 𝑛𝑜𝑡 𝑞, 𝑞 ←} is
incoherent, but 𝑆𝐷𝐴(Π4) = Π4∪{ 𝑝← 𝑞 } is consistent
(having the answer set {𝑝, 𝑞}).

4. AC and DA as Default
Reasoning

AC and DA are logically invalid and additional rules for
AC and DA often make a program inconsistent. In this
section, we relax the effects of the AC or DA completion
by introducing additional rules as default rules in the sense
of [31]. More precisely, we capture AC and DA as the
following default inference rules:

(defaultAC)
(𝜙⇒ 𝜓) ∧ 𝜓 : 𝜙

𝜙

(defaultDA)
(𝜙⇒ 𝜓) ∧ ¬𝜙 : ¬𝜓

¬𝜓

The default AC rule says: given the conditional 𝜙 ⇒ 𝜓
and the fact 𝜓, conclude 𝜙 as a default consequence. The
default DA rule is read in a similar manner. We encode
these rules in ASP.

4.1. Default AC completion
The AC completion is modified for default AC reasoning.

Definition 4.1 (default AC completion). Let Π be a
program. For each rule 𝑟 ∈ Π of the form (1), define
𝑑𝑎𝑐(𝑟) as the set of rules:

𝐿𝑙+1, . . . , 𝐿𝑚, 𝑛𝑜𝑡 𝐿𝑚+1, . . . , 𝑛𝑜𝑡 𝐿𝑛

← 𝐿𝑖, ∆ (1 ≤ 𝑖 ≤ 𝑘), (12)

𝐿𝑙+1, . . . , 𝐿𝑚, 𝑛𝑜𝑡 𝐿𝑚+1, . . . , 𝑛𝑜𝑡 𝐿𝑛

← 𝑛𝑜𝑡𝐿𝑖, ∆ (𝑘 + 1 ≤ 𝑖 ≤ 𝑙) (13)

where ∆ = 𝑛𝑜𝑡¬𝐿𝑙+1, . . . , 𝑛𝑜𝑡¬𝐿𝑚, 𝑛𝑜𝑡 𝐿𝑚+1, . . . ,
𝑛𝑜𝑡 𝐿𝑛. As before, (12) is not produced if
ℎ𝑒𝑎𝑑+(𝑟) = ∅ or 𝑏𝑜𝑑𝑦+(𝑟) = 𝑏𝑜𝑑𝑦−(𝑟) = ∅;
and (13) is not produced if ℎ𝑒𝑎𝑑−(𝑟) = ∅ or
𝑏𝑜𝑑𝑦+(𝑟) = 𝑏𝑜𝑑𝑦−(𝑟) = ∅. The default AC completion
of Π is defined as:

𝐷𝐴𝐶(Π) = Π ∪ 𝑑𝑎𝑐(Π)

in which

𝑑𝑎𝑐(Π) = { Σ1 ; · · · ; Σ𝑝 ← ℓ𝑗 , ∆𝑖 |

Σ𝑖 ← ℓ𝑗 , ∆𝑖 (1 ≤ 𝑖 ≤ 𝑝) is in
⋃︁
𝑟∈Π

𝑑𝑎𝑐(𝑟) }

where each Σ𝑖 (1 ≤ 𝑖 ≤ 𝑝) is a conjunction of literals
and NAF-literals, and ℓ𝑗 is either a literal 𝐿𝑗 (1 ≤ 𝑗 ≤ 𝑘)
or an NAF-literal 𝑛𝑜𝑡𝐿𝑗 (𝑘 + 1 ≤ 𝑗 ≤ 𝑙).

Like 𝐴𝐶(Π), rules in 𝑑𝑎𝑐(Π) are converted into the
form of a GEDP, then 𝐷𝐴𝐶(Π) is viewed as a GEDP.
Compared with the AC completion, the DAC completion
introduces the conjunction ∆ of NAF literals to the body
of each rule. Then the rules (Σ1 ; · · · ; Σ𝑝 ← ℓ𝑗 , ∆𝑖)
having the same head with different bodies are constructed
for 𝑖 = 1, . . . , 𝑝.

