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Abstract
In this work, we consider the problem of modifying a knowledge base in the light of a (set of) models, while preserving the
finite representation of the new knowledge base. We analyse the operation of removing models, called eviction, and the
operation of adding models, called reception. Given that not all description logics (DLs) are eviction- and reception-compatible,
we analyse natural restrictions of the general problem. In particular, we investigate eviction and reception in DL knowledge
bases (ontologies), focusing on the very popular ℰℒ language and 𝒜ℒ𝒞 extended with boolean operators over the axioms.
First, we extend existing negative results of incompatibility. Then, we place restrictions on the domains of eviction and
reception functions on these logics that allows us to recover compatibility.
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1. Introduction
In traditional paradigms of Belief Change, such as the
AGM paradigm [1] for belief revision, and the KM
paradigm [2] for belief update, the agent’s epistemic
state is represented as a set of formulae logically closed,
called a theory, while the incoming information is repre-
sented as a single formula. The literature covering these
paradigms often does not address the question of finite
representation of the epistemic state. Moreover, one can
see the representation of the incoming information as a
formula as a restriction to the case when the incoming
information is a set of models (since there can be sets of
models that cannot be finitely represented as a formula).

To address these shortcomings, Guimarães et al. [3]
recently proposed a Belief Change framework where the
incoming information is a set of models. The authors
focus on the question of finite representation, which is
particularly relevant for formulas representing knowl-
edge bases, since ontology reasoners are designed to deal
with finite ontologies. The framework is proposed with
two basic operations: eviction (removal of models) and
reception (inclusion of models) [3]. It turns out that for
many logics, in particular those in the field of Description
Logic (DL), eviction and reception is not always possible
(meaning that there are sets of models that cannot be
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finitely represented in a given DL language).
In this work, we generalize the framework by

Guimarães et al. [3] by introducing the notion of ‘com-
partments’. Intuitively, a compartment is a subset of for-
mulae that can be expressed in a given DL and a subset of
models taken from the whole set of DL models. This can
be used to restrict the more general case of eviction and
reception in a given DL, for example, by just considering
finite models or by just considering a particular set of
formulae where eviction and reception can be performed
while preserving finiteness of the agent’s epistemic state.

Our contribution We define the generalised frame-
work using the notion of compartments, we prove some
properties associated with the new framework, in partic-
ular, that eviction (and reception) compatibility with a
satisfaction system implies eviction (and reception) com-
patibility of any compartment of that system. We then
consider ℰℒ⊥, where we present two strategies for re-
ception for the case in which the input is a single finite
model. 𝒜ℒ𝒞𝑏𝑜𝑜𝑙 is neither eviction nor reception com-
patible (assuming an infinite signature for the reception
case). We prove that it is not eviction compatible (the
proof works with finite or infinite signature). Then, we
build on our previous work [4] to establish eviction and
reception compatibility w.r.t. compartments defined us-
ing quasimodels.

Related Work As related work, we mention tradi-
tional approaches in Belief Change which concern finite-
ness [5, 6]. Base-generated operations by Hansson [7]
and the KM framework [2] belong to this category. These
studies, however, only consider finitary propositional
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logic. There are also works in Belief Change that replace
formulas by models. Guerra and Wassermann [8], for
example, propose a setting in which the epistemic state of
an agent is given by a single Kripke model and the input is
a formula in Linear Temporal Logic. In the field of Ontol-
ogy Repair, Hieke et al. [9] use counter-models to imple-
ment contraction by a formula in the DL ℰℒ. Additionally,
neglecting syntax preservation to retain more motivated
Pseudo-Contractions in Belief Change [10, 11, 12] and
different forms of Ontology Repair such as via Axiom
Weakening [13] and Gentle Repairs [14].

Organisation In the next section, we provide basic
notions and notation relevant for this paper. In Section 3
we recall the framework by Guimarães et al. [3] and in
Section 4 we present our generalised framework, with
the already mentioned notion of compartments. In Sec-
tions 5 and 6, we consider the cases of the DLs ℰℒ⊥ and
𝒜ℒ𝒞𝑏𝑜𝑜𝑙 (and variants), respectively. Finally, we con-
clude in Section 7.

2. Preliminaries
We first provide basic general definitions and then we
provide the necessary definitions for the DLs we consider.

2.1. Basic Definitions
The power set of a set𝐴 is denoted by𝒫(𝐴), while the set
of all finite subsets of 𝐴 is denoted by 𝒫 f(𝐴). We write
𝒫*(𝐴) to denote the non-empty subsets of 𝐴. Following
Aiguier et al. [15], Delgrande et al. [16], and [17], we
use satisfaction systems to define logics. A satisfaction
system is a triple Λ = (ℒ,M, |=), where ℒ is a language,
M is a set of models, also called interpretations, and |=
is a satisfaction relation which contains all pairs (𝑀,ℬ),
where 𝑀 is an interpretation and ℬ is a base (that is, a
subset of ℒ), such that 𝑀 satisfies ℬ (i.e., 𝑀 |= ℬ). We
denote by ModΛ(ℬ) the set

{𝑀 ∈ M |𝑀 |= ℬ}.

We will write simply Mod(ℬ) when the satisfaction sys-
tem is clear from the context.

Satisfaction systems allow us to be more flexible and
precise regarding the precise scope of the operations and
constructions we define. This view also facilitates the
generalisation of some results that do not depend on
properties of the consequence relation of the logic.

A arbitrary set of models M ⊆ M within Λ is
finitely representable iff there is ℬ ∈ 𝒫 f(ℒ) such that
Mod(ℬ) = M. FR(Λ) denotes the collection of all
finitely representable sets of models in Λ, that is, the set

{M ⊆ M | ∃ℬ ∈ 𝒫 f(ℒ) : Mod(ℬ) = M}.

Also, we say that a set of formulae ℬ ⊆ ℒ is finitely
representable iff there is a ℬ′ ∈ 𝒫 f(ℒ) with Mod(ℬ) =
Mod(ℬ′). Additionally, we write × for the Cartesian
product of two sets. Moreover, we denote the logical
closure of a base ℬ in a satisfaction system Λ by CnΛ,
omitting the subscript when clear from the context.

