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Abstract

Using a Relational Tsetlin Machine (RTM) for analysis of semi-structured data allows the use of inherent relational structures

present in natural language text to get an explainable classification of data. A finite Herbrand model derives Horn Clauses

from the model, which are simple yet powerful logical tools that can build an abstract view of the world. We use the same to

analyze human rights violation data. We show concretely how natural language can be transformed into a relational structure,

and further use the Relational Tsetlin Machine to not only classify incidents as serious and non-serious violations but also

explore the patterns learned by the RTM in order to arrive that those decisions. Furthermore, the distilled Horn Clauses show

a precise understanding of the concepts involved without the drawback of textual ambiguity.
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1. Introduction
Training Artificial Intelligence (AI) to answer natural

language questions is a crucial part of the quest for en-

coding a human-equivalent understanding of the world

in machines. Massive structured Knowledge Bases (KBs),

such as Freebase [1] have been the cornerstone of such

efforts. A common challenge lies in the appropriate in-

terpretation of language by AI agents, both for building

the KBs themselves (from existing natural language re-

sources), as well as to identify the information required

and provided from questions. The need for abstraction

from specific (and limited) examples to build concepts

and rules about the world, in general, is another chal-

lenge. What is a standard inductive reasoning problem if

the KB is completely consistent and error-free, becomes

extremely different when allowing for all the uncertainty,

indeterminacy, errors, exceptions, and conflicts that are

present in real-world data, more so when the data has

been extracted and structured by AI even partially.

Various methods currently in use for Question An-

swering (QA) are broad: (a) Tokenization, POS tagging,

parsing, and other linguistic approaches to derive a pre-

cise query from natural language questions, which can

further be deployed on a structured database; (b) Sup-

port Vector Machines, Bayesian Classifiers, Maximum En-
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tropy models, and similar statistical approaches, trained

on large amounts of data; (c) Identifying and matching

surface-level patterns with templates for response gener-

ation. Often hybrid approaches are preferred for higher

performance. But most QA systems suffer from a lack of

ability to generalize, and either have restrictive use cases

or require massive amounts of knowledge. The absence

of explanations of decisions taken by models also makes

it difficult to identify problem areas and offer resolutions

or improvements. [2, 3].

Tsetlin machines (TMs) [4] use propositional logic

structures to build human-readable reasoning patterns

from data. TMs’s pattern recognition capabilities have

been successfully demonstrated in natural language un-

derstanding [5, 6, 7, 8, 9, 10], though none have explored

logical decision making. The propositional clauses con-

structed by a TM have high discriminative power and

constitute a global description of the task learnt [11].

Apart from maintaining accuracy comparable to state-

of-the-art machine learning techniques, the method also

has provided a smaller memory footprint and faster infer-

ence than more traditional neural network-based mod-

els [12, 13, 14, 15, 16]. Furthermore, [17] shows that

TMs can be fault-tolerant, able to mask stuck-at faults.

However, although TMs can express any propositional

formula by using a disjunctive normal form, first-order

logic is required to obtain the computing power equiva-

lent to a universal Turing machine. The more recently

proposed Relational Tsetlin Machine introduces a first
order TM framework with Herbrand semantics, with an

eye towards QA applications [18].

In this paper, we aim to use the RTM model to approach

categorization and QA on a Human Rights Violation
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dataset, showcasing explainability with non-recursive

first-order Horn clauses built from specific examples.

2. Background

2.1. Propositional Tsetlin Machine
The TM, first proposed in [4], is a revolutionary tech-

nique to pattern classification, regression, and novelty

detection [19, 20, 6, 7]. The base unit of a TM is called

a Tsetlin automaton (TA), which learns the best action

from a set of available actions in its environment. A “reg-

ular” TM can also be referred to as a Propositional TM,

due to the nature of its input and output operations.

In a “Propositional” TM, a team of base TAs collec-

tively generates propositional formulas using conjunctive

clauses. Its input is of the vector form 𝑋 = (𝑥1, . . . , 𝑥𝑜),

and the TM learns clauses that decide if an input is to be

in class 𝑦 = 0 or 𝑦 = 1. The learnt clauses are conjunc-

tive combinations of elements from a subset of a literal

set made of input features and their respective negations

�̄�𝑘 = ¬𝑥𝑘 = 1− 𝑥𝑘 . Each clause can be represented as:

𝐶𝑗(𝑋) =
⋀︀

𝑙𝑘∈𝐿𝑗
𝑙𝑘 =

∏︀
𝑙𝑘∈𝐿𝑗

𝑙𝑘. (1)

E.g., the clause 𝐶𝑗(𝑋) = 𝑥1∧𝑥2 = 𝑥1𝑥2 consists of the

literals 𝐿𝑗 = {𝑥1, 𝑥2} and outputs 1 iff 𝑥1 = 𝑥2 = 1.

