
An Algebraic Notion of Conditional Independence, and its
Application to Knowledge Representation (Preliminary
Report)
Jesse Heyninck

Open Universiteit, the Netherlands
University of Cape Town, South-Africa

Abstract
Conditional independence is a crucial concept supporting adequate modelling and efficient reasoning in
probabilistics. In knowledge representation, the idea of conditional independence has also been introduced for
specific formalisms, such as propositional logic and belief revision. In this paper, the notion of conditional
independence is studied in the algebraic framework of approximation fixpoint theory. This gives a language-
independent account of conditional independence that can be straightforwardly applied to any logic with
fixpoint semantics. It is shown how this notion allows to reduce global reasoning to parallel instances of
local reasoning. Furthermore, relations to existing notions of conditional independence are discussed and the
framework is applied to normal logic programming.

1. Introduction
Over the last decades, conditional independence was
shown to be a crucial concept supporting adequate
modelling and efficient reasoning in probabilistics [1].
It is the fundamental concept underlying network-
based reasoning in probabilistics, which has been ar-
guably one of the most important factors in the rise
of contemporary artificial intelligence. Even though
many reasoning tasks on the basis of probabilis-
tic information have a high worst-case complexity
due to their semantic nature, network-based models
allow an efficient computation of many concrete
instances of these reasoning tasks thanks to local
reasoning techniques. Conditional independence
has also been investigated for several approaches
in knowledge representation, such as propositional
logic [2, 3], belief revision [4, 5] and conditional
logics [6]. For many other central formalisms in KR,
such a study has not been undertaken.

Due to the wide variety of formalisms studied
in knowledge representation, it is often beneficial
yet challenging to study a concept in a language-
independent manner. Indeed, such language-
independent studies avoid having to define and in-
vestigate the same concept for different formalisms.
In recent years, a promising framework for such

21st International Workshop on Nonmonotonic Reasoning,
September 2–4, 2023, Rhodes, Greece
$ jesse.heyninck@ou.nl (J. Heyninck)
� https://sites.google.com/view/jesseheyninck
(J. Heyninck)
� 0000-0002-3825-4052 (J. Heyninck)

© 2023 Copyright for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY
4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

language-independent investigations is the algebraic
approximation fixpoint theory (AFT) [7], which con-
ceives of KR-formalisms as operators over a lattice
(such as the immediate consequence operator from
logic programming). Approximation fixpoint the-
ory can represent a wide variety of KR-formalisms
(see [8] for an overview), and was shown to be a
fruitful framework for language-independent studies
of concepts such as splitting [9], groundedness [10],
equivalence [11] and non-determinism [12].

In this paper, we give an algebraic, operator-based
account of conditional independence. Such an alge-
braic account is applicable to any formalism that
admits an operator-based characterization, such as
the ones mentioned above as well as any future in-
stantiations of AFT. A main results of the paper
is the fact that conditional independence allows to
split the search for fixpoints of an (approximation)
operator over conditionally indepedent modules. As
a proof-of-concept, the framework is applied to nor-
mal logic programs, and it is shown that there are
strong connections with several existing works.
Outline of the Paper: The necessary preliminaries
on logic programming (Section 2.1), lattices (Sec-
tion 2.2 and approximation fixpoint theory (Section
2.3) are introduced in Section 2. The concept of
conditional independence of sub-lattices w.r.t. an
operator is introduced and studied in Section 3.
This concept is applied to approximation operators
in Section 4. The usefulness of this theory is shown
in Section 5, where it is applied to the semantics
of normal logic programs. Finally, related work
is discussed in Section 6, after which the paper is
concluded (Section 7).

64

mailto:jesse.heyninck@ou.nl
https://sites.google.com/view/jesseheyninck
https://orcid.org/0000-0002-3825-4052
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Jesse Heyninck CEUR Workshop Proceedings 64–73

2. Background and Preliminaries
In this section, we recall the necessary basics of
logic programming, abstract algebra and AFT.

2.1. Logic Programming
We assume a set of atoms 𝒜 and a language ℒ built
up from atoms, conjunction ∧ and negation ¬. A
(propositional) logic program 𝒫 (a dlp, for short)
is a finite set of rules of the form 𝑝 ← 𝜓, where
𝑝 (the rule’s head) is an atoms, and 𝜓 (the rule’s
body) is a (propositional1) formula that may include
the propositional constants T (representing truth),
F (falsity), U (unknown), and C (contradictory in-
formation). A rule is called normal if its body is
a conjunction of literals (i.e., atomic formulas or
negated atoms). A program is normal if it consists
only of normal rules; It is positive (or definite) if
there are no negations in the rules’ bodies. The set
of atoms occurring in 𝒫 is denoted 𝒜𝒫 . We use the
following four-valued bilattice:

≤𝑖

≤𝑡

U

F T

C

We also assume a ≤𝑡-involution − on ≤𝑡 (i.e,
−F = T, −T = F, −U = U and −C = C). A four-
valued interpretation of a program 𝒫 is a pair (𝑥, 𝑦),
where 𝑥 ⊆ 𝒜𝒫 is the set of the atoms that are as-
signed a value in {T,C} and 𝑦 ⊆ 𝒜𝒫 is the set of
atoms assigned a value in {T,U}.2 Interpretations
are compared by the information order ≤𝑖, where
(𝑥, 𝑦) ≤𝑖 (𝑤, 𝑧) iff 𝑥 ⊆ 𝑤 and 𝑧 ⊆ 𝑦 (sometimes
called “precision” order), and by the truth order
≤𝑡, where (𝑥, 𝑦) ≤𝑡 (𝑤, 𝑧) iff 𝑥 ⊆ 𝑤 and 𝑦 ⊆ 𝑧 (in-
creased ‘positive’ evaluations). Truth assignments
to complex formulas are then recursively defined as
follows:

• (𝑥, 𝑦)(𝑝) =

⎧⎪⎪⎨⎪⎪⎩
T if 𝑝 ∈ 𝑥 and 𝑝 ∈ 𝑦,
U if 𝑝 ̸∈ 𝑥 and 𝑝 ∈ 𝑦,
F if 𝑝 ̸∈ 𝑥 and 𝑝 ̸∈ 𝑦,
C if 𝑝 ∈ 𝑥 and 𝑝 ̸∈ 𝑦.

• (𝑥, 𝑦)(¬𝜑) = −(𝑥, 𝑦)(𝜑),

1For simplicity and due to lack of space, we restrict ourselves
to the propositional case.

2Somewhat skipping ahead, the intuition here is that 𝑥 (𝑦)
is a lower (upper) approximation of the true atoms.

• (𝑥, 𝑦)(𝜓 ∧ 𝜑) = 𝑙𝑢𝑏≤𝑡{(𝑥, 𝑦)(𝜑), (𝑥, 𝑦)(𝜓)},

A four-valued interpretation of the form (𝑥, 𝑥)
may be associated with a two-valued (or total) in-
terpretation 𝑥, in which for an atom 𝑝, 𝑥(𝑝) = T if
𝑝 ∈ 𝑥 and 𝑥(𝑝) = F otherwise. We say that (𝑥, 𝑦) is
a three-value (or consistent) interpretation, if 𝑥 ⊆ 𝑦.
Note that in consistent interpretations there are no
C-assignments.

We now consider semantics for lp’s. First, given
a two-valued interpretation, an extension to dlp’s
of the immediate consequence operator for normal
programs [13] is defined as follows:

Definition 1. Given a dlp 𝒫 and a two-valued inter-
pretation 𝑥, we define:

𝐼𝐶𝒫(𝑥) = {𝑝 ∈ 𝒜𝒫 | 𝑝← 𝜓 ∈ 𝒫, (𝑥, 𝑥)(𝜓) = T}.

For a four-valued interpretation (𝑥, 𝑦), we define:

ℐ𝒞𝑙
𝒫(𝑥, 𝑦) = {𝑝 | 𝑝← 𝜓 ∈ 𝒫, (𝑥, 𝑦)(𝜓) ∈ {T,C}}

ℐ𝒞𝑢
𝒫(𝑥, 𝑦) = {𝑝 | 𝑝← 𝜓 ∈ 𝒫, (𝑥, 𝑦)(𝜓) ∈ {U,T}}

IC 𝒫(𝑥, 𝑦) = (ℐ𝒞𝑙
𝒫(𝑥, 𝑦), ℐ𝒞𝑢

𝒫(𝑥, 𝑦))

Thus, denoting by 2𝒜 the powerset of 𝒜, 𝐼𝐶𝒫 is
an operator on the lattice ⟨2𝒜,⊆⟩ that derives all
heads of rules with true bodies.

Another common way of providing semantics to
dlp’s is by the following reduct [14]:

Definition 2. The GL-transformation 𝒫
(𝑥,𝑦) of an nlp

𝒫 w.r.t. a consistent interpretation (𝑥, 𝑦), is the
positive program obtained by replacing, in every rule
𝑝 ←

⋀︀𝑚

𝑖=1 𝑞𝑖 ∧
⋀︀𝑛

𝑗=1 ¬𝑟𝑗 ∈ 𝒫, any negated literal
¬𝑟𝑖 (1 ≤ 𝑖 ≤ 𝑘) by: (1) F if (𝑥, 𝑦)(𝑟𝑖) = T, (2) T if
(𝑥, 𝑦)(𝑟𝑖) = F, and (3) U if (𝑥, 𝑦)(𝑟𝑖) = U. In other
words, replacing ¬𝑟𝑖 by (𝑥, 𝑦)(¬𝑟𝑖) An interpretation
(𝑥, 𝑦) is a three-valued stable model of 𝒫 iff it is
the ≤𝑡-minimal model of 𝒫

(𝑥,𝑦) . If 𝑥 = 𝑦, (𝑥, 𝑦) is
called a two-valued stable model of 𝒫.

