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Abstract
Inductive inference operators capture the process of completing a conditional belief base to an inference relation. One such
operator is c-inference which is based on the c-representations of a belief base, c-representations being a special kind of
ranking functions. c-Inference exhibits many desirable properties put forward for nonmonotonic reasoning; for instance, it
fully complies with syntax splitting. A characterization of c-inference as a constraint satisfaction problem (CSP) yields a basis
for implementing c-inference. However, the definitions of c-representations and of c-inference only take belief bases into
account that satisfy a rather strong notion of consistency requiring every possible world to be at least somewhat plausible. In
this paper, we extend the definition of c-representations to belief bases that need to satisfy only a weaker notion of consistency
where some worlds may be completely infeasible. Based on these extended c-representations, we also extend the definition
of c-inference correspondingly, thus covering all weakly consistent belief bases. Furthermore, we develop an adapted CSP
characterizing the such extended c-inference that can be used as a basis for an implementation.
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1. Introduction
Ranking functions [1] are commonly used as models for
conditional belief bases. The c-representations [2, 3] of
a belief base ∆ are a special kind of ranking functions
modelling ∆. c-Representations define inductive infer-
ence operators that satisfy most advanced properties of
nonmonotonic inference, particularly syntax splitting [4]
and also conditional syntax splitting [5]. While initially
introduced only for belief bases satisfying a rather strong
notion of consistency, in this paper we define extended
c-representations that also cover belief bases satisfying
a weaker notion of consistency. In the such extended
c-representations some possible worlds may be assigned
a rank of ∞ indicating them to be completely infeasi-
ble according to ∆. This allows for realizing a kind of
paraconsistent conditional reasoning based on the strong
structural concept of c-representations.

The notion of c-inference was introduced in [6, 7] as
nonmonotonic inference taking all c-representations into
account. Therefore, the inductive inference operator c-
inference inherits the restriction that it is only defined
for strongly consistent belief bases. Using the extended
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c-representations we will introduce an extended version
of c-inference that also covers weakly consistent belief
bases.

The c-representations of a belief base ∆ can be char-
acterized by a constraint satisfaction problem (CSP), and
in [6, 7] it is shown that c-inference can also be real-
ized by a CSP. Here, we develop both a CSP that char-
acterizes all extended c-representations and a simplified
version of this CSP the solutions of which still cover all
c-representations relevant for c-inference. Furthermore,
we show how also extended c-inference can be realized
by a CSP.

To summarize, the main contributions of this paper
are:

• extension of c-representations for all weakly con-
sistent belief bases;

• extension of c-inference to all weakly consistent
belief bases;

• proof of some key properties of extended c-
inference;

• construction of a CSP describing extended c-
representations and then development of a sim-
plified version of this CSP;

• development of a CSP realizing extended c-
inference.

After recalling the background on conditional logic in
Sec. 2 and inductive inference in Sec. 3 we present the dif-
ferent kinds of consistency in Sec. 4. We develop extended
c-representations in Sec. 5 and extended c-inference in
Sec. 6. Section 7 discusses the characterization and imple-
mentation of c-representations and c-inference by CSPs,
before we conclude and point out future work in Sec. 8.
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2. Conditional Logic
A (propositional) signature is a finite set Σ of proposi-
tional variables. Assuming an underlying signature Σ,
we denote the resulting propositional language by ℒΣ.
Usually, we denote elements of signatures with lower-
case letters 𝑎, 𝑏, 𝑐, . . . and formulas with uppercase let-
ters 𝐴,𝐵,𝐶, . . .. We may denote a conjunction 𝐴 ∧𝐵
by 𝐴𝐵 and a negation ¬𝐴 by 𝐴 for brevity of notation.
The set of interpretations over the underlying signature
is denoted as ΩΣ. Interpretations are also called worlds
and ΩΣ the universe. An interpretation 𝜔 ∈ ΩΣ is a
model of a formula 𝐴 ∈ ℒ if 𝐴 holds in 𝜔, denoted as
𝜔 |= 𝐴. The set of models of a formula (over a signature
Σ) is denoted as Mod Σ(𝐴) = {𝜔 ∈ ΩΣ | 𝜔 |= 𝐴} or
short as Ω𝐴. The Σ in ΩΣ, ℒΣ and Mod Σ(𝐴) can be
omitted if the signature is clear from the context or if the
underlying signature is not relevant. A formula 𝐴 entails
a formula 𝐵, denoted by 𝐴 |= 𝐵, if Ω𝐴 ⊆ Ω𝐵 . By slight
abuse of notation we sometimes interpret worlds as the
corresponding complete conjunction of all elements in
the signature in either positive or negated form.

A conditional (𝐵|𝐴) connects two formulas 𝐴,𝐵 and
represents the rule “If 𝐴 then usually 𝐵”, where 𝐴
is called the antecedent and 𝐵 the consequent of the
conditional. The conditional language is denoted as
(ℒ|ℒ)Σ = {(𝐵|𝐴) | 𝐴,𝐵 ∈ ℒΣ}. A finite set of con-
ditionals is called a belief base. We use a three-valued
semantics of conditionals in this paper [8]. For a world
𝜔 a conditional (𝐵|𝐴) is either verified by 𝜔 if 𝜔 |= 𝐴𝐵,
falsified by 𝜔 if 𝜔 |= 𝐴𝐵, or not applicable to 𝜔 if
𝜔 |= 𝐴. Popular models for belief bases are ranking
functions (also called ordinal conditional functions, OCF)
[1, 9] and total preorders (TPO) on ΩΣ [10]. An OCF
𝜅 : ΩΣ → N0 ∪ {∞} maps worlds to a rank such that
at least one world has rank 0, i.e., 𝜅−1(0) ̸= ∅. The
intuition is that worlds with lower ranks are more plau-
sible than worlds with higher ranks; worlds with rank
∞ are considered infeasible. OCFs are lifted to formu-
las by mapping a formula 𝐴 to the smallest rank of a
model of 𝐴, or to ∞ if 𝐴 has no models. An OCF 𝜅 is a
model of a conditional (𝐵|𝐴), denoted as 𝜅 |= (𝐵|𝐴),
if 𝜅(𝐴) = ∞ or if 𝜅(𝐴𝐵) < 𝜅(𝐴𝐵); 𝜅 is a model of a
belief base ∆, denoted as 𝜅 |= ∆, if it is a model of every
conditional in ∆.

Note that there are different definitions of consistency
of a belief base in the literature. To distinguish two differ-
ent notions of consistency that both occur in this paper
we call one notion of consistency strong consistency and
the other notion weak consistency, as suggested in [11].

Definition 1 ([11]). A belief base ∆ is called strongly
consistent if there exists at least one ranking function 𝜅
with 𝜅 |= ∆ and 𝜅−1(∞) = ∅. A belief base ∆ is weakly
consistent if there is a ranking function 𝜅 with 𝜅 |= ∆.

Thus, ∆ is strongly consistent if there is at least one
ranking function modelling ∆ that considers all worlds
feasible. This notion of consistency is used in many ap-
proaches, e.g., [12]. The notion of weak consistency is
equivalent to the more relaxed notion of consistency that
is used in, e.g., [13, 14]. Trivially, strong consistency
implies weak consistency.

3. Inductive Inference
The conditional beliefs of an agent are formally captured
by a binary relation |∼ on propositional formulas with
𝐴 |∼𝐵 representing that 𝐴 (defeasibly) entails 𝐵; this
relation is called inference or entailment relation. Differ-
ent sets of properties for inference relations have been
suggested in literature, and often the set of postulates
called system P is considered as minimal requirement for
inference relations. Inference relations satisfying system
P are called preferential inference relations [15, 16].

Every ranking function 𝜅 induces a preferential infer-
ence relation |∼𝜅 by

𝐴 |∼𝜅 𝐵 iff 𝜅(𝐴) = ∞ or 𝜅(𝐴𝐵) < 𝜅(𝐴𝐵). (1)

Note that the condition 𝜅(𝐴) = ∞ in (1) ensures that
system P’s axiom (Reflexivity): 𝐴 |∼𝜅 𝐴 is satisfied for
𝐴 ≡ ⊥.

Inductive inference is the process of completing a given
belief base to an inference relation. To formally capture
this we use the concept of inductive inference operators.

Definition 2 (inductive inference operator [4]). An in-
ductive inference operator is a mapping 𝐶 : ∆ ↦→ |∼Δ

that maps each belief base to an inference relation s.t. direct
inference (DI) and trivial vacuity (TV) are fulfilled, i.e.,

(DI) if (𝐵|𝐴) ∈ ∆ then 𝐴 |∼Δ 𝐵, and

(TV) if ∆ = ∅ and 𝐴 |∼Δ 𝐵 then 𝐴 |= 𝐵.

An inductive inference operator 𝐶 is a preferential
inductive inference operator if every inference relation
|∼Δ in the image of 𝐶 satisfies system P.

p-Entailment [15, 16] 𝐶𝑝 : ∆ ↦→ |∼𝑝
Δ is the most

cautious preferential inductive inference operator. It is
characterized by system P in the way that it only licenses
inferences that can be obtained by iteratively applying
the rules of system P to the belief base. Every other prefer-
ential inductive inference operator extends p-entailment.
While extending p-entailment and adding some more
inferences to the induced inference relations is usually
desired, p-entailment can act as guidance for example
for inferences of the form 𝐴 |∼⊥ which can be seen as
representations of “strict” beliefs (i.e., 𝐴 is completely
unfeasible).
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Postulate (Classic Preservation) (adapted from [14]).
An inductive inference operator 𝐶 : ∆ ↦→ |∼Δ satisfies
(Classic Preservation) if for all belief bases∆ and𝐴,𝐵 ∈ ℒ
it holds that 𝐴 |∼Δ ⊥ iff 𝐴 |∼𝑝

Δ ⊥.