Example 4.1. Let Π = { 𝑝 ← 𝑞, 𝑝 ← 𝑟, 𝑝 ←,
¬𝑟 ←}. Then 𝐷𝐴𝐶(Π) = Π ∪ 𝑑𝑎𝑐(Π) where

𝑑𝑎𝑐(Π) = { 𝑞 ; 𝑟 ← 𝑝, 𝑛𝑜𝑡¬𝑞, 𝑞 ; 𝑟 ← 𝑝, 𝑛𝑜𝑡¬𝑟 }.

As a result, 𝐷𝐴𝐶(Π) has the answer set {𝑝, 𝑞,¬𝑟}.

Proposition 4.1. Let Π be a consistent program. If
𝐷𝐴𝐶(Π) has an answer 𝑆, then 𝑆 ̸= 𝐿𝑖𝑡.

𝐷𝐴𝐶(Π) turns a contradictory 𝐴𝐶(Π) into a consis-
tent program.

Example 4.2 (cont. Example 3.4). Let Π1 =
{ 𝑝← ¬ 𝑝, 𝑝←}. Then, 𝐷𝐴𝐶(Π1) = Π1 ∪ {¬ 𝑝←
𝑝, 𝑛𝑜𝑡 𝑝 } has the single answer set { 𝑝 }. So 𝐴𝐶(Π1) is
contradictory, but 𝐷𝐴𝐶(Π1) is consistent.
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When 𝐴𝐶(Π) is incoherent, however, 𝐷𝐴𝐶(Π) does
not resolve incoherency in general.

Example 4.3. Let Π = { 𝑝 ← 𝑞, 𝑝 ←, ← 𝑞 }. Then,
𝐴𝐶(Π) = Π ∪ { 𝑞 ← 𝑝 } is incoherent. 𝐷𝐴𝐶(Π) =
Π ∪ { 𝑞 ← 𝑝, 𝑛𝑜𝑡¬ 𝑞 } is still incoherent.

When 𝐴𝐶(Π) has a consistent answer set, 𝐷𝐴𝐶(Π)
does not change it.

Proposition 4.2. Let Π be a program. If 𝐴𝐶(Π) has
a consistent answer set 𝑆, then 𝑆 is an answer set of
𝐷𝐴𝐶(Π).

4.2. Default DA completion
The DA completion is modified for default DA reasoning.

Definition 4.2 (default DA completion). Let Π be a
program. Define

𝑤𝑑𝑑𝑎(Π) = { ℓ𝑖 ← Γ1, . . . ,Γ𝑝, 𝛿
𝑤
𝑖 |

ℓ𝑖 ← Γ𝑗 (1 ≤ 𝑗 ≤ 𝑝) is in
⋃︁
𝑟∈Π

𝑤𝑖𝑛𝑣(𝑟) },

𝑠𝑑𝑑𝑎(Π) = { ℓ𝑖 ← Γ1, . . . ,Γ𝑝, 𝛿
𝑠
𝑖 |

ℓ𝑖 ← Γ𝑗 (1 ≤ 𝑗 ≤ 𝑝) is in
⋃︁
𝑟∈Π

𝑠𝑖𝑛𝑣(𝑟) }

where ℓ𝑖, Γ𝑗 , 𝑤𝑖𝑛𝑣(𝑟), and 𝑠𝑖𝑛𝑣(𝑟) are the same as those
in Defs. 3.3 and 3.4. In addition, 𝛿𝑤𝑖 = 𝑛𝑜𝑡¬𝐿𝑖 if ℓ𝑖 =
𝐿𝑖, and 𝛿𝑤𝑖 = 𝑛𝑜𝑡𝐿𝑖 if ℓ𝑖 = 𝑛𝑜𝑡𝐿𝑖; 𝛿𝑠𝑖 = 𝑛𝑜𝑡¬𝐿𝑖 if
ℓ𝑖 = 𝐿𝑖, and 𝛿𝑠𝑖 = 𝑛𝑜𝑡𝐿𝑖 if ℓ𝑖 = ¬𝐿𝑖. The weak default
DA completion and the strong default DA completion of
Π are respectively defined as:

𝑊𝐷𝐷𝐴(Π) = Π ∪ 𝑤𝑑𝑑𝑎(Π),

𝑆𝐷𝐷𝐴(Π) = Π ∪ 𝑠𝑑𝑑𝑎(Π).