The number of clauses used is a user-defined parameter

𝑚. Each new configuration of clauses created is subjected

to feedback, which controls the distribution of frequently

occurring patterns, as well as increasing the discriminat-

ing power of individual patterns. Of the total number of

clauses, half vote in favor of 𝑦 = 1 i.e., positive polar-

ity clauses (𝐶+
𝑗 ), whereas the other half vote in favor of

𝑦 = 0 i.e., negative polarity clauses (𝐶−
𝑗 ). Classification

is performed based on a majority vote using equation 2

and the unit step function: 𝑦 = 𝑢(𝑣) = 1 if 𝑣 ≥ 0 else 0
(for details, see [19]).

𝑣 =
∑︀𝑚/2

𝑗=1 𝐶+
𝑗 (𝑋)−

∑︀𝑚/2
𝑗=1 𝐶−

𝑗 (𝑋). (2)

E.g. the XOR-relation can be encoded as the classifier

𝑦 = 𝑢 (𝑥1�̄�2 + �̄�1𝑥2 − 𝑥1𝑥2 − �̄�1�̄�2). The TM leverages

a team of TA for learning, one TA per literals𝑙𝑘 in𝐿. Each

TA performs one of two actions - Include or Exclude- and

determines whether to include the literal 𝑙𝑘 assigned in its

clause. TM encompasses an online learning system that

processes one training example 𝑋, 𝑦 at a time. The TA

generates a new configuration of clauses 𝐶+
1 , . . . , 𝐶−

𝑚/2,

before computing a voting total 𝑣. Following that, feed-

back is distributed statistically to each TA team. The dif-

ference 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 between the clipped voting total 𝑣 and

a user-defined voting threshold 𝑇 determines the likeli-

hood that each TA team will get feedback. Take note that

the voting amount is normalized by clipping the voting

sum. For 𝑦 = 1, the voting target is 𝑇 , whereas for 𝑦 = 0,

the voting target is −𝑇 . Observe that when the vote

aggregate approaches the user-specified threshold, the

likelihood of reinforcing a sentence rapidly decreases to

zero. This guarantees that clauses are distributed evenly

throughout the frequently occurring patterns, rather than

omitting some and focusing only on others. The TM

makes use of both Type I and Type II feedback. Type I

feedback is intended to generate frequent patterns and

Type II feedback is intended to strengthen the discrim-

inating capacity of the patterns (for details, see [19]).

When 𝑦 = 1, Type I feedback is supplied stochastically

to clauses with positive polarity; when 𝑦 = 0, Type I
feedback is given to clauses with negative polarity. Each

clause strengthens its TA, in turn, depending on the fol-

lowing criteria: (1) its output 𝐶𝑗(𝑋); (2) the TA’s action

— Include or Exclude; and (3) the value of the literal 𝑙𝑘
allocated to the TA. Type I feedback is governed by two

rules:

• When 𝐶𝑗(𝑋) = 1 and 𝑙𝑘 = 1 the Include is re-

warded and Exclude is penalized with probability

𝑠−1
𝑠

. This reinforcement is powerful (triggered

with high probability) and causes the clause to

recall and refine the pattern it detects in 𝑋 .
1

• When 𝐶𝑗(𝑋) = 0 or 𝑙𝑘 = 0 the Include is pe-

nalized and Exclude is rewarded with probability

1
𝑠

. This reinforcement is weak (activated with

low probability) and coarsens infrequent patterns,

hence increasing their frequency.

As mentioned before, the user-configurable parameter 𝑠
determines pattern frequency; a larger 𝑠 results in fewer

patterns.

When 𝑦 = 0, Type II feedback is supplied stochas-

tically to sentences with positive polarity; when 𝑦=1,

Type II feedback is given to clauses with negative po-

larity. Whenever 𝐶𝑗(𝑋) = 1 and 𝑙𝑘 = 0, it penalizes

Exclude. Thus, this feedback generates literals for differ-

entiating between 𝑦! = 0 and 𝑦 = 1 by evaluating the

clause to 0 when confronted with its rival class.