System Z is an inductive inference operator that is
defined based on the Z-partition of a belief base [17].
Here we use an extended version of system Z that also
covers weakly consistent belief bases and that was shown
to be equivalent to rational closure [18] in [19].

Definition 3 ((extended) Z-partition). A conditional
(𝐵|𝐴) is tolerated by ∆ = {(𝐵𝑖|𝐴𝑖) | 𝑖 = 1, . . . , 𝑛}
if there exists a world 𝜔 ∈ Ω such that 𝜔 verifies (𝐵|𝐴)
and 𝜔 does not falsify any conditional in ∆, i.e., 𝜔 |= 𝐴𝐵
and 𝜔 |=

⋀︀𝑛
𝑖=1(𝐴𝑖 ∨𝐵𝑖).

The (extended) Z-partition EZP(∆) = (∆0, . . . ,∆𝑘,
∆∞) of a belief base ∆ is the ordered partition of ∆ that is
constructed by letting ∆𝑖 be the inclusion maximal subset
of

⋃︀𝑛
𝑗=𝑖 ∆

𝑗 that is tolerated by
⋃︀𝑛

𝑗=𝑖 ∆
𝑗 until ∆𝑘+1 =

∅. The set ∆∞ is the remaining set of conditionals that
contains no conditional which is tolerated by ∆∞.

Because the ∆𝑖 are chosen inclusion-maximal, the Z-
partition is unique [17].

Definition 4 ((extended) system Z). Let ∆ be a belief
base with EZP(∆) = (∆0, . . . ,∆𝑘,∆∞). If ∆ is not
weakly consistent, then let 𝐴 |∼𝑧

Δ 𝐵 for any 𝐴,𝐵 ∈ ℒ.
Otherwise, the (extended) Z-ranking function 𝜅𝑧

Δ is de-
fined as follows: For 𝜔 ∈ Ω, if one of the conditionals in
∆∞ is applicable to 𝜔 define 𝜅𝑧

Δ(𝜔) = ∞. If not, let ∆𝑗 be
the last partition in EZP(∆) that contains a conditional
falsified by 𝜔. Then let 𝜅𝑧

Δ(𝜔) = 𝑗 + 1. If 𝜔 does not fal-
sify any conditional in ∆, then let 𝜅𝑧

Δ(𝜔) = 0. (Extended)
system Z maps ∆ to the inference relation |∼𝑧

Δ induced by
𝜅𝑧
Δ.

For strongly consistent belief bases the extended sys-
tem Z coincides with system Z as defined in [17, 12]. Note
that for any belief base ∆ the OCF 𝜅𝑧

Δ is a model of ∆.

Lemma 1 ([11]). For a weakly consistent belief base ∆
and a formula 𝐴 we have 𝜅𝑧

Δ(𝐴) = ∞ iff 𝐴 |∼𝑝
Δ ⊥.

Lemma 2 ([11]). Let ∆ be a belief base with EZP(∆) =
(∆0, . . . ,∆𝑘,∆∞). A world 𝜔 ∈ Ω falsifies a conditional
in ∆∞ iff it is applicable for a conditional in ∆∞.

Proof. Direction⇒: Assume that𝜔 falsifies a conditional
in ∆∞. Then this conditional is applicable for 𝜔.

Direction ⇐: Assume that 𝜔 is applicable for at least
one conditional (𝐵|𝐴) ∈ ∆∞. There are two possible
cases: Either 𝜔 falsifies one of the other conditionals in
∆∞ or not. In the first case the lemma holds. In the
second case, towards a contradiction, we assume that 𝜔
does not falsify (𝐵|𝐴). If 𝜔 is applicable and does not
falsify (𝐵|𝐴) then 𝜔 must verify (𝐵|𝐴). That implies
that (𝐵|𝐴) is tolerated by ∆∞ which contradicts the
construction of EZP(∆).

4. Consistency of Belief Bases
Let us illustrate weak and strong consistency with an
example.

Example 1. Let Σ = 𝑎, 𝑏, 𝑐, 𝑑 be a signature. The belief
bases ∆1 = {(⊥|⊤)} and ∆2 = {(⊥|𝑎), (𝑏|𝑎), (𝑏|𝑎)}
are not weakly consistent and thus also not strongly con-
sistent. The belief base ∆3 = {(⊥|𝑎)} is weakly consis-
tent but not strongly consistent. The belief base ∆4 =
{(𝑏|𝑎), (𝑑|𝑐)} is strongly consistent and thus also weakly
consistent.

For every weakly consistent belief base ∆ there is a
world that does not falsify any conditional in ∆.

Lemma 3. For every weakly consistent belief base ∆ there
is an 𝜔 ∈ Ω s.t. 𝜔 does not falsify any conditional in ∆.

Proof. Because ∆ is weakly consistent, there is a ranking
function 𝜅 with 𝜅 |= ∆. Let 𝜔 ∈ 𝜅−1(0). Towards a
contradiction, assume that there is a (𝐵|𝐴) ∈ ∆ that is
falsified by 𝜔, i.e., 𝜔 |= 𝐴𝐵. For 𝜅 to accept (𝐵|𝐴) it
must be either 𝜅(𝐴) = ∞ or 𝜅(𝐴𝐵) < 𝜅(𝐴𝐵). Because
𝜔 |= 𝐴 and 𝜅(𝜔) = 0 we have 𝜅(𝐴) ̸= ∞. Because
𝜅(𝐴𝐵) ⩽ 0 and there are no ranks below 0 the condition
𝜅(𝐴𝐵) < 𝜅(𝐴𝐵) does not hold. This is a contradiction;
hence 𝜔 does not falsify any conditional in ∆.

It is well-known that the construction of the extended
Z-partition EZP(∆) is successful with ∆∞ = ∅ iff ∆
is strongly consistent. We can also use the extended Z-
partition to check for weak consistency. The following
proposition summarizes the relations between EZP(∆)
and the consistency of ∆.

Proposition 1. Let ∆ = {(𝐵1|𝐴1), . . . , (𝐵𝑛|𝐴𝑛)} be
a belief base with EZP(∆) = (∆0, . . . ,∆𝑘,∆∞).

(1.) ∆ is not weakly consistent iff ∆∞ = ∆ and
𝐴1 ∨ · · · ∨𝐴𝑛 ≡ ⊤.

(2.) ∆ is weakly consistent iff ∆∞ ̸= ∆ or
𝐴1 ∨ · · · ∨𝐴𝑛 ̸≡ ⊤.

(3.) ∆ is strongly consistent iff ∆∞ = ∅.

Continuing Example 1, for the not weakly consistent
∆2 we have EZP(∆2) = (∆∞

2 ) with ∆∞
2 = ∆ and

𝑎 ∨ 𝑎 ∨ 𝑎 ≡ ⊤. For the weakly consistent ∆3 we have
EZP(∆3) = (∆∞

3 ) with ∆∞
3 = ∆ but 𝑎 ̸≡ ⊤. For the

strongly consistent ∆3 we have EZP(∆4) = (∆0
4) with

∆0
4 = ∆ and ∆∞

4 = ∅.
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5. Generalizing c-Representations
For strongly consistent belief bases, c-representations
have been defined as follows.

Definition 5 (c-representation [2, 3]). A c-
representation of a belief base ∆ = {(𝐵1|𝐴1),
. . . , (𝐵𝑛|𝐴𝑛)} over Σ is a ranking function 𝜅�⃗� con-
structed from integer impacts �⃗� = (𝜂1 , . . . , 𝜂𝑛) with
𝜂𝑖 ∈ N0, 𝑖 ∈ {1, . . . , 𝑛} assigned to each conditional
(𝐵𝑖|𝐴𝑖) such that 𝜅�⃗� accepts ∆ and is given by:

𝜅�⃗�(𝜔) =
∑︁

1⩽𝑖⩽𝑛

𝜔|=𝐴𝑖𝐵𝑖

𝜂𝑖. (2)

We will denote the set of all c-representations of ∆ by
Mod 𝑐

Σ(∆).

A belief base ∆ that is not strongly consistent will
not have a c-representation: by Definition 5, a c-
representation of ∆ is a finite ranking function modelling
∆; if∆ is not strongly consistent, such a ranking function
cannot exist.

To work with belief bases that are only weakly
consistent, we need a more general definition of c-
representations. A ranking function that is a model of a
weakly but not strongly consistent belief base must assign
rank ∞ to some worlds. To achieve this while keeping a
construction of c-representations similar to the one given
in (2), we extend the definition of c-representations to
allow infinite impacts.

Definition 6 (extended c-representation). An extended
c-representation of a belief base ∆ = {(𝐵1|𝐴1),
. . . , (𝐵𝑛|𝐴𝑛)} over Σ is a ranking function 𝜅�⃗� con-
structed from impacts �⃗� = (𝜂1 , . . . , 𝜂𝑛) with 𝜂𝑖 ∈
N0 ∪ ∞, 𝑖 ∈ {1, . . . , 𝑛} assigned to each conditional
(𝐵𝑖|𝐴𝑖) such that 𝜅�⃗� accepts ∆ and is given by:

𝜅�⃗�(𝜔) =
∑︁

1⩽𝑖⩽𝑛

𝜔|=𝐴𝑖𝐵𝑖

𝜂𝑖 (3)

We will denote the set of all extended c-representations of
∆ by Mod 𝑒𝑐

Σ (∆).

Example 2. Let Σ = {𝑏, 𝑝, 𝑓} and ∆ = {(𝑏|𝑝), (𝑓 |𝑏),
(𝑏|𝑝)}. Note that ∆ is weakly consistent but not strongly
consistent. Then the ranking function 𝜅�⃗� displayed in Ta-
ble 1 is an extended c-representation of ∆ induced by the
impacts �⃗� = (∞, 1,∞).

