CEUR-WS.org/Vol-3464/paper4d.pdf

Collaborate and Explain on the Fly: Nonmonotonic Logical
Reasoning and Incremental Learning for Ad Hoc Teamwork

Hasra Dodampegama, Mohan Sridharan

Intelligent Robotics Lab, School of Computer Science, University of Birmingham, UK

Abstract

This paper describes an architecture for ad hoc teamwork, i.e., to enable an agent to collaborate with other agents “on the
fly". State of the art frameworks for ad hoc teamwork often pursue a data-driven approach, using a large labeled dataset of
prior observations to model the behavior of other agents and to determine the ad hoc agent’s behavior. These models are
computationally expensive to learn, lack transparency, and make it difficult to recognize and adapt to previously unseen
changes. In a departure from existing work, we introduce an architecture for ad hoc teamwork that performs non-monotonic
logical reasoning with prior commonsense domain knowledge and models that are learned and revised rapidly from limited
examples to predict the behavior of other agents. In addition, the architecture enables the agent to provide relational
descriptions as on-demand explanations of its decisions and beliefs in response to different types of questions. We evaluate
the architecture’s capabilities in two benchmark multiagent collaboration domains: Fort Attack and Half field Offense, in
comparison with data-driven and knowledge-driven baselines.

Keywords

Knowledge representation and reasoning, Non-monotonic logical reasoning, Ad hoc teamwork, Multi-agent systems

Introduction

Ad hoc teamwork (AHT) refers to the problem of en-
abling an agent to collaborate with previously unknown
teammates [3]. Consider a scenario from the simulated
multiagent domain Fort Attack (FA, Figure 1la), with a
team of guards defending a fort from attackers [4], or
Half Field Offense (HFO, Figure 2), in which a team of of-
fense agents has to score against a team of defenders [5].
Agents in these domains have limited information about
each other and no prior experience of working as a team.
They may also have to operate under partial observability
(Figure 1b) and restricted communication. These condi-
tions are representative of practical applications such as
disaster rescue and surveillance that require the agents
to reason with prior knowledge and noisy observations.

The state of the art in AHT has moved from using
predetermined policies for selecting actions in specific
states to methods based on a key “data-driven” compo-
nent [6]. This component uses a long history of prior
experiences to build probabilistic or deep network meth-
ods that model the behavior of other agents (or agent
types) and optimize the behavior of the ad hoc agent.
However, in practical domains, it is difficult to gather

21st International Workshop on Nonmonotonic Reasoning,

September 2—4, 2023, Rhodes, Greece

*Some parts of the architecture described in this paper have been
described in papers published in AAAT’23 [1] and ICLP’23 [2].

& hhd968@student.bham.ac.uk (H. Dodampegama);

m.sridharan@bham.ac.uk (M. Sridharan)

@ 0000-0003-2302-1501 (H. Dodampegama); 0000-0001-9922-8969

(M. Sridharan)

Xtiﬂ‘iit(‘_:szrg,[}:tef;);ﬂt(}::“pgdl()ércbéfol; gllihors Use permitted under Creative Commons License

=== CEUR Workshop Proceedlngs (CEUR-WS.org)

32

(b) Partially observable

Figure 1: Screenshots from the fort attack environment.

(a) Fully observable

(a) Limited version

(b) Full version

Figure 2: Screenshots from the half-field offense environment.

large training datasets of different situations. Also, these
methods lack transparency, and make it difficult to adapt
to unforeseen changes (e.g., in team composition) and
to leverage commonsense domain knowledge. Unlike
existing work, we follow a cognitive systems approach
that formulates AHT as a joint reasoning and learning
problem. Our knowledge-guided architecture for AHT
(KAT) builds on the principles of refinement and ecologi-
cal rationality such that the ad hoc agent:

1. Performs non-monotonic logical reasoning with
commonsense domain knowledge and rapidly-
learned predictive models of other agents’ behav-

mailto:hhd968@student.bham.ac.uk
mailto:m.sridharan@bham.ac.uk
https://orcid.org/0000-0003-2302-1501
https://orcid.org/0000-0001-9922-8969
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Hasra Dodampegama et al. CEUR Workshop Proceedings

32-42

iors to determine its actions;

Uses reasoning to guide the selection of relevant
behavior models and the learning of new models
under partial observability; and

Provides on-demand relational descriptions of its
decisions and beliefs as explanations in response
to different types of questions.

Some of these contributions (e.g., #1 and #2) have been
described in recent papers [1, 2]. We demonstrate that
KAT supports reliable, efficient, and transparent reason-
ing, learning, and adaption in both FA and HFO domains
while providing comparable or better performance than
state of the art data-driven baselines.

2. Related Work

AHT has been researched under different names, as de-
scribed in a recent survey [6]. Early work encoded spe-
cific protocols (or plays) for different scenarios, with an
agent choosing specific protocols in specific states [7].
Subsequent work used sampling-based methods such as
Upper Confidence bounds for Trees (UCT) to determine
the ad hoc agent’s action selection policy [8].

Many recent studies include a data-driven component
that uses probabilistic, deep-network, and reinforcement
learning (RL)-based methods to learn action choice poli-
cies for different types of teammates from a lengthy
history or prior observations of similar agents or situa-
tions [9, 10]. For example, a RL method has been used to
learn different policies for different teammate types, com-
puting and using the best policy among the learned poli-
cies for a new teammate [9]. Also, attention-based deep
neural networks have been used to jointly learn policies
for different agent types [11], and to account for different
team compositions [10]. Sequential and hierarchical vari-
ational auto-encoders have been used to model beliefs
over other agents, and approximate belief inference has
been meta-learned for a given prior [12]. Other work
has combined learned policy methods with adversarial
teammate prediction to account for changes in the agents’
behavior [13] and used Convolutional Neural Networks
to detect and adapt to changing teammate types [14].
Sampling strategies have also been combined with such
learning methods to optimize performance [15].