The ≤𝑖-minimal (shown in [15] to be unique for
normal logic programs) is called the well-founded
model. We denote it by WF(𝒫) and will, in the case
WF(𝒫) is total, abuse notation to denote WF(𝒫) =
𝑥 if WF(𝒫) = (𝑥, 𝑥).

2.2. Lattices and sub-lattices
We recall some necessary preliminaries on set theory
and (sub-)lattices. A lattice is a partially ordered
set 𝐿 = ⟨ℒ,≤⟩ where every two elements 𝑥, 𝑦 ∈ ℒ
have a least upper 𝑥⊔ 𝑦 and a greatest lower bound
𝑥 ⊓ 𝑦. A lattice is complete if every set 𝑋 ⊆ ℒ has

65

Jesse Heyninck CEUR Workshop Proceedings 64–73

a least upper (denoted ⊔𝑋) and a greatest lower
bound (denoted ⊓𝑋).

Let 𝐼 be a set, which we call the index set, and
for each 𝑖 ∈ 𝐼, let 𝑆𝑖 be a set. The product set
⊗𝑖∈𝐼𝑆𝑖 is the following set of functions:⨂︁
𝑖∈𝐼

𝑆𝑖 = {𝑓 | 𝑓 : 𝐼 →
⋃︁
𝑖∈𝐼

𝑆𝑖 s.t. ∀𝑖 ∈ 𝐼 : 𝑓(𝑖) ∈ 𝑆𝑖}

Intuitively, the product set
⨂︀

𝑖∈𝐼
𝑆𝑖 contains all

ways of selecting one element of every set 𝑆𝑖. For ex-
ample, for the sets 𝑆1 = {∅, {𝑝}} and 𝑆2 = {∅, {𝑞}},⨂︀

𝑖∈{1,2} 𝑆𝑖 contains, among others, 𝑓 and 𝑓 ′ with
𝑓(1) = 𝑓(2) = ∅ and 𝑓 ′(1) = ∅ and 𝑓 ′(2) = {𝑞}. For
a finite set 𝐼 = {1, . . . , 𝑛}, the product ⊗𝑖∈𝐼𝑆𝑖 is
(isomorphic to) the cartesian product 𝑆1 × . . .× 𝑆𝑛.

If each 𝑆𝑖 is partially ordered by some ≤𝑖, this
induces the product order ≤⊗ on ⊗𝑖∈𝐼𝑆𝑖: for all
𝑥, 𝑦 ∈ ⊗𝑖∈𝐼𝑆𝑖, 𝑥 ≤⊗ 𝑦 iff for all 𝑖 ∈ 𝐼, 𝑥(𝑖) ≤𝑖

𝑦(𝑖). Where a distinction is required, we will denote
the product order over 𝑆𝑖 by ⊗𝐼 . It can be easily
shown that if all ⟨𝑆𝑖,≤𝑖⟩ are (complete) lattices,
then ⟨⊗𝑖∈𝐼𝑆𝑖,≤⊗⟩ is also a (complete) lattice. We
call this the product lattice of the lattices 𝑆𝑖.

We denote, for 𝑥 ∈
⨂︀

𝑖∈𝐼
𝑆𝑖 and 𝑖 ∈ 𝐼, 𝑥|𝑖 ∈ 𝑆𝑖

as 𝑓(𝑖), and for 𝐽 ⊆ 𝐼 we denote 𝑥|𝐼 by
⨂︀

𝑖∈𝐽
𝑥𝑖.

For example, using 𝑆1 and 𝑆2 as in the example
above, ∅×{𝑞}|1 = ∅. Likewise, we denote by 𝑥𝑖⊗𝑥𝑗

the element 𝑥 ∈ 𝑆𝑖 ⊗ 𝑆𝑗 s.t. 𝑥|𝑘 = 𝑥𝑘 for 𝑘 = 𝑖, 𝑗,
and we lift this to sets as usual.

2.3. Approximation Fixpoint Theory
We now recall basic notions from approximation
fixpoint theory (AFT), as described by Denecker,
Marek and Truszczynski [16].