Rules in 𝑤𝑑𝑑𝑎(Π) and 𝑠𝑑𝑑𝑎(Π) are converted into
the form of a GEDP, so 𝑊𝐷𝐷𝐴(Π) and 𝑆𝐷𝐷𝐴(Π)
are viewed as GEDPs. Like the DAC completion, both
WDDA and SDDA introduce an additional NAF literal to
each rule.

Proposition 4.3. Let Π be a consistent program. If
𝑊𝐷𝐷𝐴(Π) (or 𝑆𝐷𝐷𝐴(Π)) has an answer set 𝑆, then
𝑆 ̸= 𝐿𝑖𝑡.

The WDDA/SDDA eliminates contradiction but does
not resolve incoherency.

Example 4.4 (cont. Example 3.12). Let Π1 =
{𝑛𝑜𝑡 𝑝 ← 𝑝 } where 𝑊𝐷𝐴(Π1) is incoherent.
𝑊𝐷𝐷𝐴(Π1) = Π1 ∪ { 𝑝 ← 𝑛𝑜𝑡 𝑝, 𝑛𝑜𝑡¬ 𝑝 } is
still incoherent. Let Π2 = {¬ 𝑝 ← 𝑝, ¬ 𝑝 ←}
where 𝑆𝐷𝐴(Π2) is contradictory. 𝑆𝐷𝐷𝐴(Π2) =
Π2 ∪ { 𝑝← ¬ 𝑝, 𝑛𝑜𝑡¬ 𝑝 } has the answer set {¬𝑝}.

Proposition 4.4. Let Π be a program. If 𝑊𝐷𝐴(Π)
(resp. 𝑆𝐷𝐴(Π)) has a consistent answer set 𝑆, then 𝑆 is
an answer set of 𝑊𝐷𝐷𝐴(Π) (resp. 𝑆𝐷𝐷𝐴(Π)).

Thus, default AC/DA completion is used for avoiding
contradiction in programs containing explicit negation.

5. Related Work
There is a number of studies on human conditional reason-
ing in psychology and cognitive science. In this section,
we focus on related work based on logic programming.

5.1. Completion
The idea of interpreting if-then rules in logic programs
as bi-conditional dates back to [7]. Clark introduces
predicate completion in normal logic programs (NLPs),
which introduces the only-if part of each rule to a pro-
gram. Given a propositional program Π, Clark comple-
tion 𝐶𝑜𝑚𝑝(Π) is obtained by two steps: (i) all rules
𝑝 ← 𝐵1,. . ., 𝑝 ← 𝐵𝑘 in Π having the same head 𝑝 are
replaced by 𝑝↔ 𝐵1∨· · ·∨𝐵𝑘, where𝐵𝑖 (1 ≤ 𝑖 ≤ 𝑘) is
a conjunction of literals; and (ii) for any atom 𝑝 appearing
in the head of no rule in Π, add 𝑝↔ false . The AC com-
pletion introduced in this paper extends the technique to
the class of GEDP, while the result is generally different
from Clark completion in NLPs. For instance, given the
program: Π1 = { 𝑝← 𝑞, 𝑝←}, Clark completion be-
comes 𝐶𝑜𝑚𝑝(Π1) = { 𝑝↔ 𝑞 ∨⊤, 𝑞 ↔ ⊥} where ⊤
and ⊥ represent true and false, respectively. 𝐶𝑜𝑚𝑝(Π1)
has the single completion model {𝑝} called a supported
model [2]. In contrast, 𝐴𝐶(Π1) = Π1 ∪ { 𝑞 ← 𝑝 } has
the answer set {𝑝, 𝑞}. The difference comes from the fact
that in 𝐶𝑜𝑚𝑝(Π1), 𝑞 is identified with false but this is
not the case in 𝐴𝐶(Π1). In Clark completion undefined
atoms (i.e., atoms appearing in the head of no rule) are
interpreted false. We do not use this type of completion
because it disturbs the basic type of AC reasoning that
infers 𝑞 from 𝑝 and 𝑝← 𝑞. Clark completion is extended
to normal disjunctive programs by several researchers
[27, 1, 28]. Those extensions reduce to Clark completion
in NLPs, so that they are different from the AC comple-
tion. We also introduce the DC completion and the DA
completion. When Π2 = { 𝑝 ← 𝑛𝑜𝑡 𝑞 }, 𝐶𝑜𝑚𝑝(Π2) =
{ 𝑝↔ ¬𝑞, 𝑞 ↔ ⊥} has the supported model {𝑝} while
𝑊𝐷𝐶(Π2) = Π2 ∪ { 𝑞 ← 𝑛𝑜𝑡 𝑝 } has two answer sets
{𝑝} and {𝑞}. When Π3 = { 𝑝 ← 𝑛𝑜𝑡 𝑞, 𝑝 ← 𝑞, 𝑞 ←
𝑝 }, 𝐶𝑜𝑚𝑝(Π3) = { 𝑝↔ 𝑞 ∨ ¬𝑞, 𝑞 ↔ 𝑝 } has the sup-
ported model {𝑝, 𝑞}while𝑊𝐷𝐴(Π3) = Π3∪{𝑛𝑜𝑡 𝑝←
𝑞, 𝑛𝑜𝑡 𝑞, 𝑛𝑜𝑡 𝑞 ← 𝑛𝑜𝑡 𝑝 } has no answer set. Thus, com-
pletion introduced in this paper is generally different from
Clark completion in NLPs.