Various studies have investigated communication un-
der different AHT settings. This includes a multi-armed
bandits formulation to broadcast messages to teammates
while incurring a cost [16], and evaluating the cost and
value of different queries in a heuristic algorithm [17].

Methods based on a data-driven learning component
require considerable computation, memory, and train-
ing examples, build opaque models, and make it difficult
to adapt to unexpected changes. Our architecture ad-

33

dresses these limitations by leveraging the strengths of
knowledge-based and data-driven methods.

3. Architecture

Figure 3 provides an overview of KAT. The ad hoc agent
performs non-monotonic logical reasoning with prior
commonsense domain knowledge and models of other
agents’ behaviors learned and revised incrementally from
limited examples, using heuristic methods to guide rea-
soning and learning. At each step, all agents receive
(partial) observations of the domain state, and they inde-
pendently determine and execute their individual actions
in the environment. KAT’s components are described
using two example domains.

Example Domain 1. [Fort Attack (FA) Domain]
Three guards are defending a fort from three attackers
(Figure 1a). One guard agent is the ad hoc agent that can
adapt to changes in the team and domain. An episode of
the game ends if: (a) guards protect the fort for a given
period of time; (b) all members of a team are terminated;
or (c) an attacker reaches the fort. Each agent can move in
one of the four cardinal directions with a specific velocity,
rotate clockwise or anticlockwise, do nothing, or shoot
an opponent in its shooting range. The environment has
four kinds of built-in policies for guards and attackers (see
Section 4.1). The original FA domain is fully observable,
i.e,, each agent can observe the state of other agents at
each step. We simulate partial observability by creating
a forest region (Figure 1b); any agent in this region is
hidden from others except the ad hoc agent.

Example Domain 2. [HalfField Offense (HFO) Domain]
An offense team is trying to score a goal against a defense
team in this simulated 2D soccer domain [5]. There are
two versions: (i) limited: two offense agents against two
defense agents (including goalkeeper); and (ii) full: four
offense agents against five defense agents (including goal-
keeper). Our ad hoc agent is one of the offense agents.
An episode of the game ends if: (a) offense team scores a
goal; (b) ball leaves the field; (c) defense team captures
the ball; or (d) maximum episode length (500) is reached.
Similar to prior AHT methods, agents other than the ad
hoc agent are selected for each episode from teams in
the 2013 Robocup 2D simulation league competitions;
offense agents are from: helios, gliders, cyrus, axiom, aut
and defense agents are from agent2D. The strategies of
these agent types were trained using data-driven (prob-
abilistic, deep, reinforcement) learning methods. There
are two state space abstractions in HFO: low and high;
we use the high-level features. There are three action
abstractions: primitive, mid-level, and high-level; we use
a combination of mid-level and high-level actions.

Hasra Dodampegama et al. CEUR Workshop Proceedings

32-42

Other agent actions

Ad-hoc agent Ad-Hoc Agent
action
Learned LOLEmT, t
i Teammate
Models —_—
Reasoning
Environment
Learned T
Opponent Declarative
l— Models Knowledge
State
observations

Query
l Teammates
t_agent 1 t_agent N
<4— Explanation
Generator
> Opponents
1 o agentl | o_agent M
. h
Explanation

Figure 3: Architecture combines complementary strengths of knowledge-based and data-driven reasoning and learning.

Prior commonsense knowledge in above domains in-
cludes relational descriptions of some domain attributes
(e.g., location information), agent attributes (e.g., shoot-
ing range), default statements, and axioms governing
change, e.g., an agent can only move to a location nearby,
only shoot others within its shooting range (FA), and only
score a goal from a certain angle (HFO). This knowledge
may need to be revised over time.

3.1. Representation and Reasoning

Any domain’s transition diagram in KAT is described us-
ing an extension of the action language AL4 [18]. KAT’s
domain representation comprises a system description
D, a collection of statements of AL, and a history H.
D has a sorted signature ¥ with basic sorts, actions,
statics, i.e., domain attributes whose values cannot be
changed by actions, and fluents, i.e., attributes whose
values can be changed by actions. Basic sorts of the
HFO domain includes ad_hoc_agent, external_agent,
agent, offense_agent, defense_agent, x_val,
y_val, and step for temporal reasoning. Sorts
such as offense_agent, defense_agent can be
subsorts of others (e.g.external_agent). Stat-
ics in HFO domain include relations such as
next_to(z_val,y_val,x_val,y_val) which describe
the relative arrangement of places. Fluents include
inertial fluents that obey the laws of inertia and can be
changed by actions, and defined fluents that do not obey
inertia laws and cannot be directly changed by actions,
e.g., the following inertial fluents describe the location
of the ad hoc agent and the ball, and which agent has
the control of the ball at the current step.

loc(ad_hoc_agent, z_val,y_val)

ball_loc(x_val,y_val), has_ball(agent)

Defined fluents of the HFO domain describe the location
of other agents, whether an opponent is close to any of

34

the offense team members, and whether the ad hoc agent
is too far from the goal. Actions of the domain include:

move(ad_hoc_agent, x_val,y_val)
dribble(ad_hoc_agent, x_val,y_val)

pass(ad_hoc_agent, offense_agent)

which encodes the ad hoc agent’s ability to move to a
location, dribble the ball, and pass the ball to a team-
mate. The domain dynamics are described in D using
three types of axioms: causal law, state constraint and
executablility condition. Examples in HFO include:

move(R, X,Y) causes loc(R, X,Y) (1a)
dribble(R, X,Y") causes ball_loc(X,Y) (1b)
—has_ball(A1) if has_ball(A2), A1 # A2 (l¢)
impossible kick_goal(R) if far_goal(R) (1d)

Statements 1(a-b) are causal laws that state that moving
(dribbling) to a place changes the location of the agent
(ball) to that place. Statement 1(c) is a state constraint
that implies only one agent can control the ball at any
time. Statement 1(d) is an executability condition that
prevents the consideration of an action kicking toward
the goal if the ad hoc agent is too far from the goal.