Every c-representation of a strongly consistent belief
base ∆ is obviously an extended c-representation of ∆.

Proposition 2. Let ∆ be a strongly consistent belief
base. Every c-representation 𝜅�⃗� of ∆ is an extended c-
representation of ∆.

𝜔 (𝑏|𝑝) (𝑓 |𝑏) (𝑏|𝑝) impact on 𝜔 𝜅�⃗�(𝜔)

𝑏𝑝𝑓 v v f 𝜂3 ∞
𝑏𝑝𝑓 v f f 𝜂2 + 𝜂3 ∞
𝑏𝑝𝑓 − v − 0 0

𝑏𝑝𝑓 − f − 𝜂2 1

𝑏𝑝𝑓 f − v 𝜂1 ∞
𝑏𝑝𝑓 f − v 𝜂1 ∞
𝑏𝑝𝑓 − − − 0 0

𝑏𝑝𝑓 − − − 0 0

impacts: 𝜂1 𝜂2 𝜂3
�⃗� ∞ 1 ∞

Table 1
Verification (v) and falsification (f) of the conditionals in Δ
from Example 2 and their corresponding impacts. The rank-
ing function 𝜅�⃗� induced by the impacts �⃗� = (𝜂1, 𝜂2, 𝜂3) =
(∞, 1,∞) is an extended c-representation for Δ.

Every weakly consistent belief base has at least one
extended c-representation.

Proposition 3. Let ∆ be a weakly consistent belief
base. Then 𝜅�⃗� with �⃗� = (∞, . . . ,∞) is an extended c-
representation of ∆.

Proof. Because ∆ is weakly consistent, there is at least
one world 𝜔 ∈ ΩΣ that does not falsify any of the con-
ditionals (see Lemma 3). This implies 𝜅�⃗�(𝜔) = 0. Thus,
𝜅�⃗� is a ranking function.

For every (𝐵|𝐴) ∈ ∆ it holds that 𝜅�⃗�(𝐴𝐵) = ∞
because every model of 𝐴𝐵 falsifies the conditional
(𝐵|𝐴) with impact ∞. For 𝜅�⃗�(𝐴𝐵) we have either
(1.) 𝜅�⃗�(𝐴𝐵) = 0 or (2.) 𝜅�⃗�(𝐴𝐵) = ∞. In case
(1.) we have 𝜅�⃗�(𝐴𝐵) = 0 < ∞ = 𝜅�⃗�(𝐴𝐵). In
case (2.) we have 𝜅�⃗�(𝐴𝐵) = ∞ and 𝜅�⃗�(𝐴𝐵) =
∞ and therefore 𝜅�⃗�(𝐴) = ∞ because 𝜅�⃗�(𝐴) =
min{𝜅�⃗�(𝐴𝐵), 𝜅�⃗�(𝐴𝐵)}. In both cases 𝜅�⃗� accepts
(𝐵|𝐴). Thus, 𝜅�⃗� |= ∆.

Proposition 3 also illustrates that in extended c-
representations worlds may have rank infinity with-
out the belief base requiring this. In an extended c-
representation of ∆ only those worlds need to have rank
infinity that have rank infinity in the z-ranking 𝜅𝑧

Δ of ∆.

Proposition 4. Let ∆ be a weakly consistent belief base.
If 𝜅𝑧

Δ(𝜔) = ∞ for a world 𝜔, then 𝜅�⃗�(𝜔) = ∞ for all
c-representations 𝜅�⃗� of ∆.

Proof. Assume that 𝜅𝑧
Δ(𝜔) = ∞. Let EZP(∆) =

{∆0, . . . ,∆𝑚,∆∞} be the extended Z-partition of ∆.
By definition of 𝜅𝑧

Δ there exists a conditional (𝐵|𝐴) ∈
∆∞ s.t. 𝜔 |= 𝐴. Because (𝐵|𝐴) ∈ ∆∞ the conditional
(𝐵|𝐴) is not tolerated by ∆∞, so there is a conditional
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(𝐵′|𝐴′) ∈ ∆∞ that is falsified by 𝜔 (this can be (𝐵|𝐴)
again).

Towards a contradiction assume that there is a c-
representation 𝜅�⃗� of ∆ with 𝜅�⃗�(𝜔) < ∞. As 𝜅�⃗� models
∆ and thus also (𝐵′|𝐴′) there must be a world 𝜔1 that
verifies (𝐵′|𝐴′) and satisfies 𝜅�⃗�(𝜔

1) < 𝜅�⃗�(𝜔). With the
same argumentation there must be another conditional
(𝐵1|𝐴1) ∈ ∆∞ that is falsified by 𝜔1, and another world
𝜔2 that verifies (𝐵1|𝐴1) and satisfies 𝜅�⃗�(𝜔

2) < 𝜅�⃗�(𝜔
1).

Repeating this argumentation we obtain an infinite chain
of worlds 𝜔1, 𝜔2, . . . s.t. 𝜅�⃗�(𝜔1) > 𝜅�⃗�(𝜔2) > . . .. But
as there are only finitely many worlds (and also because
there are only finitely many ranks below 𝜅�⃗�(𝜔1)) such a
chain cannot exist. Contradiction.

Proposition 5. Let ∆ be a weakly consistent belief base.
There is a c-representation 𝜅�⃗� of ∆ with 𝜅�⃗�(𝜔) < ∞ for
all worlds 𝜔 with 𝜅𝑧

Δ(𝜔) < ∞.

Proof. Let ∆ = {(𝐵1|𝐴1), . . . , (𝐵𝑛|𝐴𝑛)} be a
weakly consistent belief base. Let EZP(∆) =
{∆0, . . . ,∆𝑚,∆∞} be the extended Z-partition of ∆.
Construct an impact vector �⃗� for∆ as follows. Let𝜇0 = 1
and 𝜇𝑗 = |∆0∪· · ·∪∆𝑗−1| ·𝜇𝑗−1+1 for 𝑗 = 1, . . . ,𝑚.
For (𝐵𝑖|𝐴𝑖) with (𝐵𝑖|𝐴𝑖) ∈ ∆𝑗 let 𝜂𝑖 = 𝜇𝑗 for 𝑗 < ∞
and 𝜂𝑗 = ∞ for 𝑗 = ∞. By construction, for worlds 𝜔
that do not falsify a conditional from∆𝑗∪· · ·∪∆𝑚∪∆∞

we have 𝜅�⃗�(𝜔) < 𝜇𝑗 .
𝜅�⃗� is a c-representation of ∆: Let (𝐵𝑖|𝐴𝑖) be any con-

ditional in ∆. If (𝐵𝑖|𝐴𝑖) ∈ ∆∞ then 𝜅𝑧
Δ(𝐴𝑖) = ∞ by

the definition of 𝜅𝑧
Δ which implies with Proposition 4

that 𝜅�⃗�(𝐴𝑖) = ∞ and therefore 𝜅�⃗� |= (𝐵𝑖|𝐴𝑖). Oth-
erwise, we have (𝐵𝑖|𝐴𝑖) ∈ ∆𝑗 with 𝑗 < ∞. Then for
any world 𝜔′ falsifying (𝐵𝑖|𝐴𝑖) we have 𝜅�⃗�(𝜔) > 𝜇𝑗 ;
hence 𝜅�⃗�(𝐴𝑖𝐵𝑖) ⩾ 𝜇𝑗 . Because (𝐵𝑖|𝐴𝑖) ∈ ∆𝑗 , there
is a world 𝜔′ that verifies (𝐵𝑖|𝐴𝑖) and does not fal-
sify a conditional in ∆𝑗 ∪ · · · ∪∆𝑚 ∪∆∞. Therefore,
𝜅�⃗�(𝐴𝑖𝐵𝑖) < 𝜇𝑗 . Thus, 𝜅�⃗�(𝐴𝑖𝐵𝑖) < 𝜇𝑗 ⩽ 𝜅�⃗�(𝐴𝑖𝐵𝑖)
and 𝜅�⃗� |= (𝐵𝑖|𝐴𝑖).

Furthermore, it holds that 𝜅�⃗�(𝜔) = ∞ iff 𝜔 falsifies a
conditional in ∆∞. Therefore, 𝜅�⃗�(𝜔) < ∞ for all worlds
𝜔 with 𝜅𝑧

Δ(𝜔) < ∞.

Using Proposition 4 we can see that for all worlds 𝜔
the c-representation constructed in the proof of Proposi-
tion 5 satisfies that 𝜅�⃗�(𝜔) < ∞ iff 𝜅𝑧

Δ(𝜔) < ∞. Using
Lemma 1 we have 𝜅�⃗�(𝜔) < ∞ iff 𝜔 does not entail ⊥
with p-entailment.

Lemma 4. Let ∆ be a weakly consistent belief base. There
is an extended c-representation 𝜅�⃗� of ∆ such that for all
𝜔 ∈ Ω we have 𝜅�⃗�(𝜔) < ∞ iff 𝜔 |̸∼𝑝

Δ ⊥, where the world
𝜔 is considered as a formula on the right side of the “iff”.

Another consequence of Propositions 4 and 5 is the
following.

Proposition 6. Let ∆ be a belief base with EZP(∆) =
{∆0, . . . ,∆𝑚,∆∞}, and let 𝜔 ∈ Ω. We have that
𝜅(𝜔) = ∞ for all 𝜅 ∈ Mod 𝑒𝑐

Δ iff 𝜔 |= 𝐴 for some
(𝐵|𝐴) ∈ ∆∞.