The weak completion [18] leaves undefined atoms un-
known under 3-valued logic. In Π1 = { 𝑝← 𝑞, 𝑝←},

111



Chiaki Sakama CEUR Workshop Proceedings 104–114

the weak completion becomes 𝑤𝑐𝑜𝑚𝑝(Π1) = { 𝑝 ↔
⊤}. Then 𝑝 is true but 𝑞 is unknown in 𝑤𝑐𝑜𝑚𝑝(Π1),
which is again different from the result of 𝐴𝐶(Π1) that
has the answer set {𝑝, 𝑞}. In Π2 = { 𝑝 ← 𝑛𝑜𝑡 𝑞 },
𝑤𝑐𝑜𝑚𝑝(Π2) = { 𝑝 ↔ ¬𝑞 } then both 𝑝 and 𝑞 are un-
known. In contrast, 𝑊𝐷𝐶(Π2) has two answer sets {𝑝}
and {𝑞}, and 𝑊𝐷𝐴(Π2) has the single answer set {𝑝}.

5.2. Abductive Logic Programming
An abductive logic program [23] is defined as a pair
⟨Π,Γ ⟩ where Π is a program and Γ (⊆ 𝐿𝑖𝑡) is a set
of literals called abducibles. It is assumed that ab-
ducibles appear in the head of no rule in Π. Given an
observation 𝑂 as a ground literal, the abduction prob-
lem is to find an explanation 𝐸 (⊆ Γ) satisfying (i)
𝑃 ∪ 𝐸 |=𝑥 𝑂 and (ii) 𝑃 ∪ 𝐸 is consistent, where |=𝑥

is either |=𝑐 or |=𝑠 depending on the problem. Here
we consider |=𝑐 that realizes credulous abduction. Con-
sider (Π1,Γ1) where Π1 = { 𝑎𝑟𝑟𝑖𝑣𝑒_𝑜𝑛_𝑡𝑖𝑚𝑒 ←
𝑛𝑜𝑡 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡, ¬ 𝑎𝑟𝑟𝑖𝑣𝑒_𝑜𝑛_𝑡𝑖𝑚𝑒 ← 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡 }
and Γ1 = {𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡}. Π1 represents that a train ar-
rives on time unless there is an accident. Then the
observation 𝑂 = ¬ 𝑎𝑟𝑟𝑖𝑣𝑒_𝑜𝑛_𝑡𝑖𝑚𝑒 has the expla-
nation 𝐸 = {𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡}. Since abduction reasons
backward from an observation, it is computed using
the AC completion. Let ⟨Π,Γ ⟩ be an abductive pro-
gram and 𝑂 an observation. Then, a set 𝐸 ⊆ Γ
is an explanation of 𝑂 if 𝑂 ∈ ℎ𝑒𝑎𝑑+(𝑟) for some
𝑟 ∈ Π and 𝐴𝐶(Π) ∪ {𝑂} has a consistent answer
set 𝑆 such that 𝑆 ∩ Γ = 𝐸. In the above example,
𝐴𝐶(Π1)∪{𝑂} is Π1 ∪ 𝑎𝑐(Π1)∪{𝑂} where 𝑎𝑐(Π1) =
{𝑛𝑜𝑡 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡 ← 𝑎𝑟𝑟𝑖𝑣𝑒_𝑜𝑛_𝑡𝑖𝑚𝑒, 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡 ←
¬ 𝑎𝑟𝑟𝑖𝑣𝑒_𝑜𝑛_𝑡𝑖𝑚𝑒 }. 𝐴𝐶(Π1)∪{𝑂} has the answer set
𝑆 = {¬ 𝑎𝑟𝑟𝑖𝑣𝑒_𝑜𝑛_𝑡𝑖𝑚𝑒, 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡 }. Then, 𝑆∩Γ1 =
{ 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡 } is the explanation. Note that 𝐴𝐶(Π) in-
troduces converse of every rule, while explanations are
computed using the AC completion of a subset Π′ ⊆ Π
in general. For instance, consider Π2 = { 𝑝← 𝑎, 𝑞 ←
¬𝑎, 𝑞 ←} and Γ2 = {𝑎,¬𝑎}. Then 𝑂 = 𝑝 has the
explanation 𝐸 = {𝑎} in ⟨Π2,Γ2 ⟩, while 𝐴𝐶(Π2) ∪
{𝑂} = Π2 ∪ { 𝑎 ← 𝑝, ¬𝑎 ← 𝑞, 𝑝 ←} is contradic-
tory. By putting Π′