2.2. Description Logic Definitions
Let NC, NR and NI be countably infinite and pairwise
disjoint sets of concept names, role names, and individual
names, respectively. ℰℒ concepts are built according to
the rule: 𝐶 ::= ⊤ | 𝐴 | (𝐶 ⊓ 𝐶) | ∃𝑟.𝐶 , where 𝐴 ∈ NC.
ℰℒ⊥ concepts extend ℰℒ by allowing ⊥ (interpreted as
the empty set). 𝒜ℒ𝒞 concepts extend ℰℒ concepts with
the rule ¬𝐶 (recall that 𝐶 ⊓ ¬𝐶 is equivalent to ⊥, so
𝒜ℒ𝒞 extends ℰℒ⊥). 𝒜ℒ𝒞𝑏𝑜𝑜𝑙 formulae are expressions
𝜙 of the form

𝛼 ::= 𝐶(𝑎) | 𝑟(𝑎, 𝑏) | (𝐶 = ⊤)

𝜙 ::= 𝛼 | ¬(𝜙) | (𝜙 ∧ 𝜙)

where 𝐶 is an 𝒜ℒ𝒞 concept, 𝑎, 𝑏 ∈ NI, and 𝑟 ∈ NR. We
may omit parentheses if there is no risk of confusion. The
usual concept inclusions 𝐶 ⊑ 𝐷 can be expressed with
⊤ ⊑ ¬𝐶⊔𝐷 and ¬𝐶⊔𝐷 ⊑ ⊤, which is (¬𝐶⊔𝐷 = ⊤).
Assertions are expressions of the form 𝑟(𝑎, 𝑏) and 𝐴(𝑎),
with 𝑟 ∈ NR, 𝑎, 𝑏 ∈ NI, and 𝐴 ∈ NC. Whenever we
speak of an ℰℒ⊥ finite base we mean a finite set of con-
cept inclusions and assertions built from ℰℒ⊥ concepts.
The same holds for ℰℒ and 𝒜ℒ𝒞. The semantics of ℰℒ,
ℰℒ⊥, 𝒜ℒ𝒞, and 𝒜ℒ𝒞𝑏𝑜𝑜𝑙 are defined using interpreta-
tions, as usual for DLs [18, 19].

3. Eviction and Reception
Guimarães et al. [17] defined two types of model change
operations (functions from 𝒫 f(ℒ)×𝒫(M) to 𝒫 f(ℒ)) for
modifying finite bases via a set of input models: eviction
and reception. Eviction yields a base preserving as many
models of the original as possible, while excluding the
input models. Eviction operations are constructed us-
ing maximal subsets of the ideal resulting set of models,
formalised in Definition 1.

Definition 1. Let Λ = (ℒ,M, |=) be a satisfaction sys-
tem. Also, let M ⊆ M.

MaxFRSubs(M,Λ) := {M′ ∈ FR(Λ) | M′ ⊆ M

and ̸ ∃M
′′
∈ FR(Λ) with M′ ⊂ M

′′
⊆ M}.

Eviction can only be adequately defined in satisfac-
tion systems that are eviction-compatible, that is, in
those where MaxFRSubs is never empty. Hence, we
can use a FR selection function, that is, a function sel :
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𝒫*(FR(Λ)) → FR(Λ), we can define eviction functions
as follows.

Definition 2 ([17]). Let Λ be an eviction-compatible
satisfaction system and sel a FR selection function on Λ.
The maxichoice eviction function on Λ defined by sel is a
map evcsel : 𝒫 f(ℒ)× 𝒫(M) → 𝒫 f(ℒ) such that:

Mod(evcsel(ℬ,M)) =

sel(MaxFRSubs(Mod(ℬ) ∖M,Λ)).

Theorem 3 characterises the maxichoice eviction de-
fined before.

Theorem 3 ([17]). A model change operation evc, de-
fined on an eviction-compatible satisfaction system Λ, is
a maxichoice eviction function iff it satisfies the following
postulates:

(success) M ∩Mod(evc(ℬ,M)) = ∅.

(inclusion) Mod(evc(ℬ,M)) ⊆ Mod(ℬ).

(finite retainment) If Mod(evc(ℬ,M)) ⊂ M′ ⊆
Mod(ℬ) ∖M then M′ ̸∈ FR(Λ).

(uniformity) MaxFRSubs(Mod(ℬ) ∖ M,Λ) =
MaxFRSubs(Mod(ℬ′) ∖ M′,Λ) implies
Mod(evc(ℬ,M)) = Mod(evc(ℬ′,M′)).

Reception produces a base that has all the models of the
original and the input. Definition 4 details the construc-
tion employed for characterising and defining reception
functions.

Definition 4. Let Λ = (ℒ,M, |=) be a satisfaction sys-
tem. Also, let M ⊆ M.

MinFRSups(M,Λ) := {M′ ∈ FR(Λ) | M ⊆ M′

and ̸ ∃M
′′
∈ FR(Λ) with M ⊆ M

′′
⊂ M′}.

As with eviction, reception can only be constructed
in reception-compatible satisfaction systems. Reception-
compatibility allows to define reception functions using
FR selection function functions.

Definition 5 ([17]). Let Λ = (ℒ,M, |=) be a reception-
compatible satisfaction system and sel a FR selection
function on Λ. The maxichoice model reception function
on Λ defined by sel is a map rcpsel : 𝒫 f(ℒ)×𝒫(M) →
𝒫 f(ℒ) such that:

Mod(rcpsel(ℬ,M)) =

sel(MinFRSups(Mod(ℬ) ∪M,Λ)).

Maxichoice reception functions can also be charac-
terised via a set of postulates.

Theorem 6 ([17]). A model change operation rcp, de-
fined on a reception-compatible satisfaction system Λ, is
a maxichoice reception function iff it satisfies the follow-
ing postulates:

(success) M ⊆ Mod(rcp(ℬ,M)).

(persistence) Mod(ℬ) ⊆ Mod(rcp(ℬ,M)).