Proof. Direction ⇒ If 𝜅(𝜔) = ∞ for all 𝜅 ∈ Mod 𝑒𝑐
Δ

then there is no 𝜅�⃗� ∈ Mod 𝑒𝑐
Δ with 𝜅�⃗�(𝜔) < ∞. With

Proposition 5 this implies 𝜅𝑧
Δ(𝜔) = ∞. By Definition 4

this is the case if a conditional in ∆∞ is applicable for 𝜔.
Direction ⇐ Assume 𝜔 |= 𝐴 for some (𝐵|𝐴) ∈

∆∞. Then 𝜅𝑧
Δ(𝜔) = ∞ and with Proposition 4 we have

𝜅(𝜔) = ∞ for all 𝜅 ∈ Mod 𝑒𝑐
Δ .

6. Extending c-Inference
c-Inference [6, 7] is an inference operator taking all c-
representations of a belief base ∆ into account. It was
originally defined for strongly consistent belief bases.

Definition 7 (c-inference, |∼𝑐
Δ [6]). Let ∆ be a strongly

consistent belief base and let 𝐴, 𝐵 be formulas. 𝐵 is a c-
inference from 𝐴 in the context of ∆, denoted by 𝐴 |∼𝑐

Δ 𝐵,
iff 𝐴 |∼𝜅 𝐵 holds for all c-representations 𝜅 of ∆.

Now we use extended c-representations to extend
c-inference for belief bases that may be only weakly
consistent. Extended c-inference takes all extended c-
representations of ∆ into account.

Definition 8 (extended c-inference, |∼𝑒𝑐
Δ ). Let ∆ be a

belief base and let 𝐴,𝐵 ∈ ℒ. Then 𝐵 is an extended c-
inference from𝐴 in the context of∆, denoted by𝐴 |∼𝑒𝑐

Δ 𝐵,
iff 𝐴 |∼𝜅 𝐵 holds for all extended c-representations 𝜅 of
∆.

First, let us verify that extended c-inference is indeed
a preferential inductive inference operator that coincides
with c-inference for strongly consistent belief bases.

Proposition 7. Extended c-inference is an inductive in-
ference operator.

Proof. We need to show that extended c-inference satis-
fies (DI) and (TV). (DI) is trivial: Every c-representation
of ∆ accepts the conditionals in ∆ by definition. There-
fore, 𝐴 |∼𝑒𝑐

Δ 𝐵 for every (𝐵|𝐴) ∈ ∆. (TV) is also clear:
For ∆ = ∅ the only c-representation is 𝜅 = 0. In this
case 𝜅 accepts only conditionals (𝐵|𝐴) with 𝐴𝐵 = ⊥,
which are conditionals with 𝐴 |= 𝐵.

Proposition 8. For strongly consistent belief bases, ex-
tended c-inference coincides with normal c-inference.

Proof. Let ∆ = {(𝐵1|𝐴1), . . . , (𝐵𝑛|𝐴𝑛)} be a strongly
consistent belief base and 𝐶,𝐷 ∈ ℒ. We need to show
that 𝐶 |∼𝑒𝑐

Δ 𝐷 iff 𝐶 |∼𝑐
Δ 𝐷.
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Direction ⇒: Let 𝐶 |∼𝑒𝑐
Δ 𝐷, i.e., every extended c-

representation models (𝐷|𝐶). As every c-representation
is an extended c-representation (Proposition 2), every
c-representation models (𝐷|𝐶). Thus, 𝐷 |∼𝑐

𝑘𝑏 𝐶 .
Direction ⇐: Let 𝐶 |∼𝑐

Δ 𝐷, i.e., every c-
representation models (𝐷|𝐶). We need to show that
any extended c-representation 𝜅�⃗� models (𝐷|𝐶). If �⃗�
contains only finite values it is a c-representation and
thus models (𝐷|𝐶) by assumption.

Assume that �⃗� contains infinite entries. Let
EZP(∆) = {∆0, . . . ,∆𝑚,∆∞} be the extended toler-
ance partition of ∆. Because ∆ is strongly consistent, we
have ∆∞ = ∅. Let fin(�⃗�) = {𝜂𝑖 | 𝑖 ∈ {0, . . . , 𝑛}, 𝜂𝑖 <
∞} be the set of finite values in impact vector �⃗� and
𝑓0 = 1 + |fin(�⃗�)| · max(fin(�⃗�)). Now construct �⃗�𝑓

from �⃗� as follows. For (𝐵𝑖|𝐴𝑖) ∈ ∆0 with 𝜂𝑖 = ∞ let
𝜂𝑓
𝑖 = 𝑓0. Let 𝑓1 = (𝑓0 + 1) · |{(𝐵𝑖|𝐴𝑖) ∈ ∆0 | 𝜂𝑖 =

∞}|. For (𝐵𝑖|𝐴𝑖) ∈ ∆1 with 𝜂𝑖 = ∞ let 𝜂𝑓
𝑖 = 𝑓1.

Let 𝑓2 = (𝑓1 + 1) ·
⃒⃒
{(𝐵𝑖|𝐴𝑖) ∈ ∆1 | 𝜂𝑖 = ∞}

⃒⃒
. For

(𝐵𝑖|𝐴𝑖) ∈ ∆1 with 𝜂𝑖 = ∞ let 𝜂𝑓
𝑖 = 𝑓2; and so on.

By construction the sum of the impacts in fin(�⃗�) is less
than 𝑓0 and the sum of the impacts of the conditionals
in ∆0 ∪ · · · ∪∆𝑗 is less than 𝑓𝑗 for 𝑗 = 0, . . . ,𝑚.

Let 𝜅𝑓 = 𝜅�⃗�𝑓 . Now verify that:

1. 𝜅𝑓 is a c-representation of ∆. For this we need
to check that 𝜅𝑓 models all conditionals in ∆.

2. |∼𝜅𝑓 ⊆ |∼𝜅�⃗�
, i.e., every inference in |∼𝜅𝑓 is also

an inference in |∼𝜅�⃗�
.

From (1.) it follows that 𝜅𝑓 is a model of (𝐷|𝐶), because
𝐶 |∼𝑐

Δ 𝐷. With (2.) it follows that (𝐷|𝐶) is modelled
by 𝜅�⃗� .

Ad (1): Let (𝐵𝑖|𝐴𝑖) ∈ ∆. We distinguish three cases.
Case 1: 𝜅�⃗�(𝐴𝑖𝐵𝑖) < 𝜅�⃗�(𝐴𝑖𝐵𝑖) < ∞

In this case 𝜅𝑓 (𝐴𝑖𝐵𝑖) < 𝜅𝑓 (𝐴𝑖𝐵𝑖) < 𝑓0 and therefore
𝜅𝑓 |= (𝐵𝑖|𝐴𝑖).

Case 2: 𝜅�⃗�(𝐴𝑖𝐵𝑖) < ∞ and 𝜅�⃗�(𝐴𝑖𝐵𝑖) = ∞
In this case 𝜅𝑓 (𝐴𝑖𝐵𝑖) < 𝑓0 < 𝜅𝑓 (𝐴𝑖𝐵𝑖) and therefore
𝜅𝑓 |= (𝐵𝑖|𝐴𝑖).

Case 3: 𝜅�⃗�(𝐴𝑖𝐵𝑖) = ∞ and 𝜅�⃗�(𝐴𝑖𝐵𝑖) = ∞
Assume that (𝐵𝑖|𝐴𝑖) is in ∆𝑗 . Then there is a world 𝜔 s.t.
𝜔 |= 𝐴𝑖𝐵𝑖 and𝜔 falsifies no conditional in∆0∪· · ·∪∆𝑗 .
Therefore, 𝜅𝑓 (𝜔) < 𝑓𝑗 and thus 𝜅𝑓 (𝐴𝑖𝐵𝑖) < 𝑓𝑗 . Any
model of 𝐴𝑖𝐵𝑖 falsifies (𝐵𝑖|𝐴𝑖), therefore 𝜅𝑓 (𝐴𝑖𝐵𝑖) >
𝑓𝑗 . Thus, we have 𝜅𝑓 (𝐴𝑖𝐵𝑖) < 𝑓𝑗 < 𝜅𝑓 (𝐴𝑖𝐵𝑖) and
therefore 𝜅𝑓 |= (𝐵𝑖|𝐴𝑖).

Ad (2.): Assume that 𝑋 |∼𝜅𝑓 𝑌 . There are two cases.
Case 1: 𝜅𝑓 (𝑋𝑌 ) < 𝑓0

In this case 𝜅𝑓 (𝑋𝑌 ) < 𝜅𝑓 (𝑋𝑌 ) < 𝑓0 and therefore
𝜅�⃗�(𝑋𝑌 ) < 𝜅�⃗�(𝑋𝑌 ) < ∞. Hence, 𝑋 |∼𝜅�⃗�

𝑌 .
Case 2: 𝜅𝑓 (𝑋𝑌 ) ⩾ 𝑓0

In this case 𝜅�⃗�(𝑋𝑌 ) = ∞ and therefore 𝑋 |∼𝜅�⃗�
𝑌 .

Let us continue by showing some further properties
of extended c-inference.

Proposition 9. Extended c-inference is preferential, i.e.,
it satisfies system P.

Proof. Every ranking function, and thus every extended
c-representation, induces a preferential inference rela-
tion. The intersection of two preferential inference re-
lations is again preferential. As extended c-inference is
the intersection of the inference relations induced by
each extended c-representation, extended c-inference is
preferential.

Proposition 9 implies that extended c-inference cap-
tures p-entailment, i.e., if 𝐴 |∼𝑝

Δ 𝐵 then 𝐴 |∼𝑒𝑐
Δ

𝐵. Furthermore, exteded c-inference coincides with p-
entailment on entailments of the form 𝐴 |∼⊥ which can
be seen as representations of “strict” beliefs (i.e., 𝐴 is
completely unfeasible).

Proposition 10. Extended c-inference satisfies (Classic
Preservation).