History H 1is a record of observations and
action executions, i.e., relations of the form
obs(fluent, boolean, step) and hpd(action, step)
respectively, at specific time steps. It also includes initial
state defaults, i.e., statements initially believed to be true
in all but a few exceptional circumstances.

To reason with knowledge, the domain description is
automatically translated to a program II(D, H) in CR-
Prolog [19], an extension to Answer Set Programming
(ASP) that supports consistency restoring (CR) rules. ASP
encodes default negation and epistemic disjunction, and
supports non-monotonic reasoning; this ability to revise
previously held conclusions is essential in domains such

Hasra Dodampegama et al. CEUR Workshop Proceedings

as AHT. II(D, H) includes statements from D and #, re-
lations holds(fluent, step) and occurs(action, step)
to imply that a fluent is true and an action is part of a
plan at a time step, inertia axioms, reality check axioms,
closed world assumptions for defined fluents and actions,
and helper axioms that define goals and drive planning
and diagnosis. Each default statement is also matched
with a CR rule that allows the agent associated with II
to assume that the default statement does not hold true;
this CR rule is only triggered under exceptional circum-
stances, e.g., to restore consistency. More broadly, this
ability to revise previously held conclusions is essential
in practical multiagent collaboration domains in which
agents often have to reason with incomplete knowledge
and noisy observations.

Once the program II is constructed, all reasoning tasks
(e.g., planning, diagnostics, and inference) are reduced
to computing answer sets of II. The ad hoc agent can
prioritize different goals at different times,e.g., score a
goal when it has control of the ball, or position itself
efficiently to receive the ball. It automatically selects
the goal based on current state and considers the cost of
different actions to compute a plan that minimizes the
cost for achieving the goal.

We use the SPARC system [20] to write and solve CR-
Prolog programs. Example programs for FA and HFO
domains are in our repository [21]. For computational ef-
ficiency, our programs build on prior work in our group to
represent and reason at two tightly-coupled resolutions—
see paper [22] for details.

3.2. Learning Agent Behavior Models

State of the art AHT methods try to optimize perfor-
mance by training models offline with large amounts
of (e.g., few hundred-thousand or million) training data
from different situations. However, it is not feasible to
collect such labeled data for various situations in complex
domains. KAT focuses on choosing relevant attributes
and learning models of the behavior of other agents from
limited training data (e.g., 5-10K) while supporting rapid,
incremental updates and accurate predictions.

To learn the predictive models, we use the Ecologi-
cal Rationality (ER) approach, which is based on Herb
Simon’s definition of Bounded Rationality [23], and the
algorithmic theory of heuristics [23, 24]. ER studies deci-
sion making under true uncertainty (i.e., in open worlds),
characterizes behavior as a function of the internal (cogni-
tive) processes and environment, and focuses on adaptive
satisficing. Also, heuristic methods (e.g., one-reason, lex-
icographic) are viewed as a strategy to ignore part of
the information in order to make decisions more quickly,
frugally, and/or accurately than complex methods, ex-
perimentally choosing the method that best leverages
domain structure [24]. Specifically, KAT enables the ad

35

Dist. from
guard3 to fort
<= 0.0004

Y pos. of
attacker2
<=-08

Previous
acnons

No

No Yes

Dist. from
guard1 to fort

<= 0.0002 No

O

(a) FF tree in the ensemble for a guard in the FA domain.

/
Yes

Polar angle of
guards3 with
centre of field
<=04

Dist. from
attacker! to
centre of field
<=0.01

(b) FF tree in the ensemble for an attacker in the FA domain.

Figure 4: Examples of FF trees in the FA domain.

hoc agent to learn an ensemble of “fast and frugal" (FF) de-
cision trees that predict the behavior of each type of other
agents; each FF tree provides a binary class label and the
number of leaves is limited by number of attributes [25].
Individual FF trees learned for an attacker and a guard
in the FA domain are shown in Figures 4b- 4a.

Unlike state of the art AHT methods, predictive models
in KAT can be learned and revised rapidly. Specifically,
KAT enables the ad hoc agent to automatically revise ex-
isting models, switch between existing models, or learn
new models. The ad hoc agent uses Algorithm 1 to select
the appropriate models for the other agents by periodi-
cally comparing the existing models’ predictions with the
observed action choices of each agent over a sliding win-
dow of steps; in Algorithm 1, we limit this window to size
of 1 (Lines 4-5). It then uses a graded strategy to penalize
the error in orientation less than the error in location
(Lines 6-7), selecting the models whose predictions best
matches the observations for subsequent use (Line 10). If
none of the models provide a good match over multiple
steps, the learning of a new model is triggered.