(finite temperance) If Mod(ℬ) ∪ M ⊆ M′ ⊂
Mod(rcp(ℬ,M)) then M′ ̸∈ FR(Λ).

(uniformity) MinFRSups(Mod(ℬ) ∪ M,Λ) =
MinFRSups(Mod(ℬ′) ∪ M′,Λ) implies
Mod(rcp(ℬ,M)) = Mod(rcp(ℬ′,M′)).

Next, in light of the negative results on compatibility
of important satisfaction systems [17], we will modify
the framework discussed in this section by restricting the
input space of model change operations.

4. Generalising the Framework
While eviction and reception can be defined and charac-
terised in some satisfaction systems, such as the usual for
propositional logic and Kleene’s three-valued logic, there
are also important satisfaction systems that are neither
eviction- nor reception-compatible, as it is the case of the
DL 𝒜ℒ𝒞 [17].

Here, we will attempt to circumvent the incompatibil-
ities of a satisfaction system by placing restrictions on
which bases and sets of models are allowed as input. We
formalise these additional constraints with the notion of
compartment.

Definition 7. A compartment of a satisfaction system
Λ = (ℒ,M, |=), is a pair (B, I) such that B ⊆ 𝒫 f(ℒ)
and I ⊆ 𝒫(M).

Formally, given a satisfaction system Λ, a model
change operation modulo a compartment (B, I) is a
function 𝑓C : B× I → FR(Λ).

In the following, we generalise the notions of eviction-
and reception-compatibility.

Definition 8. Let Λ be a satisfaction system,

1. A compartment (B, I) of Λ is eviction-
compatible iff for all ℬ ∈ B and M ∈ I:

MaxFRSubs(Mod(ℬ) ∖M,Λ) ̸= ∅.

2. A compartment (B, I) of Λ is reception-
compatible iff for all ℬ ∈ B and M ∈ I:

MinFRSups(Mod(ℬ) ∪M,Λ) ̸= ∅.
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If we consider an eviction-compatible compartment
(B, I), we can adapt the notion of maxichoice evic-
tion function from Definition 2, by defining it as a
model change operator modulo (B, I). The eviction-
compatibility of the compartment will ensure that the
domain of the function is non-empty. Consequently, we
obtain a version of Theorem 3 when the input is restricted
to reception-compatible compartments.

Corollary 9. Let (B, I) be a eviction-compatible com-
partment of a satisfaction system Λ and evc be a model
change operator modulo (B, I). The operator evc is a
maxichoice eviction function modulo (B, I) iff it satisfies
the postulates success, inclusion, finite retainment, and
uniformity from Theorem 3, for all ℬ ∈ B and M ∈ I.

Proof sketch. The proof is analogous to the proof of The-
orem 3 [17, Theorem 5].

Similarly, in a reception-compatible compartment C,
we can define maxichoice reception functions modulo
C by constraining the domain of maxichoice reception
functions from Definition 5. We get the following result
as a consequence.

Corollary 10. Let (B, I) be a reception-compatible com-
partment of a satisfaction system Λ and rcp be a model
change operator modulo (B, I). The operator rcp is a
maxichoice reception function modulo (B, I) iff it satis-
fies success, persistence, finite temperance, and unifor-
mity from Theorem 6, for all ℬ ∈ B and M ∈ I.

Proof sketch. The proof is analogous as the proof of The-
orem 6 [17, Theorem 10].

The new definitions and results based on compart-
ments generalise the original ones because considering
the compartment (𝒫 f(ℒ),FR(Λ)) of Λ = (ℒ,M, |=)
yields the original constructions and properties defined
for a satisfaction system Λ. Proposition 11 shows that the
compatibility of a satisfaction system regarding eviction
or reception is transferred to all of its compartments.

Proposition 11. Given a compartment C of the satisfac-
tion system Λ:

• If Λ is eviction-compatible then C is eviction-
compatible.

• If Λ is reception-compatible then C is reception-
compatible.

Proof. Let C = (B, I) be a compartment of Λ =
(ℒ,M, |=). For the first point, if Λ = (ℒ,M, |=) is
eviction-compatible, then for any ℬ ∈ B ⊆ 𝒫 f ℒ and
any M ∈ I ⊆ 𝒫 f(M), it holds that MaxFRSubs(ℬ ∖
M,Λ) ̸= ∅. Hence C is eviction-compatible.

The proof is analogous for the second point.

In the next two sections we study the cases of the clas-
sical DLs ℰℒ and 𝒜ℒ𝒞. Several DLs are neither eviction
not reception-compatible [17]. These impossibility re-
sults are proved specifically for each of the investigated
logics. We identify sufficient conditions for a DL to not
be reception compatible.

Theorem 12. Let ℒ be a monotonic DL with ⊤, that can
represent inconsistencies and it is interpreted over an in-
finite signature. Then Λ(ℒ) is not reception-compatible.

Most of the expressive and interesting DLs can ex-
press inconsistencies (either with full negation or just
⊥) and include the concept ⊤. Therefore, according to
Theorem 12, if one wants to perform reception in these
logics the only alternative is restricting to finite signa-
tures. Eviction compatibility is lost if there is no way of
representing inconsistencies [3] (since in this case one
cannot remove all models). From now on, unless other-
wise stated we consider only DLs over finite signatures
and that can express inconsistencies. It is worth recall-
ing that we are considering only compartments on finite
models.

5. The Case of ℰℒ⊥

We investigate the case of the very popular ℰℒ ontology
language. In particular, we devise two strategies for re-
ception in ℰℒ⊥ for the case in which the input is a single
finite model. Since these approaches are only defined for
compartments in which the model class contains only
singletons, we abuse the notation and write ℐ instead of
{ℐ} whenever the meaning is clear.

5.1. A Model Product Approach for ℰℒ⊥

In this subsection, we consider an approach for perform-
ing reception in compartments of the DL ℰℒ⊥. We pro-
pose the following strategy to perform the reception of a
base ℬ with a single model (interpretation) ℐ : we turn ℬ
into one of its models, and we combine this model with
ℐ to produce the reception result. To combine these two
models, we define a product operation which preserves
exactly the information satisfied by both models. We
then produce the finite base for reception from the model
obtained by the product operation. If ℬ is unsatisfiable
the resut of the reception is a base that represents the
input model exactly.