Proof. We need to show that 𝐴 |∼𝑒𝑐
Δ ⊥ iff 𝐴 |∼𝑝

Δ ⊥.
Using Lemma 1 it is sufficient to show that 𝐴 |∼𝑒𝑐

Δ ⊥ iff
𝜅𝑧(𝐴) = ∞.

Direction ⇐: Let 𝜅𝑧
Δ(𝐴) = ∞. Then Proposition 4

states that 𝜅�⃗�(𝐴) = ∞ for every c-representation 𝜅�⃗�(𝐴)
of ∆. Thus, 𝐴 |∼𝑐

Δ ⊥.
Direction ⇒: Let 𝐴 |∼𝑐

Δ ⊥, i.e., there is no c-
representation 𝜅�⃗� of ∆ s.t. 𝜅�⃗�(𝐴) < ∞. By Proposi-
tion 5 we have 𝜅𝑧

Δ(𝐴) = ∞.

Extended c-inference does not satisfy Rational
Monotony (RM) as c-inference already violates (RM).

7. CSPs for Extended
c-Representations

In this section, we investigate constraint satisfaction
problems (CSPs) dealing with extended c-representations.
In Section 7.1, after presenting a constraint system de-
scribing all extended c-representations of a belief base,
we develop a simplification of this constraint system that
takes the effects of conditionals in ∆∞ into account right
from the beginning. In Section 7.2 we show how extended
c-inference can be realized by a CSP.

7.1. Describing Extended
c-Representations by CSPs

The c-representations of a belief base ∆ can conveniently
be characterized by the solutions of a constraint sat-
isfaction problem. In [7], the following modelling of
c-representations as solutions of a CSP is introduced.
For a belief base ∆ = {(𝐵1|𝐴1), . . . , (𝐵𝑛|𝐴𝑛)} over Σ
the constraint satisfaction problem for c-representations
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of ∆, denoted by CRΣ(∆), on the constraint variables
{𝜂1, . . . , 𝜂𝑛} ranging over N0 is given by the constraints
crΔ𝑖 , for all 𝑖 ∈ {1, . . . , 𝑛}:

(crΔ𝑖 )

𝜂𝑖 > min
𝜔∈ΩΣ

𝜔|=𝐴𝑖𝐵𝑖

∑︁
𝑗 ̸=𝑖

𝜔|=𝐴𝑗𝐵𝑗

𝜂𝑗 − min
𝜔∈ΩΣ

𝜔|=𝐴𝑖𝐵𝑖

∑︁
𝑗 ̸=𝑖

𝜔|=𝐴𝑗𝐵𝑗

𝜂𝑗 .

The constraint crΔ𝑖 is the constraint corresponding to
the conditional (𝐵𝑖|𝐴𝑖). The sum terms are induced by
the worlds verifying and falsifying (𝐵𝑖|𝐴𝑖), respectively.
A solution of CRΣ(∆) is an 𝑛-tuple (𝜂1, . . . , 𝜂𝑛) ∈
N𝑛

0 . For a constraint satisfaction problem CSP , the
set of solutions is denoted by Sol(CSP). Thus, with
Sol(CRΣ(∆)) we denote the set of all solutions of
CRΣ(∆). The solutions of CRΣ(∆) correspond to the
c-representations of ∆.

Proposition 11 (soundness and completeness of
CRΣ(∆) [7]). Let ∆ = {(𝐵1|𝐴1), . . . , (𝐵𝑛|𝐴𝑛)} be
a belief base over Σ. Then we have:

Mod 𝑐
Σ(∆) = {𝜅�⃗� | �⃗� ∈ Sol(CRΣ(∆))} (4)

If we want to construct a similar CSP for extended
c-representations, we have to take worlds and formulas
with infinite rank into account.

Definition 9 (CR𝑒𝑥
Σ (∆)). Let ∆ = {(𝐵1|𝐴1), . . . ,

(𝐵𝑛|𝐴𝑛)} be a belief base over Σ. The constraint satisfac-
tion problem for extended c-representations of ∆, denoted
by CR𝑒𝑥

Σ (∆), on the constraint variables {𝜂1, . . . , 𝜂𝑛}
ranging over N0 ∪{∞} is given by the constraints cr𝑒𝑥Δ

𝑖 ,
for all 𝑖 ∈ {1, . . . , 𝑛}:

(cr𝑒𝑥Δ
𝑖 ) min

𝜔∈ΩΣ
𝜔|=𝐴𝑖

∑︁
1⩽𝑗⩽𝑛

𝜔|=𝐴𝑗𝐵𝑗

𝜂𝑗 = ∞ or

𝜂𝑖 > min
𝜔∈ΩΣ

𝜔|=𝐴𝑖𝐵𝑖

∑︁
𝑗 ̸=𝑖

𝜔|=𝐴𝑗𝐵𝑗

𝜂𝑗 − min
𝜔∈ΩΣ

𝜔|=𝐴𝑖𝐵𝑖

∑︁
𝑗 ̸=𝑖

𝜔|=𝐴𝑗𝐵𝑗

𝜂𝑗

Again, each constraint cr𝑒𝑥Δ
𝑖 corresponds to the con-

ditional (𝐵𝑖|𝐴𝑖) ∈ ∆.

Proposition 12 (soundness and completeness of
CR𝑒𝑥

Σ (∆)). Let ∆ = {(𝐵1|𝐴1), . . . , (𝐵𝑛|𝐴𝑛)} be a
weakly consistent belief base over Σ. Then we have:

Mod 𝑒𝑐
Σ (∆) = {𝜅�⃗� | �⃗� ∈ Sol(CR𝑒𝑥

Σ (∆))} (5)

Proof. Soundness: Let �⃗� be an impact vector in
Sol(CR𝑒𝑥

Σ (∆)). Because ∆ is weakly consistent, there
is a world 𝜔 that does not falsify any conditional in ∆;
therefore 𝜅�⃗�(𝜔) = 0 and 𝜅�⃗� is a ranking function. It is
left to show that 𝜅�⃗� satisfies all conditionals in ∆.

Let (𝐵𝑖|𝐴𝑖) ∈ ∆. There are three cases.
Case 1: 𝜅�⃗�(𝐴𝑖𝐵𝑖) = ∞ and 𝜅�⃗�(𝐴𝑖𝐵𝑖) = ∞

In this case 𝜅�⃗�(𝐴𝑖) = ∞ and therefore 𝜅�⃗� |= (𝐵𝑖|𝐴𝑖).
Case 2: 𝜅�⃗�(𝐴𝑖𝐵𝑖) = ∞ and 𝜅�⃗�(𝐴𝑖𝐵𝑖) < ∞

In this case 𝜅�⃗�(𝐴𝑖𝐵𝑖 > 𝜅�⃗�(𝐴𝑖𝐵𝑖) < ∞ and therefore
𝜅�⃗� |= (𝐵𝑖|𝐴𝑖).

Case 3: 𝜅�⃗�(𝐴𝑖𝐵𝑖) < ∞
In this case min𝜔∈ΩΣ

𝜔|=𝐴𝑖

∑︀
1⩽𝑗⩽𝑛

𝜔|=𝐴𝑗𝐵𝑗

𝜂𝑗 = 𝜅�⃗�(𝐴𝑖𝐵𝑖) <

∞; hence the condition in (cr𝑒𝑥Δ
𝑖 ) before the or is not

satisfied.
Because �⃗� ∈ Sol(CR𝑒𝑥

Σ (∆)) it must satisfy all con-
straints in CR𝑒𝑥

Σ (∆) including (cr𝑒𝑥Δ
𝑖 ). Because the

condition before the or is violated, it must hold that

𝜂𝑖 > min
𝜔∈ΩΣ

𝜔|=𝐴𝑖𝐵𝑖

∑︁
𝑗 ̸=𝑖

𝜔|=𝐴𝑗𝐵𝑗

𝜂𝑗 − min
𝜔∈ΩΣ

𝜔|=𝐴𝑖𝐵𝑖

∑︁
𝑗 ̸=𝑖

𝜔|=𝐴𝑗𝐵𝑗

𝜂𝑗

⇔ 𝜂𝑖 + min
𝜔∈ΩΣ

𝜔|=𝐴𝑖𝐵𝑖

∑︁
𝑗 ̸=𝑖

𝜔|=𝐴𝑗𝐵𝑗

𝜂𝑗 > min
𝜔∈ΩΣ

𝜔|=𝐴𝑖𝐵𝑖

∑︁
𝑗 ̸=𝑖

𝜔|=𝐴𝑗𝐵𝑗

𝜂𝑗

⇔ min
𝜔∈ΩΣ

𝜔|=𝐴𝑖𝐵𝑖

∑︁
1⩽𝑗⩽𝑛

𝜔|=𝐴𝑗𝐵𝑗

𝜂𝑗 > min
𝜔∈ΩΣ

𝜔|=𝐴𝑖𝐵𝑖

∑︁
1⩽𝑗⩽𝑛

𝜔|=𝐴𝑗𝐵𝑗

𝜂𝑗

⇔ 𝜅�⃗�(𝐴𝑖𝐵𝑖) > 𝜅�⃗�(𝐴𝑖𝐵𝑖)

and therefore 𝜅�⃗� |= (𝐵𝑖|𝐴𝑖).
Completeness: Let 𝜅�⃗� be an extended c-

representation of ∆ with impact vector �⃗�. We
need to show that �⃗� ∈ Sol(CR𝑒𝑥

Σ (∆)), i.e., that �⃗�
satisfies every constraint (cr𝑒𝑥Δ

𝑖 ) in CR𝑒𝑥
Σ (∆). Because

𝜅�⃗� is an extended c-representation of ∆, we have
𝜅�⃗� |= (𝐵𝑖|𝐴𝑖). This requires either (1.) 𝜅�⃗�(𝐴𝑖) = ∞
or (2.) 𝜅�⃗�(𝐴𝑖𝐵𝑖) > 𝜅�⃗�(𝐴𝑖𝐵𝑖). In case (1.) it is
min𝜔∈ΩΣ

𝜔|=𝐴𝑖

∑︀
1⩽𝑗⩽𝑛

𝜔|=𝐴𝑗𝐵𝑗

𝜂𝑗 = 𝜅�⃗�(𝐴𝑖𝐵𝑖) = ∞ and the

condition before the or in (cr𝑒𝑥Δ
𝑖 ) is satisfied. In case (2.)

we can see with the equivelence transformations in the
Soundness part of this proof that the condition behind
the or is satisfied. In both cases �⃗� satisfies (cr𝑒𝑥Δ

𝑖 ).