Given a lattice 𝐿 = ⟨ℒ,≤⟩, we let 𝐿2 =
⟨ℒ2,≤𝑖,≤𝑡⟩ be the structure (called bilattice), in
which ℒ2 = ℒ×ℒ, and for every 𝑥1, 𝑦1, 𝑥2, 𝑦2 ∈ ℒ,
∙ (𝑥1, 𝑦1) ≤𝑖 (𝑥2, 𝑦2) if 𝑥1 ≤ 𝑥2 and 𝑦1 ≥ 𝑦2,
∙ (𝑥1, 𝑦1) ≤𝑡 (𝑥2, 𝑦2) if 𝑥1 ≤ 𝑥2 and 𝑦1 ≤ 𝑦2.

An approximating operator 𝒪 : ℒ2 → ℒ2 of an
operator 𝑂ℒ : ℒ → ℒ is an operator that maps
every approximation (𝑥, 𝑦) of an element 𝑧 to an
approximation (𝑥′, 𝑦′) of another element 𝑂(𝑧), thus
approximating the behavior of the approximated
operator 𝑂.

Definition 3. Let 𝑂ℒ : ℒ → ℒ and 𝒪 : ℒ2 → ℒ2.
(1) 𝒪 is ≤𝑖-monotonic, if when (𝑥1, 𝑦1) ≤𝑖 (𝑥2, 𝑦2),
also 𝒪(𝑥1, 𝑦1) ≤𝑖 𝒪(𝑥2, 𝑦2); (2) 𝒪 is approximat-
ing, if it is ≤𝑖-monotonic and for any 𝑥 ∈ ℒ,

(𝒪(𝑥, 𝑥))1 = (𝒪(𝑥, 𝑥))2;3 (3) 𝒪 is an approxima-
tion of 𝑂ℒ, if it is ≤𝑖-monotonic and 𝒪 extends 𝑂,
that is: (𝒪(𝑥, 𝑥))1 = (𝒪(𝑥, 𝑥))2 = 𝑂ℒ(𝑥).

To avoid clutter, we will also denote (𝒪(𝑥, 𝑦))1
by 𝒪𝑙(𝑥, 𝑦) and (𝒪(𝑥, 𝑦))2 by 𝒪𝑢(𝑥, 𝑦).

The stable operator , defined next, is used for
expressing the semantics of many non-monotonic
formalisms. Given a complete lattice 𝐿 = ⟨ℒ,≤⟩,
let 𝒪 : ℒ2 → ℒ2 be an approximating opera-
tor. 𝒪𝑙(·, 𝑦) = 𝜆𝑥.𝒪𝑙(𝑥, 𝑦), i.e.: 𝒪𝑙(·, 𝑦)(𝑥) =
𝒪𝑙(𝑥, 𝑦) (and similarly for the upper bound opera-
tor 𝒪𝑢). The stable operator for 𝒪 is: 𝑆(𝒪)(𝑥, 𝑦) =
(lfp(𝒪𝑙(., 𝑦)), lfp(𝒪𝑢(𝑥, .)). We also denote the com-
ponents lfp(𝒪𝑙(., 𝑦)) and lfp(𝒪𝑢(𝑥, .) of the stable
operator by 𝐶(𝒪𝑙)(𝑦) respectively 𝐶(𝒪𝑢)(𝑥).

Stable operators capture the idea of minimizing
truth, since for any ≤𝑖-monotonic operator 𝒪 on
ℒ2, fixpoints of the stable operator 𝑆(𝒪) are ≤𝑡-
minimal fixpoints of 𝒪 [16, Theorem 4]. Altogether,
we obtain the following notions:

Given a complete lattice 𝐿 = ⟨ℒ,≤⟩, let 𝒪 :
ℒ2 → ℒ2 be an approximating operator. We call:
(1) (𝑥, 𝑦) a Kripke-Kleene fixpoint of 𝒪 if (𝑥, 𝑦) =
lfp≤𝑖

(𝒪(𝑥, 𝑦)); (2) (𝑥, 𝑦) a three-valued stable fix-
point of 𝒪 if (𝑥, 𝑦) = 𝑆(𝒪)(𝑥, 𝑦); (3) (𝑥, 𝑥) a two-
valued stable fixpoints of 𝒪 if (𝑥, 𝑥) = 𝑆(𝒪)(𝑥, 𝑥);
(4) (𝑥, 𝑦) the well-founded fixpoint of𝒪 if it is the ≤𝑖-
minimal (three-valued) stable model fixpoint of 𝒪.
It has been shown that every approximation opera-
tor admits a unique ≤𝑖-minimal stable fixpoint [16].
Pelov, Denecker and Bruynooghe [18] show that for
normal logic programs, the fixpoints based on the
four-valued immediate consequence operator ℐ𝒞𝒫
(recall Definition 1) for a logic program give rise to
the following correspondences: the three-valued sta-
ble models coincides with the three-valued semantics
as defined by Przymusinski [15], the well-founded
model coincides with the homonymous semantics
[15, 19], and the two-valued stable models coincide
with the two-valued (or total) stable models of a
logic program.