The main hurdle is to find a suitable model of the
base. We need a model that satisfies exactly and only
the information entailed by the knowledge base. Such
models are called fit models:

Definition 13. A model ℐ fits a base ℬ, iff (i) ℐ is finite
and (ii) for every ℰℒ⊥ formula 𝛼, ℬ |= 𝛼 iff ℐ |= 𝛼.
Equivalently, we say that ℬ fits ℐ .
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Example 14 illustrates a base and one of its fit models.

Example 14. Let ℬ = {𝐴 ≡ ∃𝑟.⊤, 𝐴 ≡ ∃𝑟.𝐴}. Also,
let ℐ = (Δℐ , ·ℐ) defined over {𝐴, 𝑟} and such that

Δℐ = {𝑥1, 𝑥2} 𝐴ℐ = {𝑥1} 𝑟ℐ = {(𝑥1, 𝑥1)}.

Observation 15 shows that ℐ fits ℬ.

Observation 15. The interpretation ℐ from Example 14
fits the base ℬ at that same example.

Indeed, in ℰℒ⊥, every finite model fits some finite set
of concept inclusions (TBox). This result follows from
the existence of algorithms that construct TBoxes that fit
a given finite model [20, 21]. The existence of fit bases
for any finite model also allows us to handle the case in
which ℬ is unsatisfiable. Therefore, in the remainder of
this subsection, we consider only compartments (B, I)
of Λ(ℰℒ⊥) such that (1) all bases in B present a fit model
ℐ such that {ℐ} ∈ I and (2) |M| = 1 for all M ∈ I. Such
compartments are called fit compartments. As usual, the
product operation on models is as follows.

Definition 16. The product of two models ℐ1 and ℐ2 is
the model ℐ = ℐ1 × ℐ2 where

• Δℐ := Δℐ1 ×Δℐ2 ;

• 𝐴ℐ := {(𝑑, 𝑒) | 𝑑 ∈ 𝐴ℐ1 , 𝑒 ∈ 𝐴ℐ2}, for all
𝐴 ∈ NC;

• 𝑟ℐ := {((𝑑, 𝑒), (𝑑′, 𝑒′)) | (𝑑, 𝑑′) ∈ 𝑟ℐ1 and
(𝑒, 𝑒′) ∈ 𝑟ℐ2}, for all 𝑟 ∈ NR.

• The interpretation of complex concepts is defined
as usual.

Proposition 17. Let ℐ = ℐ1×ℐ2. For all ℰℒ⊥ concepts
𝐶 : (𝑢, 𝑣) ∈ 𝐶ℐ iff 𝑢 ∈ 𝐶ℐ1 and 𝑣 ∈ 𝐶ℐ2 .

The purpose of the product, say ℐ1 ×ℐ2, is to obtain a
model that preserves precisely the information satisfied
by both models ℐ1 and ℐ2. Although this is not true in
general, there is a specific class of models in which the
product satisfies such behaviour as long as the formulae
of interest do not contain concepts logically equivalent
to ⊥ (Theorem 25).

Definition 18. For every two models ℐ1 and ℐ2 in such
a class, and ℰℒ⊥ concepts 𝐶 and 𝐷,

weak-preservation: if ∅ ̸|= 𝐶 ≡ 𝐷 ≡ ⊥, then
ℐ1 × ℐ2 |= 𝐶 ⊑ 𝐷 iff ℐ1 |= 𝐶 ⊑ 𝐷 and
ℐ2 |= 𝐶 ⊑ 𝐷.

Ideally, the property above should also cover concept
inclusions involving concepts that are logically equiva-
lent to ⊥. This issue can be easily overcome by applying
a rewriting function 𝜏 that swaps each ⊥ symbol with

an extra concept name 𝐴⊥. As 𝐴⊥ is a concept name,
we can define 𝜏 ensuring the obtained concept is not
logically equivalent to ⊥, and for every model ℐ in this
desired class of models, we have

ℐ |= 𝐶 ⊑ 𝐷 iff ℐ |= 𝜏(𝐶) ⊑ 𝜏(𝐷).

Definition 19. Let Σ ⊂ NC∪NR∪NI be a signature and
𝐴⊥ ∈ NC∖Σ. We define 𝜏 : ℰℒ⊥(Σ) → ℰℒ⊥(Σ∪{𝐴⊥})
inductively:

• 𝜏(⊥) = 𝐴⊥,

• 𝜏(𝐵) = 𝐵, if 𝐵 ∈ NC ∖ {⊥},

• 𝜏(∃𝑟.𝐶) = ∃𝑟.𝜏(𝐶),

• 𝜏(𝐶 ⊓ 𝐷) = 𝜏(𝐶) ⊓ 𝜏(𝐷),

• 𝜏(𝐶(𝑎)) = (𝜏(𝐶)(𝑎)),

• 𝜏(𝑟(𝑎, 𝑏)) = 𝑟(𝑎, 𝑏).

The missing ingredient is to frame precisely the so
well-behaved class of models mentioned above. In order
to capture the weak-preservation condition, we consider
models in which the extension of every concept that is
not tautologically equivalent to ⊥ must be non-empty.
We start showing that every model can be turned into
an equivalent model satisfying weak-preservation. By
equivalent, we mean that the original model satisfies a
formula 𝛼 iff the new model satisfies its rewriting 𝜏(𝛼).
This model is called an 𝜀-extension.

Definition 20. Let 𝐴⊥ ∈ NC, Σ ⊂ ((NC ∖ {𝐴⊥}) ∪
NR ∪ NI) be a signature, and ℐ = (Δℐ , ·ℐ) be a model
defined over Σ. The 𝜀-extension of ℐ is the interpretation
𝜀(ℐ) = (Δℐ ∪ {𝜀}, ·𝜀(ℐ)) such that:

• (𝐴⊥)
𝜀(ℐ) = {𝜀}.