2 = { 𝑝 ← 𝑎 }, 𝐴𝐶(Π′
2) ∪ {𝑂} has

the consistent answer set 𝑆 = {𝑝, 𝑎} where 𝑆 ∩Γ = {𝑎}.
As such, abduction and AC completion produce different
results in general.

Abductive logic programs of [23] cannot compute
explanations when contrary to the consequent is ob-
served. For instance, consider ⟨Π3,Γ1 ⟩ where Π3 =
{ 𝑎𝑟𝑟𝑖𝑣𝑒_𝑜𝑛_𝑡𝑖𝑚𝑒 ← 𝑛𝑜𝑡 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡 }. Given the ob-
servation 𝑂 = ¬ 𝑎𝑟𝑟𝑖𝑣𝑒_𝑜𝑛_𝑡𝑖𝑚𝑒, no explanation is
obtained from ⟨Π3,Γ1 ⟩. Generally, a program Π does
not necessarily contain a pair of rules 𝑟 and 𝑟′ that define
𝐿 and ¬𝐿, respectively. When there is a rule defining
𝐿 but no rule defining ¬𝐿, abduction computes no ex-

planation for the observation 𝑂 = ¬𝐿. The problem
is resolved by reasoning by DC. For the rule 𝑟 in Π3,
𝑠𝑑𝑐(𝑟) = { 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡 ← ¬ 𝑎𝑟𝑟𝑖𝑣𝑒_𝑜𝑛_𝑡𝑖𝑚𝑒 }. Then
𝑆𝐷𝐶(Π3)∪{𝑂} computes the explanation { 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡 }.
In contrast to 𝑆𝐷𝐶, 𝑊𝐷𝐶 is used for abduction from
negative observations. A negative observation represents
that some evidence 𝐺 is not observed and it is represented
as 𝑂 = 𝑛𝑜𝑡𝐺, which should be distinguished from the
(positive) observation 𝑂 = ¬𝐺 meaning that ¬𝐺 is ob-
served. In the abductive program ⟨Π3,Γ1 ⟩, the negative
observation 𝑂 = 𝑛𝑜𝑡 𝑎𝑟𝑟𝑖𝑣𝑒_𝑜𝑛_𝑡𝑖𝑚𝑒 is explained us-
ing 𝑤𝑑𝑐(𝑟) = { 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡 ← 𝑛𝑜𝑡 𝑎𝑟𝑟𝑖𝑣𝑒_𝑜𝑛_𝑡𝑖𝑚𝑒 }.
Then 𝑊𝐷𝐶(Π3)∪{𝑂} has the answer set { 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡 }.

In this way, both AC and DC are used for computing
explanations deductively, and DC is used for computing
explanations that are not obtained using the framework
of [23]. Console 𝑒𝑡 𝑎𝑙. [8] and Fung 𝑒𝑡 𝑎𝑙. [15] compute
abduction by deduction using Clark completion. Abduc-
tion using AC/DC completion is close to those approaches,
while the approach based on Clark completion is restricted
to normal logic programs (NLPs). As argued above, a
(positive) observation 𝑂 = ¬𝐺 is distinguished from a
negative observation 𝑂 = 𝑛𝑜𝑡𝐺, but such a distinction
is not considered in NLPs handling only default negation.
Inoue 𝑒𝑡 𝑎𝑙. [21] introduce transaction programs for com-
puting extended abduction, which computes explanations
for both positive/negative observations. A transaction
program is a meta-level specification for computing the
converse of conditionals, and is defined for NLPs only.