3. Conditional Independence
Conditional independence in an operator-based set-
ting is meant to formalize the idea that for the
application of an operator to a lattice consisting

3In some papers [16], an approximation operator is de-
fined as a symmetric ≤𝑖-monotonic operator, i.e. a ≤𝑖-
monotonic operator s.t. for every 𝑥, 𝑦 ∈ ℒ, 𝒪(𝑥, 𝑦) =
(𝒪𝑙(𝑥, 𝑦), 𝒪𝑙(𝑦, 𝑥)) for some 𝒪𝑙 : ℒ2 → ℒ. However, the
weaker condition we take here (taken from [17] is actually
sufficient for most results on AFT.

66

Jesse Heyninck CEUR Workshop Proceedings 64–73

of three sub-lattices 𝐿1, 𝐿2 and 𝐿3, full informa-
tion about ℒ3 allows us to ignore ℒ2 when apply-
ing 𝑂 to ℒ1 ⊗ ℒ3. In more detail, it means that
𝑂 :

⨂︀
𝑖∈{1,2,3} 𝑆𝑖 →

⨂︀
𝑖∈{1,2,3} 𝑆𝑖 can be decom-

posed in two operators 𝑂1,3 : 𝑆1⊗𝑆3 → 𝑆1⊗𝑆3 and
𝑂2,3 : 𝑆2⊗𝑆3 → 𝑆2⊗𝑆3 s.t. for any 𝑥 = 𝑥1⊗𝑥2⊗𝑥3
𝑂(𝑥) = 𝑂1,3(𝑥1 ⊗ 𝑥3)⊗𝑂2,3(𝑥2 ⊗ 𝑥3)|2.

Definition 4. Let 𝑂 be an operator on the prod-
uct lattice ⊗𝑖∈{1,2,3}𝑆𝑖. The lattices 𝐿1 and 𝐿2 are
independent w.r.t. 𝐿3 according to 𝑂 (in sym-
bols: 𝐿1 ⊥⊥𝑂 𝐿2 | 𝐿3) if there exist operators 𝑂1,3 :
⊗𝑖∈{1,3}ℒ𝑖 → ⊗𝑖∈{1,3}ℒ𝑖 and 𝑂2,3 ⊗𝑖∈{2,3} ℒ𝑖 →
⊗𝑖∈{2,3}ℒ𝑖 s.t. for 𝑖, 𝑗 ∈ {1, 2}, 𝑖 ̸= 𝑗, and for every
𝑥𝑖 ⊗ 𝑥3 ∈ ℒ𝑖 ⊗ ℒ3 and for every 𝑥𝑗 ∈ ℒ𝑗 it holds
that: 𝑂(𝑥𝑖 ⊗ 𝑥𝑗 ⊗ 𝑥3)|𝑖,3 = 𝑂𝑖,3(𝑥𝑖 ⊗ 𝑥3).

Thus, two sub-lattices 𝐿1 and 𝐿2 are independent
w.r.t. 𝐿3 according to 𝑂 if, once we have full infor-
mation about 𝐿3, information about 𝐿2 does not
contribute anything in the application of 𝑂 when
restricted to 𝐿1 (and vice versa).

Example 1. Consider the logic program 𝒫 using
atoms for infected, vaccinated and contact:

𝑟1 : inf(b)← inf(a), cnct(a, b), not vac(b).
𝑟2 : inf(c)← inf(a), cnct(a, c), not vac(c).
𝑟3 : inf(a)., 𝑟4 : cnct(a, b)., 𝑟5 : cnct(a, c).

Notice that, as soon as we know that infected(a).
is the case, we can decompose the search for models
into two independent parts, as can also be seen in
the dependency graph in figure 1.

inf(a)cnct(a, b) cnct(a, c)

inf(b) inf(c)

vac(b) vac(c)

Figure 1: A dependency graph for the program 𝒫1.