• 𝐵𝜀(ℐ) = 𝐵ℐ ∪ {𝜀} for all 𝐵 ∈ NC ∖ {𝐴⊥}.

• 𝑟𝜀(ℐ) = 𝑟ℐ ∪ {(𝜀, 𝜀)} for all 𝑟 ∈ Σ ∪ NR.

• 𝑎𝜀(ℐ) = 𝑎ℐ , for all 𝑎 ∈ Σ ∪ NI.

Where we assume w.l.o.g. that 𝜀 /∈ Δℐ and𝐴⊥ ∈ NC∖Σ.

Proposition 21 states that the 𝜀-extension of an inter-
pretation ℐ extends each concept 𝐶 with a fixed sentinel
symbol 𝜀, as long as 𝐶 is satisfiable.

Proposition 21. Let ℐ = (Δℐ , ·ℐ) be a model defined
over a finite signature Σ and 𝜀(ℐ) = (Δℐ∪{𝜀}, ·𝜀(ℐ)) its
𝜀-extension. For all ℰℒ⊥ concepts 𝐶 , either ∅ |= 𝐶 ≡ ⊥
or 𝜀 ∈ 𝐶𝜀(ℐ).

An 𝜀-extension also preserves entailments over the
original signature, as shown in Lemma 22.
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Lemma 22. Let 𝐴⊥ ∈ NC, let Σ ⊂ ((NC ∖ {𝐴⊥}) ∪
NR ∪ NI) be a finite signature, and let ℐ = (Δℐ , ·ℐ) be
a model over Σ, and 𝛼 an ℰℒ⊥ formula over Σ. Then
ℐ |= 𝛼 iff 𝜀(ℐ) |= 𝛼.

Propositions 23 and 24 depict a convenient relationship
between the translation function 𝜏 and 𝜖-extensions.

Proposition 23. For all 𝜀-extension 𝜀(ℐ) and concept
𝐶 , (𝜏(𝐶))𝜀(ℐ) = 𝐶ℐ ∪ {𝜀}.

Proposition 24. Let ℐ be a model defined over the finite
signature Σ ⊆ (NC ∖ {𝐴⊥}) ∪ NR ∪ NI and 𝐶 an ℰℒ⊥
concept over Σ. It holds that (𝜏(𝐶))𝜀(ℐ) = 𝐶𝜀(ℐ) ∪ {𝜀}.

It is worth stressing that 𝜀-extensions are models by
definition, and therefore we can apply the product oper-
ation to them. This guarantees that the product of two
𝜀-extensions satisfies weak-preservation (Definition 18),
leading to Theorem 25.

Theorem 25. For all ℰℒ⊥ concepts 𝐶,𝐷, we have that
𝜀(ℐ1)×𝜀(ℐ2) |= 𝜏(𝐶 ⊑ 𝐷) iff 𝜀(ℐ1) |= 𝜏(𝐶 ⊑ 𝐷) and
𝜀(ℐ2) |= 𝜏(𝐶 ⊑ 𝐷).

Distel [20], Guimarães et al. [21] have shown that in
ℰℒ⊥, every finite model fits some finite base ℬ. Let fit(·)
be a function that maps each finite model ℐ to some base
that ℐ fits. We say that fit is a fit assignment.

At this point, we have all the necessary ingredients
to define our reception operation on products. The con-
struction is suitable for all fit compartments in ℰℒ⊥.

Definition 26. Let C = (B, I) be a fit compartment
of ℰℒ⊥, and fit a fit assignment. A product reception
operation on C is a function rcp× : B× I → B, s.t

rcp×(ℬ, ℐ) =
{︂

fit(ℐ) if ℬ |= ⊥;
fit(𝜀(ℐℬ)× 𝜀(ℐ)) otherwise.

where ℐℬ is a finite model that fits ℬ.

Proposition 27. The 𝜀-extensions are closed under the
product operation.

Lemma 28. Let ℐ be a model and 𝜙 an ℰℒ⊥ formula
over the finite signature Σ ⊆ (NC ∖ {𝐴⊥}) ∪ NR ∪ NI.
𝜀(ℐ) |= 𝜙 iff 𝜀(ℐ) |= 𝜏(𝜙).

The product reception operation retains exactly the
formulae entailed by the base and input model.

Corollary 29. Let C = (B, I) be a fit compartment of
ℰℒ⊥, and rcp× a product operation on C. For all ℰℒ⊥
concept inclusions 𝐶 ⊑ 𝐷, rcp×(ℬ, ℐ) |= 𝐶 ⊑ 𝐷 iff
ℬ |= 𝐶 ⊑ 𝐷 and ℐ |= 𝐶 ⊑ 𝐷.

The ℰℒ⊥ satisfaction system presents some interest-
ing behaviours regarding reception operations. One of
such properties is the reverse monotonic bijection property
(RMBP).

Definition 30 ([17]). A satisfaction system Λ =
(ℒ,M, |=) has the RMBP property iff for every ℬ1,ℬ2 ⊆
ℒ, and ℐ ∈ M: ℐ ∈ Mod(ℬ1 ∪ ℬ2) iff ℐ ∈ Mod(ℬ1)
and ℐ ∈ Mod(ℬ2).

The RBMP induces a ‘uniqueness’ property of the func-
tions MinFRSups and MaxFRSubs.

Corollary 31 ([17]). Let Λ be the usual satisfac-
tion system of ℰℒ⊥. For every set of models M,
|MinFRSups(M,Λ)| ≤ 1.

In fit compartments of ℰℒ⊥, the product reception
operations are exactly those reception operations that
satisfy all four postulates from Theorem 6.

Theorem 32. Let C = (B, I) be a fit compartment of
ℰℒ⊥. A model change operation rcp on C satisfies all
four postulates on Theorem 6 iff there is some product
reception operation rcp× such that Mod(rcp(ℬ, ℐ)) =
Mod(rcp×(ℬ, ℐ)), for all bases ℬ and all interpretations
ℐ in C.