3.3. Control Loop

The overall control loop of KAT is described in Algo-
rithm 2. The initial setup takes as input the ad hoc agent’s
prior knowledge and the current set of learned behavior
models of agent types (M), and the policies P that gov-

Hasra Dodampegama et al. CEUR Workshop Proceedings

32-42

Algorithm 1: model_selection

Algorithm 2: Control Loop of Architecture

Input: A: other agents; M: subset of behavior
models; {aact }, {@prea }: actual and
predicted actions of each agent in current
step of game; scores: initial values (100)
for each agent-model combination.

Output: model: selected model for each agent.

1 fori =0to Ado
form =0 to M do
if apredli, m] # aact[i] then
lact, Oact 4— actual_pose(aqct)
lpred, Oprea <— predicted_pose(apred)
penalty < abs(lact — lpred) +
abs(0act — Oprea)/10
scores[i, m]
scores[i, m] — penalty
end

oA G s W N

8

end
model[i] = select_model(M, scores[i, *])
11 end

9

10

ern the other agents’ action choices (Line 1, unknown to
the ad hoc agent). In each episode of a game, other agents’
actions are based on P (Line 5), and the ad hoc agent com-
putes an action by reasoning with domain knowledge
and M (Line 6). These actions are executed in the sim-
ulated environment to compute the updated state (Line
8). Then the actual and predicted actions of the other
agents are used by the model selection Algorithm 1 to
incrementally revise M (Line 9). Finally, the updated
state is used for the next step (Lines 13-15). This process
continues until the game ends; the related statistics are
stored before moving to next game (Lines 10-12).
Algorithm 3 describes how the ad hoc agent deter-
mines its action choice in Line 6 of Algorithm 2. It uses
M to predict and simulate the effects of the next action
(or few actions) of other agents in the current state (Lines
1-2). These effects are used to automatically identify the
relevant domain regions (i.e., zones), axioms, level of ab-
straction, and goal(s) that need to be considered in the
ASP program (Lines 3-4) whose answer set determines
the ad hoc agent’s next action (Line 6) that is returned
with the predicted actions of other agents to Algorithm 2.

3.4. Partial Observability

Practical AHT domains are often partially observable,
with restricted communication. To simulate such par-
tial observability to the FA domain, we implemented
a “forest" region where attackers can hide from guards
other than ad hoc agent and secretly approach the fort—
Figure 1b. The ad hoc agent determines when to commu-

36

Input: N: number of games; I[1(D, H): core ASP
program, M: behavior models of other
agents; P: other agents’ policies; A: other
agents

Output: game_stats: statistics of games

Create environment, load P, initialize

environment

2 fori =0to N —1do

s < state of environment

while = game_over(s) do

a, ¢ other_agents_action(s, P)

Qah, Qpred —

adhoc_agent_action(s, IT, M)
a=ao,Uaun

s’ = execute(s, a)

model_selection(A,M, a, , apred)

if game_over(s') then

update(game_stats)
initialize environment

-

3
4
5
6

10
11
12
else

‘ s=s
end

13
14

15

end
17 end
18 return game_stats

Algorithm 3: adhoc_agent_action

Input: s, II(D, H), M

Output: a

Gpred <— action_predictions(M)

s’ « simulate_effects(aprea)

zones +— compute_relevance(s, s’)

ASP_program <— construct_program(s, II, zones)
answer_set <— SPARC(ASP_program)

a < next_action(answer_set)

return a, apred

N U R W N R

nicate using statements such as:

impossible comm(AHA, G, AA) if (2a)
not in_range(G, AA)
in_forest(AA) if agent_loc(AA, X,Y), (2b)

forest(X,Y), not shot(AA)

comm(AHA, G,AA) causes shoots(G, AA) (2c)
Statement 2a encodes that communication is to be only
used when a hidden attacker is within the shooting range
of a teammate; Statement 2b defines when an attacker
is hidden; and Statement 2c describes the ad hoc agent’s
belief that a teammate receiving information about a

Hasra Dodampegama et al. CEUR Workshop Proceedings

32-42

hidden attacker will shoot it, although the teammate may
ignore this information. Communication actions are thus
triggered only if (a) one or more attackers are hidden;
and (b) one or more teammates are closer to the hidden
attacker(s) than the ad hoc agent.

HFO domain provides built-in functionality to enable
partial observability by limiting each agent’s perception
of objects (e.g., other agents, ball) to a specific viewing
cone. We used this built-in ability, together with helper
axioms, to simulate partial observability in the HFO do-
main without any communication actions.

3.5. Transparency

Unlike methods in the existing literature that seek to
make an entire learned model interpretable, or to explain
(or justify) all the choices made by a reasoning system,
KAT focuses on quickly identifying the relevant infor-
mation to construct relational descriptions as explana-
tions in response to causal, contrastive, or counterfactual
questions about its decisions and beliefs. An automated
decision-making system’s ability to reliably answer such
questions about its decisions and beliefs promotes accept-
ability; this ability has been shown to play an important
role in human reasoning and learning as well [26, 27].
KAT’s use of knowledge-based reasoning and simple pre-
dictive models provides the foundation to support the
desired transparency in the ad hoc agent’s decisions and
beliefs. In addition, KAT’s approach for generating the
desired descriptions on-demand promotes computational
efficiency. We build on prior work that demonstrated the
ability to provide on-demand answers to such questions
by iteratively and selectively identifying the axioms and
literals that influence the desired action and belief, and
have their antecedents satisfied in the relevant answer
sets [28]. Specifically, KAT’s “Explanation Generator" (in
Figure 3) generates relational descriptions in response to
three types of questions identified as being important in
work on explainable planning [27]:

1. (Action justification questions) Why did you do
action A at step I? When asked to justify an executed
action, the ad hoc agent will:

e extract actions A4 that occurred after A.

o identify the axioms with a (€ A4y) in its head.

e extract literals that would have prevented such a
subsequent action from happening.

any such literal that exists in answer set at step I
but not in I+1 triggered A.