As a product lattice consisting of power sets of
sets 𝒜1, . . . ,𝒜3 is isomorphic to the powerset of the
union of these sets 𝒜1 ∪ . . .∪𝒜3, we shall use them
interchangeably. We let:

𝒜1 = {inf(i), cnct(j, i), vac(i)}
𝒜2 = {inf(th), cnct(j, th), vac(th)}
𝒜3 = {inf(j)}

We see that 2𝒜1⊥IC𝒫1
2𝒜2 | 2𝒜3 , by observing that:

IC 𝒜1,𝒜3
𝒫 = IC 𝒫𝒜1,𝒜3 and IC 𝒜2,𝒜3

𝒫 = IC 𝒫𝒜2,𝒜3

where 𝒫𝒜1,𝒜3 = {𝑟1, 𝑟3, 𝑟4} and 𝒫𝒜2,𝒜3 =
{𝑟2, 𝑟3, 𝑟5} It is easily verified that for every 𝑥𝑗 ⊆
𝒜𝑗 (𝑗 = 1, 2, 3), it holds that IC 𝒫(𝑥1 ∪ 𝑥2 ∪ 𝑥3) ∩
(𝒜𝑖 ∪ 𝒜3) = IC 𝒫𝒜𝑖,𝒜3 (𝑥𝑖 ∪ 𝑥3) for any 𝑖 = 1, 2.

We now show structural similarities with condi-
tional independence known from probability theory:

Fact 1. Let an operator 𝑂 on the product lattice
⊗𝑖∈{1,2,3}ℒ𝑖 s.t. 𝐿1 ⊥⊥𝑂 𝐿2 | 𝐿3 be given. Then for
any 𝑥1 ⊗ 𝑥2 ⊗ 𝑥3 ∈

⨂︀
𝑖∈{1,2,3} ℒ𝑖, it holds that:

𝑂(𝑥1 ⊗ 𝑥2 ⊗ 𝑥3) = 𝑂1,2(𝑥1 ⊗ 𝑥3)⊗𝑂2,3(𝑥2 ⊗ 𝑥3)|2

= 𝑂1,2(𝑥1 ⊗ 𝑥3)|1 ⊗𝑂2,3(𝑥2 ⊗ 𝑥3).

Furthermore, for any 𝑖, 𝑗 = 1, 2, 𝑖 ≠ 𝑗, 𝑥𝑖 ∈
ℒ𝑖, 𝑥𝑗 , 𝑥

′
𝑗 ∈ ℒ𝑗 and 𝑥3 ∈ ℒ3 it holds that:

𝑂(𝑥𝑖 ⊗ 𝑥𝑗 ⊗ 𝑥3)|𝑖,3 = 𝑂(𝑥𝑖 ⊗ 𝑥′
𝑗 ⊗ 𝑥3)|𝑖,3

However, this notion of conditional independence
does show some differences with conditional inde-
pendence as known from probability theory. For
example, not all semi-graphoid-properties [1] are
satisfied. In more detail, whereas symmetry (i.e.
𝐿1 ⊥⊥𝑂 𝐿2 | 𝐿3 implies 𝐿2 ⊥⊥𝑂 𝐿1 | 𝐿3) is ob-
viously satisfied, the properties of decomposition
(i.e. 𝐿1 ⊥⊥𝑂 𝐿2 ⊗ 𝐿3 | ∅ implies 𝐿1 ⊥⊥𝑂 𝐿2 | ∅)
and weak union (i.e. 𝐿1 ⊥⊥𝑂 𝐿2 ⊗ 𝐿3 | ∅ implies
𝐿1 ⊥⊥𝑂 𝐿2 | 𝐿3) are not satisfied. Regarding de-
composition, it should be noted that this property
is undefined as we assume conditional independence
over decompositions of the complete lattice. A vio-
lation of weak union is illustrated in the following
example:

Example 2. Consider the logic program 𝒫 = {𝑎←
; 𝑏 ← ¬𝑐; 𝑐 ← ¬𝑏}. Note that 2{𝑎} ⊥⊥IC𝒫 2{𝑏,𝑐} | ∅.
Yet it does not hold that 2{𝑎} ⊥⊥IC𝒫 2{𝑎} | 2{𝑏}, as:

IC 𝒫({𝑎}) ∩ {𝑎, 𝑐} = {𝑎, 𝑐} ≠
IC 𝒫({𝑎, 𝑏}) ∩ {𝑎, 𝑐} = {𝑎}

The reason for the failure of weak union is that
we are not only interested in the behaviour of the
operator 𝑂 w.r.t. the conditionally independent sub-
lattices 𝐿1 and 𝐿2, but also take into account the
conditional pivot 𝐿3. This is to be contrasted with
probabilistic conditional independence where the
defining condition 𝑝(𝑥1 | 𝑥3) = 𝑝(𝑥1 | 𝑥2, 𝑥3) only
talks about 𝐿1. The reason that here conditional
pivots are taken into account is that we are in-
terested in fixpoints of an operator. It might be
interesting to look at a weaker notion of conditional
independence w.r.t. operators that does not consider
the conditional pivot in the output of the operator
(and indeed, it is not hard to see that weak union

67

Jesse Heyninck CEUR Workshop Proceedings 64–73

is satisfied for such a notion), but due to our focus
on fixpoints, we restrict attention to the stronger
notion here.