While the restriction to fit compartments yields an
elegant construction, it does not cover every ℰℒ⊥ base,
not even when restricting ourselves only to concept in-
clusions (TBoxes) as Example 33.

Example 33. Let ℬ = {𝐴 ⊑ ∃𝑟.𝐴}. For all 𝑘 ≥ 0 and
𝑗 ≥ 1 it holds that ℬ |= ∃𝑟𝑘.𝐴 ⊑ ∃𝑟(𝑘+𝑗).𝐴. Also, let ℐ
be a finite model of ℬ. Since Δℐ is finite, for every ℰℒ⊥
concept 𝐶 , there will be at most 2𝑛 possible extensions
under ℐ , where 𝑛 = Δℐ . However, consider now the
set of concepts {∃𝑟𝑖.𝐴 | 1 ≤ 𝑖 ≤ 2𝑛 + 1}. By the pi-
geonhole principle, there will be distinct concepts ∃𝑟𝑙.𝐴
and ∃𝑟𝑚.𝐴 in this set such that ℐ |= ∃𝑟𝑙.𝐴 ≡ ∃𝑟𝑚.𝐴.
W.l.o.g., let us assume 𝑙 < 𝑚, then we have that ℐ |=
∃𝑟𝑚.𝐴 ⊑ ∃𝑟𝑙.𝐴 but ℬ ̸|= ∃𝑟𝑚.𝐴 ⊑ ∃𝑟𝑙.𝐴. Since ℐ is
an arbitrary finite model of ℐ , ℬ has no fit model.

In the next subsection, we explore another interesting
approach which covers all reception-compatible compart-
ments of Λ(ℰℒ⊥).

5.2. A Saturation Strategy
The product operation we defined in the previous sub-
section works only for fit compartments. In this section,
we propose a broader approach. We extract from the
incoming model some specific formulae that it satisfies
and we retain from such a set only the formulae that are
entailed by the base. The obtained set corresponds to the
reception result. This strategy works on every compart-
ment (B, I) that is reception-compatible for DLs that
are monotonic and idempotent and such that if M ∈ I
then |M| = {ℐ} for some finite model ℐ .

As the result of the reception must be finite, we extract
from the incoming model only formulae with size less or
equal to a given number 𝑚.
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The length of the greatest concept of an ℰℒ⊥ formula
𝜙 is given by

gcp(𝜙) =

⎧⎪⎨⎪⎩
max(|𝐶|, |𝐷|) if 𝜙 = 𝐶 ⊑ 𝐷

|𝐶| if 𝜙 = 𝐶(𝑎)

1 if 𝜙 = 𝑟(𝑎, 𝑏)

We also extend this notion to finite bases: gcp(ℬ) =
max({gcp(𝜙) | 𝜙 ∈ ℬ}).

Definition 34. Let 𝑚 be a positive integer. The satura-
tion of a model ℐ bounded by 𝑚 is the set ℬ𝑚

ℐ such that
𝜙 ∈ ℬ𝑚

ℐ iff gcp(𝜙) ≤ 𝑚 and ℐ |= 𝜙.

Observation 35. For every positive integer 𝑚 and in-
terpretation ℐ , if 𝜙 ∈ ℬ𝑚

ℐ then ℐ |= 𝜙.

Lemma 36. If ℬ is finite and ℐ |= ℬ then ℬ ⊆ ℬ𝑚
ℐ ,

where 𝑚 = gcp(ℬ).

Proof. Let us assume that ℬ is finite, 𝑚 = gcp(ℬ), and
ℐ |= ℬ. Let ℬ𝑚

ℐ be the saturation of ℐ bounded to 𝑚.
Let 𝜙 ∈ ℬ. As 𝑚 = gcp(ℬ), we get that gcp(𝜙) ≤ 𝑚.
Therefore, as ℐ |= ℬ, we get that ℐ |= 𝜙. This means
that 𝜙 ∈ ℬ𝑚

ℐ .

In order to perform the reception of a knowledge base
ℬ with a model ℐ , we saturate ℐ to an upper bound 𝑚,
and we intersect such a set with the all information en-
tailed by ℬ. Precisely, we define our reception operation
as 𝐶𝑛(ℬ) ∩ ℬ𝑚

ℐ .

Theorem 37. A compartment C = (B, I) is reception-
compatible iff for all pairs (ℬ, ℐ) ∈ B× I there is some
positive integer 𝑚 such that

Mod(ℬ′) ∈ MaxFRSubs(Mod(ℬ) ∪ {ℐ},Λ),

where ℬ′ = Cn(ℬ) ∩ ℬ𝑚
ℐ .

Theorem 37 characterises all reception-compatible
compartments, including the maximal ones, via the sat-
uration construction when the input is a single finite
model. Although Theorem 37 focuses on ℰℒ⊥, it can
be easily extended to other satisfaction systems, as the
proof requires only the logic to be both monotonic and
idempotent, as well as presenting a notion of length of
formulae analogous to gcd.

6. The Case of 𝒜ℒ𝒞𝑏𝑜𝑜𝑙
The framework we presented in Section 4 is general
enough to cover several satisfaction systems without
imposing much constraints upon the logics being used
to represent an agent’s beliefs. However, there are in-
teresting logics used for knowledge representation that
are not reception-compatible, as it is the case of some

DLs (Theorem 38). In this section, we investigate how
to extend model change operations to one such logic as
a study case. We look precisely at the logic 𝒜ℒ𝒞𝑏𝑜𝑜𝑙

1,
which corresponds to the DL𝒜ℒ𝒞 enriched with boolean
operators over 𝒜ℒ𝒞 axioms. As 𝒜ℒ𝒞 is a prototypical
DL, it shares many similarities with other logics in the of
DL family. Our results are built on proofs for the 𝒜ℒ𝒞
case without boolean operators over the axioms [3].

We establish negative results for eviction compatibility.
We denote by Λ(𝒜ℒ𝒞𝑏𝑜𝑜𝑙) the satisfaction system with
the entailment relation given by the standard semantics
of 𝒜ℒ𝒞𝑏𝑜𝑜𝑙 [19].