The requirement for weak consistency in Proposi-
tion 12 is necessary because for a belief base ∆ that
is not weakly consistent it holds that 𝐶Mod 𝑒𝑐

Δ = ∅ but
Sol(CR𝑒𝑥

Σ (∆)) = (∞, . . . ,∞). If we rule out the solu-
tion (∞, . . . ,∞) by adding a constraint, Proposition 12
also holds for not weakly consistent belief bases.

The resulting CSP CR𝑒𝑥
Σ (∆) is not a conjunction of

inequalities any more, but it now contains disjunctions
and is thus more complex. However, for the computation
of extended c-inference we can construct a simplified CSP
CRS 𝑒𝑥

Σ (∆) that still yields all extended c-representations
necessary for c-inference. This is possible, because from
Propositions 4 and 5 we already know which worlds
must have rank infinity and which worlds may have
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finite rank in the extended c-representations of ∆. The
simplified CSP not only uses fewer constraint variables
but also fewer constraints than CR𝑒𝑥

Σ (∆) for weakly but
not strongly consistent belief bases.

Before stating CRS 𝑒𝑥
Σ (∆), we show some proposition

we will use for proving the correctness of CRS 𝑒𝑥
Σ (∆).

We can assume the impacts of conditionals in ∆∞ to
be infinity.

Proposition 13. Let ∆ be a weakly consistent be-
lief base with extended Z-partition EZP(∆) =
{∆0, . . . ,∆𝑚,∆∞}. Let �⃗� be impacts such that 𝜅�⃗� is
an extended c-representation of ∆. Let �⃗�′ be the impact
vector defined by 𝜂′

𝑖 = ∞ if (𝐵𝑖|𝐴𝑖) ∈ ∆∞ and 𝜂′
𝑖 = 𝜂𝑖

otherwise. Then 𝜅�⃗� = 𝜅�⃗�′ .

Proof. Let 𝜔 be a world. There are two cases.
Case 1: There is a conditional (𝐵𝑖|𝐴𝑖) ∈ ∆∞ that

is falsified by 𝜔. Then 𝜅𝑧
Δ(𝜔) = ∞ and therefore

𝜅�⃗�(𝜔) = ∞ by Proposition 4. Because 𝜂′
𝑖 = ∞ we have

𝜅�⃗�′(𝜔) =
∑︀

1⩽𝑗⩽𝑛

𝜔|=𝐴𝑗𝐵𝑗

𝜂′
𝑗 = ∞ = 𝜅�⃗�(𝜔).

Case 2: There is no conditional in ∆∞ that is falsified
by 𝜔. Because 𝜂𝑖 = 𝜂′

𝑖 for all 𝑖 with 𝜔 |= 𝐴𝑗𝐵𝑗 we
have 𝜅�⃗�′(𝜔) =

∑︀
1⩽𝑗⩽𝑛

𝜔|=𝐴𝑗𝐵𝑗

𝜂′
𝑗 =

∑︀
1⩽𝑗⩽𝑛

𝜔|=𝐴𝑗𝐵𝑗

𝜂𝑗 = 𝜅�⃗�(𝜔).

For c-inference, it is sufficient to take only a subset of
all c-representations of a belief base into account.

Definition 10. Let ∆ be a belief base. Then 𝐶Mod 𝑒𝑐
Δ is

the set of c-representations 𝜅�⃗� of ∆ with 𝜅�⃗�(𝜔) < ∞ for
all worlds 𝜔 with 𝜅𝑧

Δ(𝜔) < ∞.

Proposition 14. Let ∆ be a belief base. Then 𝐴 |∼𝜅 𝐵
holds for all c-representations 𝜅 in 𝐶Mod 𝑒𝑐

Δ iff 𝐴 |∼𝜅 𝐵
holds for all c-representations 𝜅 in Mod 𝑒𝑐

Δ .

Proof. Direction ⇐: Observe that 𝐶Mod 𝑒𝑐
Δ ⊆ Mod 𝑒𝑐

Δ .
Therefore, if 𝐴 |∼𝜅 𝐵 holds for all c-representations 𝜅
in Mod 𝑒𝑐

Δ , then 𝐴 |∼𝜅 𝐵 holds for all c-representations
𝜅 in 𝐶Mod 𝑒𝑐

Δ .
Direction ⇒: Show this by contraposition. Assume

that 𝜅 ∈ 𝐶Mod 𝑒𝑐
Δ with 𝐴 |̸∼𝜅 𝐵. Using the construction

of 𝜅𝑓 in the proof of Proposition 8 we can find a 𝜅′ =
𝜅𝑓 that is a c-inference of ∆ and satisfies |∼𝜅′ ⊆ |∼𝜅.
Therefore, if 𝐴 |̸∼𝜅 𝐵 then 𝐴 |̸∼𝜅′ 𝐵. Hence, there is a
c-representation 𝜅′ with 𝐴 |̸∼𝜅′ 𝐵.

As already indicated above, the c-representations in
𝐶Mod 𝑒𝑐

Δ can then be represented by a simplified CSP.

Definition 11 (CRS 𝑒𝑥
Σ (∆)). Let ∆ = {(𝐵1|𝐴1), . . . ,

(𝐵𝑛|𝐴𝑛)} be a belief base over Σ with the extended toler-
ance partition EZP(∆) = {∆0, . . . ,∆𝑚,∆∞}. Let

𝐽Δ = {𝑗 |(𝐵𝑗 |𝐴𝑗) ∈ ∆ ∖∆∞ s.t.

𝐴𝑗𝐵𝑗 ∧
(︀ ⋀︁
(𝐷|𝐶)∈Δ∞

(𝐶 ∨𝐷)
)︀
̸≡ ⊥}.

The simplified constraint satisfaction problem for ex-
tended c-inference of ∆, denoted by CRS 𝑒𝑥

Σ (∆), on the
constraint variables {𝜂𝑗1 , . . . , 𝜂𝑗𝑙}, 𝑗𝑘 ∈ 𝐽Δ ranging
over N0 is given by the constraints crs𝑒𝑥Δ

𝑗 , for all 𝑗 ∈ 𝐽Δ:

(crs𝑒𝑥Δ
𝑗 )

𝜂𝑖 > min
𝜔∈ΩΣ

𝜔|=𝐴𝑖𝐵𝑖

∑︁
𝑗∈𝐽Δ
𝑗 ̸=𝑖

𝜔|=𝐴𝑗𝐵𝑗

𝜂𝑗 − min
𝜔∈ΩΣ

𝜔|=𝐴𝑖𝐵𝑖

∑︁
𝑗∈𝐽Δ
𝑗 ̸=𝑖

𝜔|=𝐴𝑗𝐵𝑗

𝜂𝑗 .

The condition 𝐴𝑗𝐵𝑗∧
(︀⋀︀

(𝐷|𝐶)∈Δ∞(𝐶∨𝐷)
)︀
̸≡ ⊥ in

the definition of 𝐽Δ is equivalent to there being a world
𝜔 ∈ Ω𝐴𝑗𝐵𝑗

that does not falsify a conditional in ∆∞.

Definition 12. Let ∆ be a belief base, 𝑛 = |∆|, and let
𝐽Δ be defined as above. For every �⃗�𝐽 ∈ Sol(CRS 𝑒𝑥

Σ (∆))
let �⃗�𝐽+∞ ∈ (N0 ∪ {∞})𝑛 be the impact vector with

𝜂𝐽+∞
𝑖 =

{︃
𝜂𝑖 for 𝑖 ∈ 𝐽Δ

∞ otherwise.

Then 𝑆𝑜𝑙𝐽+∞
Δ := {�⃗�𝐽+∞ | �⃗�𝐽 ∈ 𝑆𝑜𝑙(CRS 𝑒𝑥

Σ (∆))}.

Proposition 15 (soundness and completeness of
CRS 𝑒𝑥

Σ (∆)). Let ∆ be a weakly consistent belief base
over Σ. Then

𝐶Mod 𝑒𝑐
Σ (∆) = {𝜅�⃗� | �⃗� ∈ 𝑆𝑜𝑙𝐽+∞

Δ }. (6)

Proof. Let EZP(∆) = (∆0, . . . ,∆𝑘,∆∞), and let 𝐽Δ

be defined as in Definition 11.
Soundness: Let �⃗� ∈ 𝑆𝑜𝑙𝐽+∞

Δ . By definition, there
is a vector �⃗�𝐽 ∈ Sol(CRS 𝑒𝑥

Σ (∆)) such that �⃗� = �⃗�𝐽+∞.
Because 𝜂𝑖 = ∞ for every (𝐵𝑖|𝐴𝑖) ∈ ∆∞ and due to

Lemma 2, all worlds 𝜔 for which one of the conditionals
in ∆∞ is applicable have rank 𝜅�⃗�(𝜔) = ∞. Therefore,
all conditionals in ∆∞ are accepted by 𝜅�⃗� .