While this vanilla TM setup operates on propositional

input variables 𝑋 = (𝑥1 . . . , 𝑥𝑜), to generate proposi-

tional conjunctive clauses, the Relational Tsetlin Ma-

chine (RTM), described next, processes relations to gen-

erate Horn clauses.

3. Relational Tsetlin Machine
The work in [18] introduced the RTM as an extension

to the vanilla TM, encoding relations found in natural

language using a logic-based representation for the TM.

The notion of RTM is based on a logic program using a

1
Take note that when true positives are boosted, the probability

𝑠−1

𝑠
is replaced by 1.
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Input Sentence Relation
Extraction

Entity
Extraction

Entity
Generalization

The 1992 Anti-terrorist Law suspended  the 

requirement that the police obtain warrants

 in order to make arrest. Who is Perpetrator? 

Who is Victim?

Dataset

Generate Feature
Vectors

Train TM Extract Clauses

Figure 1: The Relational TM in operation with pipeline

finite Herbrand model [21, 22]. The ability to characterize

learning using Horn clauses is particularly beneficial

since Horn clauses are both simple and strong enough to

describe any logical formula [22].

The RTM is a three-step process based on mapping the

learning problem to a pattern recognition problem using

vanilla TM:

- By mapping relations to propositional inputs, a method

for dealing with relations and constants is devised. We

begin with Horn clauses without variables. Let a set

of constants 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑞} be finite and a set

of relations 𝑅 = {𝑟1, 𝑟2, . . . , 𝑟𝑝} of arity 𝑤𝑢 ≥ 1, 𝑢 ∈
{1, 2, . . . , 𝑝} form the finite Herbrand base HB =

{𝑟1(𝑎1, 𝑎2, . . . , 𝑎𝑤1 ), 𝑟1(𝑎2, 𝑎1, . . . , 𝑎𝑤1 ),

. . . , 𝑟𝑝(𝑎1, 𝑎2, . . . , 𝑎𝑤𝑝 ), 𝑟𝑝(𝑎2, 𝑎1, . . . , 𝑎𝑤𝑝 ), . . .} con-

sisting of all 𝑞𝑤 ground atoms that can be expressed

using 𝐴 and 𝑅. Additionally, we have a logic program

𝑃 with program rules defined as non-recursive Horn

clauses. Each Horn clause has the following form:

𝐻0 ← 𝐻1, 𝐻2, · · · , 𝐻𝑑. (3)

Here, 𝐻𝑙, 𝑙 ∈ {0, . . . , 𝑑}, is an atom 𝑟𝑡(𝑉1, 𝑉2, . . . , 𝑉𝑤𝑡)
with variables 𝑉1, 𝑉2, . . . , 𝑉𝑤𝑡 , or its negation

¬𝑟𝑡(𝑉1, 𝑉2, . . . , 𝑉𝑤𝑡). The arity of 𝑟𝑡 is denoted by 𝑤𝑡.

We map every atom in HB to a propositional input 𝑥𝑘 ,

getting the propositional input vector 𝑋 = (𝑥1, . . . , 𝑥𝑜)
(cf. Section 2.1).

- The horn clauses with variables are introduced to

decouple the TM from the constants, resulting in a

more compact representation than is possible with

merely propositional clauses. To illustrate this, assume

𝒱 = {𝑉1, 𝑉2, . . . , 𝑉𝑣} be 𝑣 variables representing the

constants occurring in an observation (�̃� , �̃�). Here, 𝑣 is

the maximum number of distinct constants required for

each observation (�̃� , �̃�), each needing its own variable.

We map the atoms to propositional inputs to create a

vanilla TM learning problem. That is, each propositional

input 𝑥𝑘 represents a unique atom with a specific vari-

able configuration: 𝑥𝑘 ≡ 𝑟𝑡(𝑉𝛼1 , 𝑉𝛼2 , . . . , 𝑉𝛼𝑤𝑡
), with

𝑤𝑡 being the arity of 𝑟𝑡. As a result, the number of con-

stants in 𝐴 has no effect on the number of propositional

inputs 𝑥𝑘 required to describe the problem. Rather than

that, this is determined by the number of variables in 𝒱
as well as the number of relations in 𝑅. For a particular

observation (�̃� , �̃�), we first replace the constants in �̃�
with variables, from left to right. Accordingly, the corre-

sponding constants in �̃� are also replaced with the same

variables. Remaining constants in �̃� are arbitrarily re-

placed with additional variables. The propositional input

vector is regenerated.