5.3. Human Conditional Reasoning
Stenning 𝑒𝑡 𝑎𝑙. [33] formulate human conditional reason-
ing using Clark’s program completion under the three-
valued logic of [14]. They represent a conditional sentence
“if 𝑝 then 𝑞" as a logic programming rule:“𝑞 ← 𝑝 ∧ ¬𝑎𝑏"
where 𝑎𝑏 represents an abnormal atom. In this setting, DA
is represented as Π1 = { 𝑝← ⊥, 𝑞 ← 𝑝∧¬𝑎𝑏, 𝑎𝑏←
⊥}. The rule “𝐴 ← ⊥" means that 𝐴 is a proposition
to which the closed world assumption [30] is applied.
If a program does not contain 𝐴 ← ⊥, nor any other
rule in which 𝐴 occurs in its head, then 𝐴 is interpreted
unknown. Then its completion 𝐶𝑜𝑚𝑝(Π1) = { 𝑝 ↔
⊥, 𝑞 ↔ 𝑝 ∧ ¬𝑎𝑏, 𝑎𝑏 ↔ ⊥} derives 𝑞 ↔ ⊥. On
the other hand, completion does not realize AC or DC
inference by itself. In their framework, AC is represented
as Π2 = { 𝑞 ← ⊤, 𝑞 ← 𝑝 ∧ ¬𝑎𝑏, 𝑎𝑏 ← ⊥}, while
𝐶𝑜𝑚𝑝(Π2) = { 𝑞 ↔ ⊤ ∨ (𝑝 ∧ ¬𝑎𝑏), 𝑎𝑏 ↔ ⊥}
does not derive 𝑝. Likewise, DC is represented as
Π3 = { 𝑞 ← ⊥, 𝑞 ← 𝑝 ∧ ¬𝑎𝑏, 𝑎𝑏 ← ⊥}, while
𝐶𝑜𝑚𝑝(Π3) = { 𝑞 ↔ ⊥ ∨ (𝑝 ∧ ¬𝑎𝑏), 𝑎𝑏 ↔ ⊥} does
not derive 𝑝 ↔ ⊥. They then interpret 𝑞 ← 𝑝 ∧ ¬𝑎𝑏 as
an integrity constraint meaning that “if 𝑞 succeeds (resp.
fails) then 𝑝 ∧ ¬𝑎𝑏 succeeds (resp. fails)" to get the AC
consequence 𝑝 (resp. DC consequence ¬𝑝).
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Dietz 𝑒𝑡 𝑎𝑙. [11] point out a technical flaw in the for-
mulation by [33]. Suppose a conditional sentence 𝑝← 𝑞
where 𝑝 and 𝑞 are unknown U. Under the Fitting seman-
tics, however, the truth value of the rule U← U is U, then
it does not represent the truth of the sentence. To remedy
the problem, they employ Łukasiewicz’s 3-valued logic
which maps U← U to ⊤.

Comparing the above mentioned two studies with our
approach, there are several differences. First, they trans-
late a conditional sentence “if 𝑝 then 𝑞" into the rule
𝑞 ← 𝑝 ∧ ¬ 𝑎𝑏. However, it is unlikely that people who
commit logical fallacies, especially younger children [32],
translate the conditional sentence into the rule of the above
complex form in their mind. We represent the conditional
sentence directly as 𝑞 ← 𝑝, and assume that people would
interpret it as bi-conditional depending on the context it
is used. Second, in order to characterize AC or DC infer-
ence, [33] interpret a conditional sentence as an integrity
constraint, while [11] uses abductive logic programs. Our
framework does not need a specific interpretation of rules
(such as integrity constraints) nor need an extra mecha-
nism of abductive logic programs. Third, they use a single
(weak) completion for all AC/DA/DC inferences, while
we introduce different types of completions for each in-
ference. By separating respective completions, individual
inferences are realized in a modular way and freely com-
bined depending on their application context. Fourth, they
handle normal logic programs, while our framework can
handle a more general class of logic programs as GEDPs.