(Contrastive questions) Why did you not do action
A at step I? When asked to justify why an action was
not included in the plan, the ad hoc agent will:

e find axioms with A as head to obtain preconditions.
e extract corresponding literals and check if they
are satisfied by the answer set; each such literals

37

prevented consideration of A.

e if no preconditions of A are identified, compute
cost of adding A to the computed plan. This will
identify reasons for not selecting A.

3. (Justify beliefs) Why did you believe L at step I? To
justify a belief at a specific step, ad hoc agent will:

e find the axioms which has the given belief in its
head(state constraints).

extract related literals and check whether they are
satisfied by the answer set. These will be the sup-
porting statements for the belief.

if there are multiple supporting statements explain-
ing a target belief, select one to provide the expla-
nation. We leave the ranking of explanations and
multi-step tracing of beliefs to future work [28].

The selected literals are processed with existing software
tools and templates to generate textual descriptions pro-
vided as responses (i.e., explanations). We provide an
execution trace in Section 4.3. This approach can also
provide on-demand explanations of decisions and beliefs
during planning and execution.

4. Experimental Setup and Results

We evaluated the following hypotheses about KAT:

« H1: Performance is comparable or better than
state of the art baselines with much less training;

« H2: Enables adaptation to unforeseen changes in
team composition under full and partial observ-
ability (with limited communication);

« H3: Supports generation of relational descrip-
tions of the ad hoc agent’s decisions and beliefs.

H1 was evaluated in both domains (FA, HFO) under full
observability. For H2, we considered partial observability
in both domains, and explored limited communication
in the FA domain; H3 was evaluated in the FA domain.
As performance measures, we used the team of guards’
win percentage and shooting accuracy (i.e., fraction of
times shooting eliminates an attacker) in the FA domain,
and the fraction of the goals scored by offense team in
the HFO domain. In both domains, we also measured
the accuracy of the predictive models. Further details of
experiments and baselines are provided below.

4.1. Experimental Setup

In FA domain, we used two kinds of policies for the ad
hoc agent’s teammates and attackers: hand-crafted and
built-in. Hand-crafted policies were simple strategies that
mimic an agent’s basic expected behavior. We used two
sets of hand-crafted policies: (Policy1) guards stay close
to the fort and try to shoot attackers, while attackers

Hasra Dodampegama et al. CEUR Workshop Proceedings

32-42

spread and approach fort; (Policy2) guards and attackers
spread and shoot opponents. Four built-in policies were
provided with the FA domain:

+ Policy220: guards place themselves in front of
the fort and shoot continuously; attackers try to
approach the fort.

Policy650: guards try to block the fort; attackers
try to sneak in from all sides.

Policy1240: guards spread and shoot the attack-
ers; attackers sneak from all sides.

Policy1600: guards are willing to move from the
fort; some attackers approach the fort and shoot
to distract guards while others try to sneak in.

These are based on graph neural networks trained using
several hundred-thousand training examples.

We evaluated KAT in two sets of experiments; Exp1,
in which other agents followed the hand-crafted policies;
and Exp2, in which other agents followed the built-in
policies. To simulate training from limited examples, we
collected state observations and action choices of other
agents by running the hand-crafted policies, using only
10000 examples to train the ensemble of FF trees for
different agent types. The learned behavior prediction
models were used by the ad hoc agent to predict the
actions of other agents, including when the other agents
used the previously unseen built-in policies.

For experiments under full observability, each agent
other than our ad hoc agent was assigned a policy se-
lected randomly from the available policies (described
above). The baselines for this experiment were: (i) Basel
in Exp1 with other agents following a random mix of
hand-crafted policies; (ii) Base2 in Exp2 with other
agents following a random mix of built-in policies; and
(iii) GPL, a state of the art AHT method based on graph
neural networks [10] in Exp3 as an extension of Exp2.
The baselines under partial observability conditions in
the FA domain were: (i) Base3 in Exp1, in which other
agents followed hand-crafted policies and ad hoc agent
did not use any communication; and (ii) Base4 in Exp2,
in which other agents followed built-in policies and the
ad hoc agent did not use any communication. For each
experiment, we used 150 episodes and results were tested
for statistical significance. For GPL, we took the average
results from their supplementary material.

In the HFO domain, we used six external agent
teams from 2013 RoboCup simulation competition; ad
hoc agent’s teammates were selected from helios, gliders,
cyrus, axiom and aut, and the opponents were based on
agent2d team. We deployed these agent teams in the
HFO domain and collected state observations from only
300 game episodes. Since the actions of the other agents
were not directly observable, we computed them from
the observed state transitions. We used this limited data

38

Table 1

Average % of episodes in which guards won with handcrafted
policies and learned agent models (Exp1). Guards were more
successful when one of them was our ad hoc agent.

With ad-hoc agent ~ Without ad-hoc agent (Base1)

73% 72%

Table 2

Average % of episodes in which guards won with previously
unseen built-in policies (Exp2). Guards were more successful
when one of them was our ad hoc agent.

With ad-hoc agent ~ Without ad-hoc agent (Base2)

55% 35%

to learn the models used by the ad hoc agent to predict
behavior of other agents.