- A convolution approach with a standard TM as de-

scribed in Section 2.1 handles a large number of alterna-

tive constant-to-variable mappings as a standard pattern

recognition problem.

The RTM is summarized in Algorithm 3.

Decoupling the constants, i.e. step 2 above, serves

to generalize the clause-based relations, and to allow

quicker learning with less input. By seeking Horn clauses
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Algorithm 1 Relational TM

input Convolutional Tsetlin Machine TM, Example pool 𝐷, Number of training rounds 𝑡𝑒

1: procedure Train(TM, 𝐷, 𝑡𝑒)

2: for 𝑖← 1, . . . , 𝑡𝑒 do
3: (�̃� , �̃�)← ObtainTrainingExample(𝐷)
4: 𝐴′ ← ObtainConstants(�̃�)
5: (�̃� ′

, �̃� ′
)← VariablesReplaceConstants(�̃� , �̃�, 𝐴′)

6: 𝐴′′ ← ObtainConstants(�̃� ′
)

7: 𝑄← GenerateVariablePermutations(�̃� ′
, 𝐴′′)

8: UpdateConvolutionalTM(TM, 𝑄, �̃� ′
)

9: end for
10: end procedure

that employ variables rather than constants, we can pri-

oritize atoms above variable configurations. If 𝑧 is the

largest number of unique constants involved in any par-

ticular observation, the number of atoms is bound by

𝑂(𝑧𝑤), where 𝑤 is the largest arity of relations in 𝑅.

Given the possibility of different methods to assign vari-

ables to constants, the preceding technique may result

in duplicate rules. One may wind up with identical rules

with just a syntactic variation, i.e., the same rules rep-

resented using different variable symbols. To prevent

the creation of unnecessary rules, the Relational TM gen-

erates all feasible permutations of variable assignments.

Finally, we conduct a convolution over the permutations

to process them.

4. Using RTM to Analyse Data on
Human Rights Violations

In this section, we present a case study for analyzing hu-

man rights violation data using the previously described

Relational Tsetlin Machine. The data is derived from the

PULSAR system [23].

PULSAR (Parsing Unstructured Language into

Sentiment-Aspect Representations) aims at parsing

human rights reports into sentence-level judgments and

linking judgments to specific aspects of human rights.

It handles a large corpus of yearly reports from human

rights non-governmental organizations (HRNGOs), as

well as the State Department and Amnesty International

Annual Reports.

The parser uses aspect-based sentiment analysis

(ABSA) to separate judgments (sentiments) from things

being judged (aspects). As an example, consider the fol-

lowing sentence:

• I like (sentiment, judgment) status of human rights
in this country (aspect).

PULSAR refines this approach by mapping specific

words or phrases to specific parts of judgments and as-

pects using the following ontology:

• Perpetrator - what entity is being judged?

• JPr - judgment of presence or absence

• JQu - judgment of quantity or intensity

• JGT - judgment of giving or taking

• SAVP - what is the specific aspect being judged

(protection/violation)

• GAHR - general aspect of human rights

• Victim - who is the victim of the action?

• Negation - words that negate the meaning of the

sentence (usually not)

Using the above ontology PULSAR produces a series

of judgments about human rights violations/protections,

e.g.:

• Security forces (Perpetrator) are (JPr) regularly
(JQu) participating (JGT) in the abducting (SAVP,
GAHR) of minorities (Victim).

We use PULSAR output to produce either a ‘suppress’

or a ‘support’ relation between two entities, followed

by a query. The entities are the subject and the object

of the relation present in the sentence. In the case of a

‘suppress’ relation, Entity A and B are ‘Perpetrator’ and

‘Victim’. In a ‘support’ relation, they are ‘Supporter’ and

‘Beneficiary’. Based on this relation, one needs to identify

whether a violation of rights has occurred.

To assist us in constructing the task, we make the

following assumptions:

1. All statements only include information about

relation “Support” or “Suppress”.

2. All questions are limited to information on the

relation of subject and object.

3. Both “Support” and “Suppress” each entail two

entities, such that

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 / 𝑆𝑢𝑝𝑝𝑟𝑒𝑠𝑠(𝑒, 𝑓) : 𝑒 ∈
{𝑠𝑢𝑏𝑗𝑒𝑐𝑡}, 𝑓 ∈ {𝑜𝑏𝑗𝑒𝑐𝑡}
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Table 1
Relations and Entities in 2 examples

Sentence Relation
EntityA
(Subj.)