Theorem 38. Λ(𝒜ℒ𝒞𝑏𝑜𝑜𝑙) is neither eviction-
compatible nor reception-compatible.

Proof. The fact that Λ(𝒜ℒ𝒞𝑏𝑜𝑜𝑙) is not reception-
compatible follows from Theorem 12 (the case for when
the signature is finite is open). We then show that
Λ(𝒜ℒ𝒞𝑏𝑜𝑜𝑙) is not eviction-compatible (the proof works
if the signature is finite or infinite). Let Λ(𝒜ℒ𝒞𝑏𝑜𝑜𝑙) =
(ℒ𝒜ℒ𝒞bool ,M𝒜ℒ𝒞bool , |=𝒜ℒ𝒞bool) be the usual satisfaction
system for 𝒜ℒ𝒞bool. For conciseness, we will write |= in-
stead of |=𝒜ℒ𝒞bool within this proof. Let ℬ⊤ = {⊥ ⊑ ⊤},
that is, Mod(ℬ⊤) = M. Also, given a fixed but arbi-
trary 𝑎 ∈ NI and 𝑟 ∈ NR, we define models of the form
𝑀𝑛 = (N, ·𝑀

𝑛

) where

𝑟𝑀
𝑛

= {(𝑖, 𝑖+ 1) | 𝑖 ∈ N, 0 ≤ 𝑖 < 𝑛}

and 𝑎𝑀𝑛 = 0, and similarly 𝑀∞ = (N, ·𝑀
∞
) where

𝑟𝑀
∞

= {(𝑖, 𝑖+ 1) | 𝑖 ∈ N}

and 𝑎𝑀
∞

= 0. LetM be the set of all models𝑀 such that
for some 𝑛 ∈ N we have that 𝑎𝑀 ∈ (∀𝑟𝑛.⊥)𝑀 . That is,
there is no loop or infinite chain of elements connected
via the role 𝑟 starting from 𝑎𝑀 . By definition of M, we
have that 𝑀∞ ̸∈ M since this model has an infinite
chain of elements connected via the role 𝑟 starting from
𝑎𝑀 , while 𝑀𝑛 ∈ M for all 𝑛 ∈ N.

To prove that Λ(𝒜ℒ𝒞𝑏𝑜𝑜𝑙) is not eviction-compatible,
we need to prove that there is no ℬ ∈ 𝒫 f(ℒ𝒜ℒ𝒞bool)
such that Mod(ℬ) ∈ MaxFRSubs(M,Λ(𝒜ℒ𝒞𝑏𝑜𝑜𝑙)),
that is, MaxFRSubs(M,Λ(𝒜ℒ𝒞𝑏𝑜𝑜𝑙)) = ∅. Intuitively,
we want to show that we cannot find a maximal 𝒜ℒ𝒞bool

ontology that finitely represents the result of removing
the models in M ∖M from ℬ⊤. First, we recall the fol-
lowing claims.

Claim 39 ([3]). For every 𝒜ℒ𝒞 concept 𝐶 if there is
𝑛 ∈ N such that for all 𝑚 ≥ 𝑛, with 𝑚 ∈ N, we have
that 𝑀𝑚 |= 𝐶(𝑎) then 𝑀∞ |= 𝐶(𝑎).

1𝒜ℒ𝒞𝑏𝑜𝑜𝑙 is also called 𝒜ℒ𝒞-formula in [19], the former nomen-
clature facilitates the distinction between the logic and its formulae.

49



Ricardo Guimarães et al. CEUR Workshop Proceedings 43–51

Claim 40 ([3]). For every 𝒜ℒ𝒞 concept 𝐶 if there is
𝑛 ∈ N such that for all 𝑚 ≥ 𝑛, with 𝑚 ∈ N, we have
that 𝑀𝑚 |= ⊤ ⊑ 𝐶 then 𝑀∞ |= ⊤ ⊑ 𝐶 .

We are now ready to show that Λ(𝒜ℒ𝒞𝑏𝑜𝑜𝑙) is not
eviction-compatible. Suppose to the contrary that
there is ℬ ∈ 𝒫 f(ℒ𝒜ℒ𝒞bool) such that Mod(ℬ) ∈
MaxFRSubs(M,Λ(𝒜ℒ𝒞𝑏𝑜𝑜𝑙)). If there is 𝑛 ∈ N such
that 𝑀𝑛 ̸|= ℬ then2

ℬ′ := ℬ ∨ (

𝑛+1⨆︁
𝑘=0

(∃𝑟𝑘.⊤ ⊓ ¬∃𝑟𝑘+1.⊤) = ⊤),

is such that 𝑀𝑛 |= ℬ′. Moreover, Mod(ℬ) ⊂
Mod(ℬ′). By definition of ℬ′ and M, we also
have that Mod(ℬ′) ∈ MaxFRSubs(M,Λ(𝒜ℒ𝒞𝑏𝑜𝑜𝑙)).
This contradicts the assumption that Mod(ℬ) ∈
MaxFRSubs(M,Λ(𝒜ℒ𝒞𝑏𝑜𝑜𝑙)). So, for all 𝑛 ∈ N, we
have that 𝑀𝑛 |= ℬ.

Then, by Claims 39 and 40, it follows that
𝑀∞ |= ℬ. Since, as already mentioned,
𝑀∞ ̸∈ M, this contradicts the assumption that
Mod(ℬ) ∈ MaxFRSubs(M,Λ(𝒜ℒ𝒞𝑏𝑜𝑜𝑙)). Thus,
MaxFRSubs(M,Λ(𝒜ℒ𝒞𝑏𝑜𝑜𝑙)) = ∅.