We used two sets of experiments to measure KAT’s
performance under full observability: (i) Exp4: limited
version with two offense players (including ad hoc agent)
against two defense agents (including goalkeeper); and
(ii) Exp5: full version with four offense players (includ-
ing ad hoc agent) against five defense agents (including
goalkeeper). In Exp6 and Exp7, we evaluated KAT’s
performance under partial observability in the limited
and full versions (respectively). In each of these experi-
ments our ad hoc agent replaced one of the offense team
agents and all other offense agents were based on one
external team at a time. As baselines for Exp4-Exp5 we
used Base5, an ad hoc agent architecture that only uses
non-monotonic logical reasoning with prior knowledge
without any behavior prediction models, and recent state
of the art AHT methods PPAS [13] and PLASTIC [9].
For Exp6-Exp7, we used the external agent teams from
RoboCup as baselines. For each experiment, we used 1000
episodes and tested results for statistical significance.

4.2. Experiment Results

Table 1 summarizes the results of Exp1 in the FA domain.
The number of episodes in which the guards won was
higher when one of the guards was our ad hoc agent in
comparison with Base1 in which all agents used hand-
crafted policies. Table 2 summarizes the results of Exp2
in which all agents other than the ad hoc agent used the
built-in policies. When the team of guards included our
ad hoc agent, they won a higher fraction of the episodes
compared with Base2. These results demonstrated our
ad hoc agent’s ability to adapt to unforeseen other agents
using the built-in policies, based on online revision of the
behavior models learned from the hand-crafted policies.
These results support hypotheses H1 and H2.

Table 3 shows the prediction accuracy of the (ensem-
ble of FF trees) models learned from hand-crafted poli-

Hasra Dodampegama et al. CEUR Workshop Proceedings

32-42

Table 3
Accuracy of learned behavior prediction models in FA domain.
Agent Model Accuracy
Guard type 1 85.5%
Guard type 2 60.0%
Attacker type 1 86.9%
Attacker type 2 85.2%

Table 4
Average shooting accuracy % of the ad hoc agent with previ-
ously unseen built-in policies (Exp3).

GPL
30%

Ad hoc agent Base2

34% 10%

Table 5
Wins (%) for team of guards with hand-crafted policies (Exp1).
Communication addresses partial observability.

Policy With Comm. Without Comm.
(%) (%, Base3)

Policy1 73 58

Policy2 19 8

cies. The prediction accuracy ranges from 60 — 87%,
i.e., these models were not perfect. However, when the
ad hoc agent reasons with prior knowledge and these
models, the performance of the team of guards was com-
parable or better than baselines without an ad hoc agent.
These results demonstrate the benefits of reasoning and
learning guiding each other and further support H2.

Table 4 shows that our ad hoc agent’s shooting accu-
racy was higher than that of a Base2 guard agent and the
GPL agent, both of whom used policies based on orders
of magnitude larger number of training samples.

Next, the results of Exp1 under partial observability
(in FA domain) are summarized in Table 5. We grouped
the results according to the policy used. When the ad
hoc agent used the communication actions, the fraction
of games won by the guards was substantially higher
than when the ad hoc agent did not use communication
actions (Base3). Policy2 is a particularly challenging
scenario (e.g., guards and attackers shoot), which justifies
the lower number of games won by the guards. Table 6
summarizes the results from Exp2 where other agents
used built-in policies. We observed that for policies 650,
1240 or 1600, the fraction of games won by the guards
was comparable or higher than that of Base4 that did not
use any communication actions. For policy 220, the ob-
served performance was slightly lower than the baseline.
Partial observability and communication strategies did
not contribute significantly to the outcome with policy
220 because the guards place themselves in front of the
fort and shoot continuously. These results support H2.

The results of experiments Exp4-Exp5 in the HFO

39

Table 6
Wins (%) for team of guards with built-in policies (Exp2).
Communication addresses partial observability.

Policy With Comm. Without Comm.
(%) (%, Base4)

Policy220 79 85

Policy650 42 41

Policy1240 46 43

Policy1600 18 17

domain are described in Table 7. In the limited version of
the game, the fraction of goals scored by the offense team
was higher when the ad hoc agent used KAT than when
the ad hoc agent used the logical reasoning baseline (i.e.,
without any learned behavior prediction models), and
comparable with offense team’s performance using state
of the art data-driven baselines that required orders of
magnitude more training examples and did not support
reasoning with prior domain knowledge. In the full ver-
sion of the game, the team of offense agents was able
to score a much higher fraction of goals when the team
included an hoc agent (using KAT) than when the agents
used the baselines. This indicates that by leveraging the
interplay between representation, reasoning, and learn-
ing, KAT was able to improve performance substantially,
strongly supporting hypotheses H1 and H2.

The prediction accuracy of the learned behavior mod-
els in the HFO domain for the limited and full versions
of the game are summarized in Tables 8 and 9 respec-
tively. Recall that the models were learned using data
from only 300 episodes for each external agent type, i.e.,
orders of magnitude fewer examples than the several
hundred-thousand used by the data-driven baselines. The
prediction accuracy varied for different agent types but
these models could be learned and revised rapidly and
resulted in good performance when the ad hoc agent also
reasoned with prior knowledge.

Table 10 summarizes the results of evaluating KAT
under partial observability in Exp6-Exp7 in the HFO
domain. The goals scored by the offense team with our ad
hoc agent is slightly lower than that of the external agent
teams. However this difference was not significant and
mainly due to noise, e.g., in the perceived angle to the
goal. The ability to provide performance comparable with
teams whose training datasets were orders of magnitude
larger strongly supports H2.

Additional results and videos, particularly those in-
volving unexpected changes in the number and type of
agents, are in our open-source repository [21].