EntityB
(Obj.)

The 1992 Anti-terrorist Law suspended
the requirement that the police obtain
warrants in order to make arrest.

Support Law Police

Support (Supporter-Beneficiary)

Sentence Relation
EntityA
(Subj.)

EntityB
(Obj.)

The Government contends disciplinary
action against police who are guilty of
violating human rights.

Suppress Govt. Police

Suppress (Perpetrator-Victim)

Table 2
Relation Reduction by 2-part Entity Generalization

Sentence Relation Entities Entity Gen. I Entity Gen. II
The 1992 Anti-terrorist Law
suspended the requirement
that the police obtain warrants
in order to make arrest.

Support Law,
Police Support(X, ) Support(X, )

The Government contends
disciplinary action against
police who are guilty of
violating human rights.

Suppress Govt,
Police

Suppress
(Govt,Police) Suppress(Y,B)

Who is supported by law? Query Law, ? Query-
Object(X, ?)

Query-
Object(X, ?)

4. “Support” or “Suppress” is a time-bound relation,

its impact is overtaken by a subsequent compara-

ble action.

The first step is to convert the text into a machine-

understandable relational representation. A relation in

this context refers to a relationship between two (or more)

elements of a text. Once identified, the entities may be

generalized for further reduction of search space. Finally,

the relations (whether reduced via generalization or not)

are used as input features for a standard TM setup for

the categorization of the text.

Relation Extraction: Our text is composed of simple

sentences, each of which has a sentence containing only

one relation. The relations found in the query are deter-

mined using other features of a dataset and are linguis-

tically related. Table 1 illustrates examples of Relation

Extraction on our dataset. Each statement is associated

with the relation of either “Support" or “Suppress”, while

the query is associated with either the Subject or the

Object. Using the query, we can extract the relation as

well as identify the entity.

The relation between the entities are calculated based

on positive valence count (𝑉𝑝𝑜𝑠) and negative valence

count (𝑉𝑛𝑒𝑔). The assignment of the relation (𝑅𝑒𝑙𝐴) is

done as shown in Equation 4:

RelA =

⎧⎪⎨⎪⎩
𝑆𝑢𝑝𝑝𝑜𝑟𝑡 if 𝑉𝑝𝑜𝑠 > 0 and 𝑉𝑛𝑒𝑔 = 0,

𝑆𝑢𝑝𝑝𝑟𝑒𝑠𝑠 if 𝑉𝑝𝑜𝑠 = 0 and 𝑉𝑛𝑒𝑔 > 0,

𝑁𝑒𝑢𝑡𝑟𝑎𝑙 if 𝑉𝑝𝑜𝑠 = 0 and 𝑉𝑛𝑒𝑔 = 0.

(4)

The relational factor is given by the difference in variance

𝛾 = 𝑉𝑝𝑜𝑠 − 𝑉𝑛𝑒𝑔 , resulting in:

RelA =

⎧⎪⎨⎪⎩
𝑆𝑢𝑝𝑝𝑜𝑟𝑡 if 𝛾 > 0,

𝑆𝑢𝑝𝑝𝑟𝑒𝑠𝑠 if 𝛾 < 0,

𝑁𝑒𝑢𝑡𝑟𝑎𝑙 if 𝛾 = 0.

(5)

Entity Extraction: After identifying the relations, we

must determine the textual components that contribute

to the formation of those relationships. This enables us

to enhance the representation with restrictions, allow-

ing the RTM to learn rules that most accurately reflect

action and consequences in a logical manner. The re-

trieved entities can be combined with the information

about the external world knowledge to create a richer

representation. For example, the concept that the subject

and object in a ‘Suppress’ relation can also be termed

as ‘Perpetrator’ and ‘Victim’, is an example of external

knowledge. Notably, as per Fig. 1, it is not feasible to

begin answering the query until both Relation Extraction

and Entity Extraction have been completed. Additionally,

18
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knowledge of the relation enables us to filter down the

potential entities that will successfully respond to the

query.