For any conditional (𝐵𝑖|𝐴𝑖) ∈ ∆ ∖ ∆∞ there is at
least one world 𝜔 that verifies (𝐵𝑖|𝐴𝑖) without falsify-
ing a conditional in ∆∞ (otherwise (𝐵𝑖|𝐴𝑖) would not
be tolerated by ∆∞). Because every world that falsi-
fies a conditional (𝐵𝑗 |𝐴𝑗) with 𝑗 /∈ 𝐽Δ also falsifies
a conditional in ∆∞, the world 𝜔 does not falsify any
such conditional (𝐵𝑗 |𝐴𝑗) with impact ∞. Therefore,
𝜅�⃗�(𝐴𝑖𝐵𝑖) < ∞. If 𝜅�⃗�(𝐴𝑖𝐵𝑖) = ∞ then 𝜅�⃗� |= (𝐵𝑖|𝐴𝑖).
Otherwise, for 𝜅�⃗�(𝐴𝑖𝐵𝑖) < ∞, there is a world that
falsifies (𝐵|𝐴) without falsifying a conditional in ∆∞.
In this case it is 𝑖 ∈ 𝐽Δ and the CSP CRS 𝑒𝑥

Σ (∆) contains
the constraint (crs𝑒𝑥Δ

𝑗 ) which must hold for �⃗�𝐽 :

𝜂𝑖 > min
𝜔∈ΩΣ

𝜔|=𝐴𝑖𝐵𝑖

∑︁
𝑗∈𝐽Δ
𝑗 ̸=𝑖

𝜔|=𝐴𝑗𝐵𝑗

𝜂𝑗 − min
𝜔∈ΩΣ

𝜔|=𝐴𝑖𝐵𝑖

∑︁
𝑗∈𝐽Δ
𝑗 ̸=𝑖

𝜔|=𝐴𝑗𝐵𝑗

𝜂𝑗
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⇔ 𝜂𝑖 + min
𝜔∈ΩΣ

𝜔|=𝐴𝑖𝐵𝑖

∑︁
𝑗∈𝐽Δ
𝑗 ̸=𝑖

𝜔|=𝐴𝑗𝐵𝑗

𝜂𝑗 > min
𝜔∈ΩΣ

𝜔|=𝐴𝑖𝐵𝑖

∑︁
𝑗∈𝐽Δ
𝑗 ̸=𝑖

𝜔|=𝐴𝑗𝐵𝑗

𝜂𝑗

⇔ min
𝜔∈ΩΣ

𝜔|=𝐴𝑖𝐵𝑖

∑︁
𝑗∈𝐽Δ

𝜔|=𝐴𝑗𝐵𝑗

𝜂𝑗 > min
𝜔∈ΩΣ

𝜔|=𝐴𝑖𝐵𝑖

∑︁
𝑗∈𝐽Δ

𝜔|=𝐴𝑗𝐵𝑗

𝜂𝑗

(*)⇔ min
𝜔∈ΩΣ

𝜔|=𝐴𝑖𝐵𝑖

∑︁
1⩽𝑗⩽𝑛

𝜔|=𝐴𝑗𝐵𝑗

𝜂𝑗 > min
𝜔∈ΩΣ

𝜔|=𝐴𝑖𝐵𝑖

∑︁
1⩽𝑗⩽𝑛

𝜔|=𝐴𝑗𝐵𝑗

𝜂𝑗

⇔ 𝜅�⃗�(𝐴𝑖𝐵𝑖) > 𝜅�⃗�(𝐴𝑖𝐵𝑖).

Therefore, 𝜅�⃗� |= (𝐵𝑖|𝐴𝑖).
The equivalence (*) holds, because there is a model for

𝐴𝑖𝐵𝑖
̇ that does not falsify a conditional in ∆∞, we have

𝜂𝑗 = ∞ for all (𝐵𝑗 |𝐴𝑗) with 𝑗 /∈ 𝐽Δ, and therefore

min
𝜔∈ΩΣ

𝜔|=𝐴𝑖𝐵𝑖
˙

∑︁
𝑗∈𝐽Δ

𝜔|=𝐴𝑗𝐵𝑗

𝜂𝑗 = min
𝜔∈ΩΣ

𝜔|=𝐴𝑖𝐵𝑖
˙

∑︁
1⩽𝑗⩽𝑛

𝜔|=𝐴𝑗𝐵𝑗

𝜂𝑗 .

For any world 𝜔 with 𝜅𝑧
Δ(𝜔) < ∞ it holds that all

conditionals in ∆∞ are not applicable in 𝜔. Therefore,
𝜅�⃗�(𝜔) is the sum of some of the impacts in �⃗�𝐽 ; and be-
cause �⃗�𝐽 ∈ N𝑙

0 we have 𝜅�⃗�(𝜔) < ∞.
In summary, 𝜅�⃗� ∈ 𝐶Mod 𝑒𝑐

Δ .
Completeness: Let 𝜅 ∈ 𝐶Mod 𝑒𝑐

Δ be an extended
c-representation. Let �⃗� ∈ (N0 ∪ ∞)𝑛 be an impact
vector such that 𝜅 = 𝜅�⃗� . Because of Proposition 13,
w.l.o.g. we can assume 𝜂𝑖 = ∞ for all (𝐵𝑖|𝐴𝑖) ∈ ∆∞.
Furthermore, w.l.o.g, we can assume 𝜂𝑖 = ∞ for all
conditionals (𝐵𝑖|𝐴𝑖) ∈ ∆ ∖∆∞ which are falsified only
by worlds 𝜔 that also falsify a conditional in ∆∞ – all
worlds for which these impacts apply already have rank
∞ because of the impacts for ∆∞.

The vector �⃗� is a combination of a vector �⃗�𝐽 of impacts
𝜂𝑗 for 𝑗 ∈ 𝐽Δ, and a vector (∞, . . . ,∞) of size 𝑛−|𝐽Δ|
of impacts for conditionals (𝐵𝑗 |𝐴𝑗) with 𝑗 /∈ 𝐽Δ.

For every 𝑖 ∈ 𝐽Δ, by construction of 𝐽Δ there is at
least one world 𝜔 falsifying (𝐵𝑖|𝐴𝑖) without falsifying
a conditional in ∆∞. Then, 𝜅𝑧

Δ(𝜔) < ∞ because 𝜔
falsifies no conditionals in ∆∞ and due to Lemma 2;
therefore 𝜂𝑖 < 𝜅�⃗�(𝜔) < ∞ because 𝜅�⃗� ∈ 𝐶Mod 𝑒𝑐

Δ .
Hence, �⃗�𝐽 ∈ N0.

It is left to show that �⃗�𝐽 is a solution of CRS 𝑒𝑥
Σ (∆),

i.e., that for every 𝑗 ∈ 𝐽Δ it satisfies the constraint
(crs𝑒𝑥Δ

𝑗 ). As 𝜅�⃗� is a model of ∆, it satisfies the con-
ditional (𝐵𝑗 |𝐴𝑗) ∈ ∆. By construction of 𝐽Δ, there
is at least one world 𝜔 falsifying (𝐵𝑗 |𝐴𝑗) without fal-
sifying a conditional in ∆∞. As established above, the
rank of such a world in 𝜅�⃗� is finite, and thus 𝜅�⃗�(𝐴) is fi-
nite. To satisfy(𝐵𝑗 |𝐴𝑗) it is necessary that 𝜅�⃗�(𝐴𝑖𝐵𝑖) >
𝜅�⃗�(𝐴𝑖𝐵𝑖). Using the equivalence transformation in the
Soundness part of this proof, we obtain that (crs𝑒𝑥Δ

𝑗 )
holds for 𝜂𝑗 .

Propositions 14 and 15 imply the following result.

Proposition 16. Let ∆ be a weakly consistent belief base.
Then 𝐴 |∼𝑒𝑐

Δ 𝐵 iff 𝐴 |∼𝜅�⃗�
𝐵 for every �⃗� ∈ 𝑆𝑜𝑙𝐽+∞

Δ .

The following example illustrates how CRS 𝑒𝑥
Σ (∆) is

simpler than CR𝑒𝑥
Σ (∆).

Example 3. Let Σ = {𝑎, 𝑏, 𝑐} and ∆ = {(⊥|𝑎), (𝑎|𝑏),
(𝑏|𝑐)}. The CSP CR𝑒𝑥

Σ (∆) over 𝜂1, 𝜂1, 𝜂3 ∈ N0 ∪ ∞
contains the constraints

(cr𝑒𝑥Δ
1 ) min

𝜔∈ΩΣ
𝜔|=𝑎

∑︁
1⩽𝑗⩽𝑛

𝜔|=𝐴𝑗𝐵𝑗

𝜂𝑗 = ∞ or

𝜂1 > min
𝜔∈ΩΣ
𝜔|=𝑎∧⊥

∑︁
𝑗 ̸=1

𝜔|=𝐴𝑗𝐵𝑗

𝜂𝑗 − min
𝜔∈ΩΣ
𝜔|=𝑎∧⊤

∑︁
𝑗 ̸=1

𝜔|=𝐴𝑗𝐵𝑗

𝜂𝑗 ,

(cr𝑒𝑥Δ
2 ) min

𝜔∈ΩΣ
𝜔|=𝑏

∑︁
1⩽𝑗⩽𝑛

𝜔|=𝐴𝑗𝐵𝑗

𝜂𝑗 = ∞ or

𝜂𝑖 > min
𝜔∈ΩΣ
𝜔|=𝑏𝑎

∑︁
𝑗 ̸=2

𝜔|=𝐴𝑗𝐵𝑗

𝜂𝑗 − min
𝜔∈ΩΣ
𝜔|=𝑏𝑎

∑︁
𝑗 ̸=2

𝜔|=𝐴𝑗𝐵𝑗

𝜂𝑗 ,

(cr𝑒𝑥Δ
3 ) min

𝜔∈ΩΣ
𝜔|=𝑐

∑︁
1⩽𝑗⩽𝑛

𝜔|=𝐴𝑗𝐵𝑗

𝜂𝑗 = ∞ or

𝜂𝑖 > min
𝜔∈ΩΣ
𝜔|=𝑐𝑏

∑︁
𝑗 ̸=3

𝜔|=𝐴𝑗𝐵𝑗

𝜂𝑗 − min
𝜔∈ΩΣ

𝜔|=𝑐𝑏

∑︁
𝑗 ̸=3

𝜔|=𝐴𝑗𝐵𝑗

𝜂𝑗 .