Quasimodels Now, we employ quasimodels in a new
strategy for belief change in 𝒜ℒ𝒞𝑏𝑜𝑜𝑙. Our approach is
based on the translation of formulae in 𝒜ℒ𝒞𝑏𝑜𝑜𝑙 into
DNF. Let 𝜙 be an 𝒜ℒ𝒞𝑏𝑜𝑜𝑙 formula. Let f(𝜙) and c(𝜙)
be the set of all subformulae and subconcepts of 𝜙 closed
under single negation, respectively. A concept type for
𝜙 is a subset c ⊆ c(𝜙) such that: 𝐷 ∈ c iff ¬𝐷 ̸∈ c,
for all 𝐷 ∈ c(𝜙); and (2) 𝐷 ⊓ 𝐸 ∈ c iff {𝐷,𝐸} ⊆ c,
for all 𝐷 ⊓ 𝐸 ∈ c(𝜙). A formula type for 𝜙 is a subset
f ⊆ f(𝜙) such that: (1) 𝜑 ∈ f iff ¬𝜑 ̸∈ f , for all 𝜑 ∈ f(𝜙);
and (2) 𝜑 ∧ 𝜓 ∈ f iff {𝜑, 𝜓} ⊆ f , for all 𝜑 ∧ 𝜓 ∈ f(𝜙).
We may omit ‘for 𝜙’ if this is clear from the context. A
model candidate for 𝜙 is a triple (𝑇, 𝑜, f) such that 𝑇 is
a set of concept types, 𝑜 is a function from ind(𝜙) to 𝑇 ,
f a formula type, and (𝑇, 𝑜, f) satisfies the conditions:
𝜙 ∈ f ; 𝐶(𝑎) ∈ f implies 𝐶 ∈ 𝑜(𝑎); 𝑟(𝑎, 𝑏) ∈ f implies
{¬𝐶 | ¬∃𝑟.𝐶 ∈ 𝑜(𝑎)} ⊆ 𝑜(𝑏).

Definition 41 (Quasimodel). A model candidate (𝑇, 𝑜, f)
for 𝜙 is a quasimodel for 𝜙 if the following holds

• for every concept type c ∈ 𝑇 and every ∃𝑟.𝐷 ∈
c, there is c′ ∈ 𝑇 such that {𝐷} ∪ {¬𝐸 |
¬∃𝑟.𝐸 ∈ c} ⊆ c′;

• for every concept type c ∈ 𝑇 and every concept
𝐶 , if ¬𝐶 ∈ c then this implies (𝐶 = ⊤) ̸∈ f ;

2Recall that 𝑀𝑛 has a chain of 𝑛+ 1 elements connected via the
role 𝑟.

• for every concept𝐶 , if ¬(𝐶 = ⊤) ∈ f then there
is c ∈ 𝑇 such that 𝐶 ̸∈ c;

• 𝑇 is not empty.

Theorem 42 establishes the connection between quasi-
models and formulae in 𝒜ℒ𝒞𝑏𝑜𝑜𝑙.

Theorem 42 (Theorem 2.27 [19]). An 𝒜ℒ𝒞𝑏𝑜𝑜𝑙-formula
𝜙 is satisfiable iff 𝜙 has a quasimodel.

One can associate a model ℐ𝒬 to each quasimodel 𝒬
for 𝜙 such that ℐ𝒬 |= 𝜙 (see Definition 43).

Definition 43. Given a quasimodel 𝒬 = (𝑇, 𝑜, f)
for an 𝒜ℒ𝒞𝑏𝑜𝑜𝑙-formula 𝜙, we define a model ℐ𝒬 =
(Δℐ𝒬 , ·ℐ𝒬) as follows:

• Δℐ𝒬 := 𝑇

• 𝐴ℐ𝒬 := {𝑡 ∈ 𝑇 | 𝐴 ∈ 𝑐} for all 𝐴 ∈ NC;

• 𝑟ℐ𝒬 := {(𝑡, 𝑡′) ∈ 𝑇 2 | ¬∃𝑟.𝐷 ∈ 𝑡⇒ ¬𝐷 ∈ 𝑡′}
for all 𝑟 ∈ NR.

Given a class of models I, the class of 𝒜ℒ𝒞𝑏𝑜𝑜𝑙-
formulae induced by 𝜙 is the class of 𝒜ℒ𝒞𝑏𝑜𝑜𝑙-formulae
that contains 𝜙 and any 𝒜ℒ𝒞𝑏𝑜𝑜𝑙-formulae that is a
boolean combination of atoms in 𝜙.

Theorem 44. Consider the compartment (B𝜙, I𝜙)
where (1) I𝜙 is the class of all subsets of models ℐ𝒬
with 𝒬 a quasimodel for an 𝒜ℒ𝒞𝑏𝑜𝑜𝑙-formula 𝜙 and (2)
B𝜙 is the class of 𝒜ℒ𝒞𝑏𝑜𝑜𝑙-formulae induced by𝜙. Then,
(B𝜙, I𝜙) is both eviction and reception-compatible.

Proof. This theorem follows from the results on model ex-
pansion and contraction presented earlier [4], where ex-
pansion corresponds to reception and contraction means
eviction in our terminology.

7. Conclusion
In this work, we investigate the model change operations
of eviction and reception when applied to description
logics such as ℰℒ and 𝒜ℒ𝒞. We provide a more general
negative result for reception in a large class of DLs. More-
over, generalise the framework proposed by Guimarães
et al. [17] with the notion of compartments. These com-
partments allows us to define two reception functions
in restricted domains, which satisfy the existing postu-
lates for this operation. In particular, we restricted the
input to singleton sets of finite models defined over fi-
nite signatures. While one of these reception functions
applies specifically for fit ℰℒ⊥ compartments, the other
can be employed in a broader class of compartments,
including other DLs. Furthermore, we frame previous
constructions for 𝒜ℒ𝒞𝑏𝑜𝑜𝑙 in the same framework, while
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extending the negative results for unrestricted eviction
from 𝒜ℒ𝒞 to 𝒜ℒ𝒞𝑏𝑜𝑜𝑙.

As future work, we include an investigation of general
results of eviction-compatibility, similar to Theorem 12,
in particular for ℰℒ⊥. We also aim at identifying eviction-
and reception-compatible fragments for more satisfaction
systems, in particular for Tarskian DLs. Finally, we will
also explore the connections between model change op-
erations and recent formula-based approaches for Belief
Change [11, 12] and Ontology Repair [14, 9, 22].
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