Entity Generalization: One disadvantage of the

relational representation is that as more sentences are

analyzed, the number of potential relations grows ex-

ponentially. One strategy to limit the spread is to rel-

egate particular entities to a more generic identifica-

tion. Consider the following two instances from Table

1: “Text: The 1992 Anti-terrorist Law suspended the

requirement that the police obtain warrants in order

to make an arrest. Q1: Who is Supporter? Q2: Who

is Beneficiary?" and “Text: The Government contends

disciplinary action against police who are guilty of vi-

olating human rights. Q1: Who is Perpetrator? Q2:

Who is Victim?". Processing the texts as per the pre-

vious section, we end up with six distinct relations: Sup-

port(Law, Police), Supporter(Law), Beneficiary(Police),

Suppress(Government, Police), Perpetrator(Government),

Victim(Police). However, in order to answer any of the

queries, we simply need the relations associated with

that query. As a result, we can reduce both sentences

to four relations: Support(subj1, obj1), Suppress(subj2,

obj2), Subj(subj1 / subj2), and Obj(obj1 / obj2). Prioriti-

zation requires that the entities included in the query

relation be generalized first. Any instances of those en-

tities in the relations before the query are substituted.

The entities present in other relations are subsequently

substituted with variables irrelevant for answering the

query (Table 2).

4.1. Classification
Having reduced the text into a relational feature set, we

now proceed to the classification task. We train RTM

with 650 clauses, threshold = 600, and specificity = 25
for 200 epochs. The LSTM with 100 memory units, 100

embedding sizes, spatial dropout, and softmax activation

is used. The CNN with 32-dimensional embedding, con-

volution layer with max pooling, and sigmoid activation

is used. Table 3 shows that the RTM outperforms LSTM,

CNN, and vanilla TM considerably over 10 independent

runs. The vanilla TM, due to its disregard for the rela-

tionship between variables, exhibits poor performance as

it lacks the ability to generalize these relationships. Both

LSTM and CNN demonstrate comparable performance.

However, the utilization of the Herbrand model and horn

clause in RTM enhances its robustness and generalization

capability, surpassing the performance of other methods

by approximately 20%.

4.2. Explainability
One of the major reasons for choosing TMs for this task

is the inherent explainable structure built into the clauses

produced during learning. At the end of the training, the

relations captured by the TM constitute a global picture

of the learning, i.e. what the model has learned in general.

Additionally, the global picture can be seen as a descrip-

tion of the task itself, as understood by the machine. We

also have access to a local snapshot that is unique to each

input instance. This contains just the clauses that de-

scribe the relations associated with a particular instance.

We use instances from a human rights dataset to

showcase our work. The dataset contains human

rights-related sentences. Each sentence constitutes a

perpetrator, a victim, and a query related to them. The

relation that exists between them is either support or

suppress. Based on this relation we determine whether

the rights of the victim are violated and we put them in

the respective label of “severity” or “non-severity”. We

show the clauses obtained for one such example chosen

from the dataset:

Input: The Government maintained that this waiting
period was necessary to determine whether a woman may
still be carrying the child of her former spouse.
Output: no violation

To assist us in constructing the task, we make the

following assumptions:

1. All statement sentences include just information

about the relation “Support” or “Suppress”.

2. All questions are limited to information on the

relation between perpetrator and victim.

3. Relation “Support” entails two entities, such

that 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 / 𝑆𝑢𝑝𝑝𝑟𝑒𝑠𝑠(𝑒, 𝑓) : 𝑒 ∈
{𝑝𝑒𝑟𝑝𝑒𝑡𝑟𝑎𝑡𝑜𝑟}, 𝑓 ∈ {𝑣𝑖𝑐𝑡𝑖𝑚}

4. Relation “Suppress” entails two entities, such

that 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 / 𝑆𝑢𝑝𝑝𝑟𝑒𝑠𝑠(𝑒, 𝑓) : 𝑒 ∈
{𝑝𝑒𝑟𝑝𝑒𝑡𝑟𝑎𝑡𝑜𝑟}, 𝑓 ∈ {𝑣𝑖𝑐𝑡𝑖𝑚}

5. “Support” or “Suppress” is a time-bound relation,

its impact is overtaken by a subsequent compara-

ble action.

After Relation and Entity Extraction:

Input => Support(Govt., woman), Support(Govt.,

child), NotSuppress(Govt., woman), Not Suppress(Govt.,

child), Query (Subject), Query (Object).
2

Clauses Without Entity Generalization: The

complexity of tasks depends upon the collection of

sentences from which the model has to identify the

relations. For our experiment, we number each input

for two potential relations (i.e., support or suppress).