We now undertake a study of the properties of
operators that respect conditional independencies.
We first note the following useful fact:

Lemma 1. Let an operator 𝑂 on the product lattice
⊗𝑖∈{1,2,3}ℒ𝑖 s.t. 𝐿1 ⊥⊥𝑂 𝐿2 | 𝐿3 and 𝑖, 𝑗 = 1, 2, 𝑖 ̸=
𝑗 be given. Then 𝑂2,3(𝑥2 ⊗ 𝑥3)|3 = 𝑂1,3(𝑥1 ⊗ 𝑥3)|3.

Proof. As 𝐿1 ⊥⊥𝑂 𝐿2 | 𝐿3, for any 𝑥2 ∈ ℒ2,
𝑂(𝑥1⊗𝑥2⊗𝑥3) = 𝑂1,3(𝑥1⊗𝑥3)⊗𝑂2,3(𝑥2⊗𝑥3)|2 =
𝑂1,3(𝑥1 ⊗ 𝑥3)|1 ⊗ 𝑂2,3(𝑥2 ⊗ 𝑥3), which implies
𝑂1,3(𝑥1 ⊗ 𝑥3)|3 = 𝑂2,3(𝑥2 ⊗ 𝑥3)|3.

Fixpoints of an operator 𝑂 respecting indepen-
dence of 𝐿1 and 𝐿2 w.r.t. 𝐿3 can be obtained by
combining the fixpoints of 𝑂1,3 and 𝑂2,3. Thus, the
search for fixpoints can be split into two parallel
problems with a smaller search space.

Proposition 1. Let an operator 𝑂 on the product
lattice ⊗𝑖∈{1,2,3}𝑆𝑖 s.t. 𝐿1 ⊥⊥𝑂 𝐿2 | 𝐿3 be given.
Then 𝑥 = 𝑂(𝑥) iff 𝑥1 ⊗ 𝑥3 = 𝑂(𝑥1 ⊗ 𝑥3) and 𝑥2 ⊗
𝑥3 = 𝑂(𝑥2 ⊗ 𝑥3).

Proof. For the⇒-direction, suppose that 𝑥 = 𝑂(𝑥).
Since 𝐿1 ⊥⊥𝑂 𝐿2 | 𝐿3, 𝑂𝑖,3(𝑥𝑖 ⊗ 𝑥3) = 𝑂(𝑥)|𝑖,3 =
𝑥|𝑖,3 = 𝑥𝑖 ⊗ 𝑥3 (for 𝑖 = 1, 2). For the ⇐-direction,
suppose that 𝑥1 ⊗ 𝑥3 = 𝑂(𝑥1 ⊗ 𝑥3) and 𝑥2 ⊗ 𝑥3 =
𝑂(𝑥2 ⊗ 𝑥3). As 𝐿1 ⊥⊥𝑂 𝐿2 | 𝐿3, 𝑂(𝑥1 ⊗ 𝑥2 ⊗ 𝑥3) =
𝑂1,3(𝑥1 ⊗ 𝑥3) ⊗ 𝑂2,3(𝑥2 ⊗ 𝑥3)|2 = 𝑥1 ⊗ 𝑥2 ⊗ 𝑥3 =
𝑥.

Monotonicity is preserved when moving between
a product lattice and its components:

Proposition 2. Let an operator 𝑂 on the product
lattice ⊗𝑖∈{1,2,3}𝑆𝑖 s.t. 𝐿1 ⊥⊥𝑂 𝐿2 | 𝐿3 be given.
Then 𝑂 :

⨂︀
𝑖∈{1,2,3} ℒ𝑖 →

⨂︀
𝑖∈{1,2,3} ℒ𝑖 is ≤⊗-

monotonic iff 𝑂𝑖,3 : ℒ𝑖 ⊗ ℒ3 → ℒ𝑖 ⊗ ℒ3 is ≤𝑖,3
⊗ -

monotonic for 𝑖 = 1, 2.

Proof. In what follows we let 𝐼 = {1, 2, 3}. For
the ⇒-direction, suppose that 𝑂 is ≤𝐼

⊗-monotonic
and consider some 𝑥1

1 ⊗ 𝑥1
3 ≤1,3

⊗ 𝑥2
1 ⊗ 𝑥2

3. Notice
that 𝑂(𝑥1

1 ⊗ 𝑥2 ⊗ 𝑥1
3) ≤⊗ 𝑂(𝑥2

1 ⊗ 𝑥2 ⊗ 𝑥2
3) for any

𝑥2 ∈ 𝐿2 (as 𝑂 is ≤𝐼
⊗-monotonic). This means that

𝑂1,3(𝑥1
1 ⊗ 𝑥1

3) ≤1,3
⊗ 𝑂1,3(𝑥2

1 ⊗ 𝑥2
3) by definition of

≤⊗ and since 𝐿1 ⊥⊥𝑂 𝐿2 | 𝐿3. For the ⇐-direction,
suppose that 𝑂𝑖,3 are ≤-monotonic for 𝑖 = 1, 2. Con-
sider some 𝑥1, 𝑥2 ∈