The extended Z-partition of ∆ is EZP(∆) =
(∆0,∆∞) with ∆0 = {(𝑎|𝑏), (𝑏|𝑐)} and ∆∞ =
{(⊥|𝑎)}. The conditional (𝑎|𝑏) cannot be falsified with-
out also falsifying (⊥|𝑎) ∈ ∆∞. Therefore, 𝐽Δ = {3}
and the CSP CRS 𝑒𝑥

Σ (∆) over 𝜂3 ∈ N0 contains only the
constraint

(crs𝑒𝑥Δ
3 )

𝜂3 > min
𝜔∈ΩΣ
𝜔|=𝑏𝑐

∑︁
𝑗∈𝐽Δ
𝑗 ̸=3

𝜔|=𝐴𝑗𝐵𝑗

𝜂𝑗 − min
𝜔∈ΩΣ
𝜔|=𝑏𝑐

∑︁
𝑗∈𝐽Δ
𝑗 ̸=3

𝜔|=𝐴𝑗𝐵𝑗

𝜂𝑗

which simplifies to 𝜂3 > 0. For �⃗� ∈ 𝑆𝑜𝑙𝐽+∞
Δ it holds that

𝜂1 = 𝜂2 = ∞ and 𝜂3 ∈ Sol(CRS 𝑒𝑥
Σ (∆)).

7.2. Check for Extended c-Entailment by
Testing a CSP for Solvability

In [7] a method is developed that realizes c-inference
as a CSP. The idea of this approach is that in order to
check wheter 𝐴 |∼𝑐

Δ 𝐵 holds, a constraint encoding
that 𝐴 |∼𝜅�⃗�

𝐵 does not hold is added to CRΣ(∆). If
the resulting CSP is unsovable, 𝐴 |∼𝜅�⃗�

𝐵 holds for all
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solutions �⃗� of CRΣ(∆). Based on this idea, we develop
a CSP that allows doing something similar for extended
c-inference.

Definition 13. Let ∆ = {(𝐵1|𝐴1), . . . , (𝐵𝑛|𝐴𝑛)} be a
belief base and let 𝐽Δ be as defined in Definition 11. The
constraint ¬CRΔ(𝐵|𝐴) is given by

min
𝜔|=𝐴𝐵

∑︁
𝑖∈𝐽Δ

𝜔|=𝐴𝑖𝐵𝑖

𝜂𝑖 ⩾ min
𝜔|=𝐴𝐵

∑︁
𝑖∈𝐽Δ

𝜔|=𝐴𝑖𝐵𝑖

𝜂𝑖. (7)

Proposition 17. Let ∆ be a weakly consistent belief base.
Then 𝐴 |∼𝑒𝑐

Δ 𝐵 iff either 𝜅𝑧
Δ(𝐴𝐵) = ∞ or

(︀
𝜅𝑧
Δ(𝐴𝐵) <

∞ and CRS 𝑒𝑥
Σ (∆) ∪ ¬CRΔ(𝐵|𝐴) is unsolvable

)︀
.

Proof. Direction ⇒: Assume that 𝐴 |∼𝑒𝑐
Δ 𝐵 and that

𝜅𝑧
Δ(𝐴𝐵) < ∞. Then 𝜅(𝐴𝐵) < ∞ for all 𝜅 ∈ 𝐶Mod 𝑒𝑐

Δ

by the definition of 𝐶Mod 𝑒𝑐
Δ . Therefore, 𝜅(𝐴) < ∞ for

all 𝜅 ∈ 𝐶Mod 𝑒𝑐
Δ . Furthermore, 𝐴 |∼𝑒𝑐

Δ 𝐵 implies that
for every 𝜅 ∈ 𝐶Mod 𝑒𝑐

Δ , we have 𝐴 |∼𝜅 𝐵. Therefore,
𝜅(𝐴𝐵) < 𝜅(𝐴𝐵) for every 𝜅 ∈ 𝐶Mod 𝑒𝑐

Δ , and because
of Proposition 15 𝜅�⃗�(𝐴𝐵) < 𝜅�⃗�(𝐴𝐵) for every �⃗� ∈
𝑆𝑜𝑙𝐽+∞

Δ . We have

𝜅�⃗�(𝐴𝐵) < 𝜅�⃗�(𝐴𝐵)

⇔ min
𝜔|=𝐴𝐵

∑︁
1⩽𝑖⩽𝑛

𝜔|=𝐴𝑖𝐵𝑖

𝜂𝑖 < min
𝜔|=𝐴𝐵

∑︁
1⩽𝑖⩽𝑛

𝜔|=𝐴𝑖𝐵𝑖

𝜂𝑖

(*)⇔ min
𝜔|=𝐴𝐵

∑︁
𝑖∈𝐽Δ

𝜔|=𝐴𝑖𝐵𝑖

𝜂𝑖 < min
𝜔|=𝐴𝐵

∑︁
𝑖∈𝐽Δ

𝜔|=𝐴𝑖𝐵𝑖

𝜂𝑖.

Equivalence (*) holds because the ranks of the minimal
models of 𝐴𝐵 and 𝐴𝐵 are finite and therefore do not
violate a conditional (𝐵𝑖|𝐴𝑖) with 𝑖 /∈ 𝐽Δ.

Therefore, ¬CRΔ(𝐵|𝐴) does not hold for any so-
lution of CRS 𝑒𝑥

Σ (∆), implying that CRS 𝑒𝑥
Σ (∆) ∪

¬CRΔ(𝐵|𝐴) is unsolvable.
Direction ⇐: Assume that either 𝜅𝑧

Δ(𝐴𝐵) = ∞
or

(︀
𝜅𝑧
Δ(𝐴𝐵) < ∞ and CRS 𝑒𝑥

Σ (∆) ∪ ¬CRΔ(𝐵|𝐴) is
unsolvable

)︀
. There are three cases.

Case 1: 𝜅𝑧
Δ(𝐴𝐵) = ∞ and 𝜅𝑧

Δ(𝐴𝐵) = ∞
Then 𝜅𝑧

Δ(𝐴) = ∞ and, by Proposition 4, 𝜅(𝐴) = ∞ for
every 𝜅 ∈ Mod 𝑒𝑐

Δ . Therefore 𝐴 |∼𝑒𝑐
Δ 𝐵.

Case 2: 𝜅𝑧
Δ(𝐴𝐵) < ∞ and 𝜅𝑧

Δ(𝐴𝐵) = ∞
Then, by the definition of 𝐶Mod 𝑒𝑐

Δ , we have 𝜅(𝐴𝐵) <
∞ and, by Proposition 4, 𝜅(𝐴𝐵) = ∞ for every 𝜅 ∈
𝐶Mod 𝑒𝑐

Δ . Therefore, 𝜅(𝐴𝐵) < 𝜅(𝐴𝐵) for every 𝜅 ∈
𝐶Mod 𝑒𝑐

Δ and hence 𝐴 |∼𝑒𝑐
Δ 𝐵 by Proposition 14.

Case 3: 𝜅𝑧
Δ(𝐴𝐵) < ∞

Then, by assumption, CRS 𝑒𝑥
Σ (∆) ∪ ¬CRΔ(𝐵|𝐴) is

unsolvable and 𝜅𝑧
Δ(𝐴𝐵) < ∞. This implies that

¬CRΔ(𝐵|𝐴) is false for every �⃗�𝐽 ∈ Sol(CRS 𝑒𝑥
Σ (∆)).

In this case, using the equivalence transformations in the
part of the proof for Direction ⇒, we have 𝜅�⃗�(𝐴𝐵) <
𝜅�⃗�(𝐴𝐵) for every �⃗� ∈ 𝑆𝑜𝑙𝐽+∞

Δ . With Proposition 16 it
follows that 𝐴 |∼𝑒𝑐

Δ 𝐵.

8. Conclusions and Future Work
In this paper, we introduced extended c-representations
as a generalization of c-representations for also
weakly consistent belief bases. Based on extended
c-representations we developed extended c-inference
which is an extension of c-inference. We investigated
the basic properties of extended c-representations and
extended c-inference. Additionally, we developed a CSP
that characterizes extended c-representations. We intro-
duced a simplified version of this CSP that still describes
all extended c-representations relevant for c-inference,
and we showed how extended c-inference can be re-
alized by a CSP. Note that our concept of extended
c-representations can be used not only to define extended
c-inference; analogously, it yields extended versions of
credulous and weakly skeptical c-inference [20, 21] cov-
ering also weakly consistent belief bases.

Nonmonotonic inference is closely connected to belief
revision [22]. The idea that some formulas are completely
infeasible, that is used for inference here, also occurs in
credibility limited revision [23]. In [24], a single “inconsis-
tent world” is used for the representation of inconsistent
belief states in the context of belief expansion. Drawing
the connection between inductive inference from weakly
consistent belief bases to these belief change approaches
remains for future work.

Future work also includes to further investigate the
properties of extended c-inference. For instance, we will
investigate whether extended c-inference also satisfies
syntax splitting and conditional syntax splitting [4, 5],
and we will broaden the map of relations among induc-
tive inference operators developed in [25] to extended
c-inference and to other inductive inference operators
taking also weakly consistent belief bases into account.
Similarily as it has been done for c-inference [26, 27], we
plan to realize extended c-inference as a SAT and as an
SMT problem and to implement it in the InfOCF platform
[28, 29].
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