4.3. Execution Trace

In the scenario in Figure 5, an ad hoc agent in grid (2,14)
at time step 0, has the goal of shooting an attacker in grid

Hasra Dodampegama et al. CEUR Workshop Proceedings 32-42

Table 7
Fraction of goals scored by the offense team in HFO domain in the limited version(2v2) and full version(4v5).
Version KAT (%) Logical Reasoner ~ PPAS (%) PLASTIC (%)
(%)
Limited (2v2) 79 67 80 80
Full (4v5) 30 26 20 20
Table 8 t=0
Prediction accuracy of the learned agent behavior models in 2143141414 5,14
limited (2v2) version of the HFO domain (Exp4). Ad hpc Adent
Agent Type Accuracy (%)
Helios 78.2 dhooting
Gliders 83.2 Range
Cyrus 69.5
Aut 72.4
Axiom 76.2 6—
Agent2D 79.8 ||
Table 9

Figure 5: Part of the domain showing the ad hoc guard agent

Prediction accuracy of the learned agent behavior models in
Y & (green) moving to track and shoot an attacker (red).

full (4v5) version of the HFO domain (Exp5).

Agent Type Accuracy (%) . .

- occurred immediately after move, the relevant
Helios 86.0 axioms identified included:
Gliders 66.4
Cyrus 77.6 —occurs(shoot(R, A),I) <
Aut 67.7 h -

— holds(in_range(R, A), I).

Axiom 73.6 (in_range(R, 4), 1)
Agent2D 719 Next, the ad hoc agent explored its answer

set to check whether the grounded literal
in_range(learner, attackerl) was present in
step 2 and 3. Since it existed at step 2 but not
in step 3, this literal was selected as an explana-
tion for justifying the action execution.

Table 10

Goals scored by offense team in HFO domain under partial
observability. KAT’s performance comparable with baseline
that had no ad hoc agents in the team.

Version KAT (%) Original Team (%) « Human: “Why did you not move to grid (3,14)
Limited (2v2) 71 76 in time step 37 " .
Full (4v5) 18 20 + Ad hoc Agent: “Because it increases the cost of

the plan; new plan cost = 6, old plan cost = 4.

In this scenario, the ad hoc agent tried to create
a plan with the suggested action. Such a plan to
achieve the goal was found but the new plan’s

(8,7). The plan generated by the ad hoc agent was:

occurs(move(learner, 3,14),0)
cost was higher than the original plan. This in-
occurs(move(learner, 4,14), 1) formation was included in the explanation to the
occurs(move(learner, 5,14), 2) contrastive question.
Occurs(shoot(learner’ attacker1)7 3) « Human: “Why did you believe the attacker was
in shooting range at time step 4?"
As an example of providing relational descriptions of « Ad hoc Agent: “Because I observed attacker1 in
decisions and beliefs, consider an exchange with the ad (8,7) and I'was in (5,14) facing south and the values
hoc agent after it shot the attacker; satisfied the conditions Y2 — Y1 <=8, X2 —

3<=X1,X1<=X2+3."

When posed with a question about its beliefs, the
ad hoc agent first identified the valid axioms (e.g.,
state constraints) that could influence the belief:

« Human: “Why did you move to (5,14) in step 2?"
- Ad hoc Agent: “Because attackerl was not in
range for shooting".
This response was generated using the approach
in Section 3.5. For example, since the shoot action holds(in_range(L, A),I) +

40

Hasra Dodampegama et al. CEUR Workshop Proceedings

32-42

holds(in(L, X2,Y2),1),

holds(agent_in(A, X1,Y1),1),

holds(face(L, south),I),
X2 -3 <= X1,
X1<=X2+3,
Y2-Y1<=8.

By grounding and verifying that the relevant lit-
erals are available in the answer set, the ad hoc
agent generated the explanation described above.
This answer demonstrates the agent’s ability to
answer questions regarding its beliefs. A simi-
lar process can be used to trace the evolution of
beliefs over multiple time steps [28].

These results support hypothesis H3.

5. Conclusions

This paper described KAT, a knowledge-driven AHT ar-
chitecture that supports non-monotonic logical reason-
ing with prior commonsense domain knowledge and
predictive models of other agents’ behaviors that are
learned and revised rapidly using heuristic methods. KAT
automatically selects and uses the relevant behavior pre-
diction models, and learns new ones when appropriate,
enabling an ad hoc agent to adapt to previously unseen
teammates and opponents on the fly. Moreover, KAT pro-
vides transparency by generating on-demand relational
descriptions of its decisions and beliefs in response to
different types of questions. In the future, we will explore
scenarios with multiple ad hoc agents, investigate scala-
bility of our architecture to more complex domains, and
use our architecture on physical robots in AHT settings.

Acknowledgments

This work was supported in part by the US Office of Naval
Research award N00014-20-1-2390. All conclusions are
those of the authors alone.

References

[1] H. Dodampegama, M. Sridharan, Back to the Fu-
ture: Toward a Hybrid Architecture for Ad Hoc
Teamwork, in: AAAI Conference on Artificial In-
telligence, 2023.

H. Dodampegama, M. Sridharan, Knowledge-based
Reasoning and Learning under Partial Observability
in Ad Hoc Teamwork, in: International Conference
on Logic Programming, 2023.

41

[3] P. Stone, G. Kaminka, S. Kraus, J. Rosenschein,
Ad Hoc Autonomous Agent Teams: Collaboration
without Pre-Coordination, in: AAAI Conference
on Artificial Intelligence, 2010, pp. 1504-1509.

A. Deka, K. Sycara, Natural emergence of hetero-
geneous strategies in artificially intelligent compet-
itive teams, in: Y. Tan, Y. Shi (Eds.), Advances in
Swarm Intelligence, Springer International Publish-
ing, Cham, 2021, pp. 13-25.