Based on this relation the classification is done into one

2
Due to the fact that the TM requires binary features, each input is

transformed to a vector with each element representing the exis-

tence (or lack) of the relationship instances.
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Table 3
Performance comparison of RTM with baseline algorithms with Entity Generalization

Metrics
RTM Vanilla TM

LSTM CNN
Mean Max Mean Max

Accuracy 94.71 96.34 68.22 70.65 73.9 74.77
F1 Score 0.940 0.958 0.49 0.60 0.72 0.73
Precision 0.937 0.959 0.54 0.61 0.73 0.74
Recall 0.945 0.970 0.70 0.83 0.74 0.75

Table 4
Horn Clause Representation of Example described in Subsec. 4.2

1 Perpetrator(Government)
2 Victim(Woman)
3 Victim(Child)
4 Support(Government,Woman)
5 Support(Government,Child)
6 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐺𝑜𝑣𝑡,𝑊𝑜𝑚𝑎𝑛)← 𝑆𝑢𝑏𝑗.(𝐺𝑜𝑣𝑡), 𝑂𝑏𝑗(𝑊𝑜𝑚𝑎𝑛), 𝑁𝑜𝑡𝑆𝑢𝑝𝑝𝑟𝑒𝑠𝑠(𝐺𝑜𝑣𝑡,𝑊𝑜𝑚𝑎𝑛)

7 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐺𝑜𝑣𝑡, 𝐶ℎ𝑖𝑙𝑑)← 𝑆𝑢𝑏𝑗.(𝐺𝑜𝑣𝑡), 𝑂𝑏𝑗(𝐶ℎ𝑖𝑙𝑑), 𝑁𝑜𝑡𝑆𝑢𝑝𝑝𝑟𝑒𝑠𝑠(𝐺𝑜𝑣𝑡, 𝐶ℎ𝑖𝑙𝑑)

of two labels (i.e., severe or non-severe). The initial stage

in preparing data for the TM is to reduce the input to

relation-entity bindings. These bindings comprise the

feature set against which the TM is trained.

Clauses are of the form: Support(Govt, woman) AND
Support(Govt, child) AND NotSuppress(Govt, woman)
AND Query(Govt) AND Query(Child).

Clauses With Entity Generalization: We follow the

same procedure for making relation-entity binding for

relational input features as explained above. Following

that, we group the features by entity type to generalize

the information. After all, entities are replaced with

general placeholders, we train TM with binary features

having general entities as features.

Performing Entity Generalization:

Input => Support(Subj1, Obj1), Support(Subj2, Obj2),

NotSuppress(Subj1, Obj1), NotSuppress(Subj1, Obj2),

Q(Subj1), Q(Obj1 / Obj2).

Clauses are of the form: Query(Subj1) AND
Query(Obj2) AND Support(Subj1, Obj1) AND Sup-
port(Subj1, Obj2) AND NotSuppress(Subj1, Obj2) AND Not-
Suppress(Subj1, Obj1).

These clauses offer a more compact view of the task

without distractions from unimportant constants.

5. Horn Clause Representation
Horn clause representation of the above example is given

in Table 4.

Using generalization clauses 6 and 7 can be further re-

placed by the following single clause :

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑆𝑢𝑏𝑗,𝑂𝑏𝑗) ←
𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑟(𝑆𝑢𝑏𝑗), 𝐵𝑒𝑛𝑒𝑓𝑖𝑐𝑖𝑎𝑟𝑦(𝑂𝑏𝑗),

𝑛𝑜𝑡𝑆𝑢𝑝𝑝𝑟𝑒𝑠𝑠(𝑆𝑢𝑏,𝑂𝑏𝑗).

Characterizing learning using Horn clauses is inter-

esting because they are simple but powerful enough to

describe any logical formula [22]. Multiple learned Horn

Clauses can form a deductive framework on a dataset.

6. Conclusion
A Relational Tsetlin Machine is used to reduce the text

to relational input and classify human rights violations.

In many real-world datasets, especially those with polar-

izing information such as human rights, it is imperative

to gain a deeper understanding of the classification logic

behind the actual classes. While the information can

hide behind ambiguous language, the framework must

have mechanisms to reduce the ambiguity as much as

possible, so that the resultant classification is easy and

straightforward to interpret. The use of RTM allows us

to obtain precise explanations in terms of Horn Clauses

that can form the basis of extended logical frameworks,

without compromising on accuracy.
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