Cramer 𝑒𝑡 𝑎𝑙. [10] represent conditionals as in [33] and
use the weak completion and abductive logic programs
as in [11]. They formulate different types of conditionals
based on their contexts and argue in which case AC or DC
is more likely to happen. More precisely, a conditional
sentence whose consequent appears to be obligatory given
the antecedent is called an obligation conditional. An
example of an obligation conditional is that “if Paul rides
a motorbike, then he must wear a helmet". If the conse-
quence of a conditional is not obligatory, then it is called
a factual conditional. The antecedent 𝐴 of a conditional
sentence is said to be necessary iff its consequent 𝐶 can-
not be true unless𝐴 is true. For example, the library being
open is a necessary antecedent for studying in the library.
Cramer 𝑒𝑡 𝑎𝑙. argue that AA and DA occur independently
of the type of a conditional. On the other hand, in AC
most people will conclude 𝐴 from 𝐴⇒ 𝐶 and 𝐶, while
the number of people who conclude nothing will increase
if 𝐴 is a non-necessary antecedent. In DC, most people
will conclude ¬𝐴 from 𝐴⇒ 𝐶 and ¬𝐶, while the num-
ber of people who conclude nothing will increase if the
conditional is factual. Those assumptions are verified by
questioning participants who do not receive any education
in logic beyond high school training. They then formulate
the situation by introducing the abducible 𝐶 ← ⊤ if the
antecedent is non-necessary, and 𝑎𝑏 ← ⊤ if the condi-

tional is factual. In the former case, the observation 𝐶
does not imply 𝐴 because 𝐶 ← ⊤ can make 𝐶 explain-
able by itself. As a result, 𝐴 is not a skeptical explanation
of 𝐶. In the latter case, the observation ¬𝐶 does not im-
ply ¬𝐴 because if one employs the explanation 𝑎𝑏← ⊤,
𝐶 ← 𝐴 ∧ ¬𝑎𝑏 does not produce 𝐶 ↔ 𝐴.

Dietz 𝑒𝑡 𝑎𝑙. [12] use logic programming rules to repre-
sent different types of conditionals. For instance, the rule:
“concl ← prem(x), sufficient(x)" represents MP that
concl follows if a sufficient premise is asserted to be true.
By contrast, “not_concl← not_prem(x), necessary(x)"
represents DA that concl does not follow if a necessary
premise is asserted to be false. In the current study,
we do not distinguish different types of conditionals as
in [10, 12]. However, completion is done for individual
rules, so we could realize partial completion by selecting
rules Π′ ⊆ Π that are subject to be completed in practice.
More precisely, if a program Π consists of rules 𝑅1 hav-
ing necessary antecedents and 𝑅2 having non-necessary
antecedents, apply AC completion to 𝑅1 while keep 𝑅2

as they are. The resulting program then realizes AC in-
ference using 𝑅1 only. Likewise, if a program Π consists
of rules 𝑅3 having obligatory consequents and 𝑅4 having
factual consequents, apply DC completion to 𝑅3 while
keep 𝑅4 as they are. The resulting program then realizes
DC inference using 𝑅3 only.

6. Conclusion
This paper studies a method of realizing human condi-
tional reasoning in ASP. Different types of completion
are introduced to realize logically invalid inferences AC
and DA as well as a logically valid inference DC. In psy-
chology and cognitive science, empirical studies show
that people perform AC, DA or DC inference depending
on the context in which a conditional sentence is used.
We could import the results of those studies and encode
knowledge in a way that people are likely to use it. The
proposed theory is used for such a purpose to realize prag-
matic inferences in ASP and produce results that are close
to human reasoning in practice.

Completions introduced in this paper are defined in a
modular way, so one can apply respective completion to
specific rules of a program according to their contexts.
They are combined freely and can be mixed in the same
program. Those completions are general in the sense that
they are applied to logic programs containing disjunction,
explicit and default negation. Since a completed program
is still in the class of GEDPs and a GEDP is transformed
to a semantically equivalent EDP [20], answer sets of com-
pleted programs are computed using existing answer set
solvers. In the full paper, the proposed theory is applied to
representing human reasoning tasks in the literature, and
is used for computing common sense reasoning in AI.
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