M. Hausknecht, P. Mupparaju, S. Subramanian,
S. Kalyanakrishnan, P. Stone, Half field offense: An
environment for multiagent learning and ad hoc
teamwork, in: AAMAS Adaptive Learning Agents
Workshop, 2016.

R. Mirsky, I. Carlucho, A. Rahman, E. Fosong,
W. Macke, M. Sridharan, P. Stone, S. Albrecht, A
Survey of Ad Hoc Teamwork: Definitions, Methods,
and Open Problems, in: European Conference on
Multiagent Systems, 2022.

M. Bowling, P. McCracken, Coordination and adap-
tation in impromptu teams, in: National Conference
on Artificial Intelligence, 2005, p. 53-58.

S. Barrett, P. Stone, S. Kraus, A. Rosenfeld, Team-
work with limited knowledge of teammates, in:
AAAI Conference on Artificial Intelligence, vol-
ume 27, 2013, pp. 102-108.

S. Barrett, A. Rosenfeld, S. Kraus, P. Stone, Making
friends on the fly: Cooperating with new team-
mates, Artificial Intelligence 242 (2017) 132-171.
M. A. Rahman, N. Hopner, F. Christianos, S. V. Al-
brecht, Towards open ad hoc teamwork using
graph-based policy learning, in: International Con-
ference on Machine Learning, 2021, pp. 8776-8786.
S. Chen, E. Andrejczuk, Z. Cao, J. Zhang, AATEAM:
Achieving the ad hoc teamwork by employing the
attention mechanism, in: AAAI Conference on
Artificial Intelligence, 2020, pp. 7095-7102.

L. Zintgraf, S. Devlin, K. Ciosek, S. Whiteson,
K. Hofmann, Deep interactive bayesian reinforce-
ment learning via meta-learning, in: International
Conference on Autonomous Agents and Multiagent
Systems, 2021.

P. M. Santos, J. G. Ribeiro, A. Sardinha, F. S. Melo,
Ad hoc teamwork in the presence of non-stationary
teammates, in: G. Marreiros, F. S. Melo, N. Lau,
H. Lopes Cardoso, L. P. Reis (Eds.), Progress in Ar-
tificial Intelligence, Springer International, 2021.
M. Ravula, S. Alkoby, P. Stone, Ad hoc teamwork
with behavior switching agents, in: International
Joint Conference on Artificial Intelligence, 2019.

J. Zand, J. Parker-Holder, S. J. Roberts, On-the-
fly strategy adaptation for ad-hoc agent coordina-
tion, in: International Conference on Autonomous
Agents and Multiagent Systems, 2022, p. 1771-1773.
[16] S.Barrett, N. Agmon, N. Hazon, S. Kraus, P. Stone,

Hasra Dodampegama et al. CEUR Workshop Proceedings 32-42

Communicating with unknown teammates, in: Eu-
ropean Conference on Artificial Intelligence, 2014.

[17] W. Macke, R. Mirsky, P. Stone, Expected value
of communication for planning in ad hoc team-
work, in: AAAI Conference on Artificial Intelli-
gence, 2021, pp. 11290-11298.

[18] M. Gelfond, D. Inclezan, Some Properties of Sys-
tem Descriptions of AL, Applied Non-Classical
Logics, Special Issue on Equilibrium Logic and ASP
23 (2013) 105-120.

[19] M. Balduccini, M. Gelfond, Logic Programs with
Consistency-Restoring Rules, in: AAAI Spring Sym-
posium on Logical Formalization of Commonsense
Reasoning, 2003.

[20] E.Balai, M. Gelfond, Y. Zhang, Towards Answer
Set Programming with Sorts, in: International Con-
ference on Logic Programming and Nonmonotonic
Reasoning, 2013.

[21] H. Dodampegama, M. Sridharan, Code, 2023. https:
//github.com/hharithaki/KAT.

[22] M. Sridharan, M. Gelfond, S. Zhang, J. Wyatt, REBA:
A Refinement-Based Architecture for Knowledge
Representation and Reasoning in Robotics, Journal
of Artificial Intelligence Research 65 (2019) 87-180.

[23] G. Gigerenzer, What is Bounded Rationality?, in:
Routledge Handbook of Bounded Rationality, Rout-
ledge, 2020.

[24] G. Gigerenzer, W. Gaissmaier, Heuristic Decision
Making, Annual Review of Psychology 62 (2011).

[25] K. Katsikopoulos, O. Simsek, M. Buckmann,
G. Gigerenzer, Classification in the Wild: The Sci-
ence and Art of Transparent Decision Making, MIT
Press, 2021.

[26] S. Anjomshoae, A. Najjar, D. Calvaresi, K. Fram-
ling, Explainable agents and robots: Results from
a systematic literature review, in: International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS), Montreal, Canada, 2019.

[27] M.Fox, D. Long, D. Magazzeni, Explainable Plan-
ning, in: IJJCAI Workshop on Explainable Al 2017.

[28] T. Mota, M. Sridharan, A. Leonardis, Integrated
Commonsense Reasoning and Deep Learning for
Transparent Decision Making in Robotics, Springer
Nature CS 2 (2021).

42

https://github.com/hharithaki/KAT
https://github.com/hharithaki/KAT

	1 Introduction
	2 Related Work
	3 Architecture
	3.1 Representation and Reasoning
	3.2 Learning Agent Behavior Models
	3.3 Control Loop
	3.4 Partial Observability
	3.5 Transparency

	4 Experimental Setup and Results
	4.1 Experimental Setup
	4.2 Experiment Results
	4.3 Execution Trace

	5 Conclusions