⨂︀
𝑖∈{1,2,3} 𝑆𝑖 with 𝑥1 ≤𝐼

⊗ 𝑥2.
Then 𝑂𝑖,3(𝑥1

|𝑖,3) ≤𝑖,3
⊗ 𝑂𝑖,3(𝑥1

|𝑖,3) for 𝑖 = 1, 2 which
implies 𝑂1,3(𝑥1

|1,3)⊗𝑂2,3(𝑥1
|2,3)|2 ≤𝐼

⊗ 𝑂1,3(𝑥2
|1,3)⊗

𝑂2,3(𝑥2
|2,3)|2 by definition of ≤𝐼

⊗. With conditional

independence, 𝑂(𝑥𝑗) = 𝑂1,3(𝑥𝑗
|1,3) ⊗ 𝑂2,3(𝑥𝑗

|2,3)|2

for 𝑗 = 1, 2. Thus, 𝑂(𝑥1) ≤𝐼
⊗ 𝑂(𝑥2).

Likewise, at least for monotonic operators over
complete lattices, the least fixed points can be ob-
tained by combining the least fixed points of condi-
tionally independent sub-lattices:

Proposition 3. Let a ≤⊗-monotonic operator 𝑂 on
the complete product lattice ⊗𝑖∈{1,2,3}𝑆𝑖 s.t. 𝐿1 ⊥⊥𝑂

𝐿2 | 𝐿3 be given. Then 𝑥 is a least fixed point of 𝑂
iff 𝑥|𝑖,3 is a least fixed point of 𝑂𝑖,3 (for 𝑖 = 1, 2).

Proof. Suppose first that 𝑥1 ⊗ 𝑥2 ⊗ 𝑥3 is the least
fixed point of𝑂. We show that 𝑥1⊗𝑥3 is a least fixed
point of 𝑂1,3 (which suffices with symmetry). With
Proposition 1, 𝑥1 ⊗ 𝑥3 = 𝑂1,3(𝑥1 ⊗ 𝑥3). It thus
suffices to show that for any fixed point 𝑥′

1 ⊗ 𝑥′
3

of 𝑂1,3, 𝑥′
1 ⊗ 𝑥′

3 ≥ 𝑥1 ⊗ 𝑥3. Assume thus that
𝑥′

1 ⊗ 𝑥′
3 = 𝑂1,3(𝑥′

1 ⊗ 𝑥′
3). First, observe that ⊥2 ⊗

𝑥3 ≤ 𝑥′
2 ⊗ 𝑥3 for any 𝑥′

2. By Lemma 1, 𝑂2,3(𝑥′
2 ⊗

𝑥′
3)|3 = 𝑂1,3(𝑥′

1 ⊗ 𝑥′
3) = 𝑥′

3 for any 𝑥′
2 ∈ ℒ2. Thus,

𝑂2,3(⊥2 ⊗ 𝑥′
3) ≥ ⊥2 ⊗ 𝑥′

3, i.e. ⊥2 ⊗ 𝑥′
3 is a pre-

fixpoint of 𝑂2,3. We can apply 𝑂2,3 inductively,
and, as it is a ≤-monotonic operator (Proposition
2), a fixpoint is guaranteed to exist. Thus, there is
some 𝑥′

2 ∈ ℒ2 s.t. 𝑂(𝑥′
2⊗𝑥′

3) = 𝑥′
2⊗𝑥′

3. This means
that 𝑥′

1 ⊗ 𝑥′
2 ⊗ 𝑥′

3 is a fixpoint of 𝑂, which implies
𝑥1 ⊗ 𝑥2 ⊗ 𝑥3 ≤⊗ 𝑥′

1 ⊗ 𝑥′
2 ⊗ 𝑥′

3, which on its turn
implies (by definition of ≤⊗), 𝑥1 ⊗ 𝑥3 ≤ 𝑥′

1 ⊗ 𝑥′
3.

Suppose now that 𝑥|𝑖,3 is a least fixed point of
𝑂𝑖,3 (for 𝑖 = 1, 2). With Proposition 1, 𝑥1⊗𝑥2⊗𝑥3
is a fixed point of 𝑂. We show that for any fixed
point 𝑥′ of 𝑂, 𝑥′ ≥ 𝑥1 ⊗ 𝑥2 ⊗ 𝑥3. Indeed, with
Proposition 1, 𝑥′

|𝑖,3 is a fixed point of 𝑂𝑖,3, which
implies that 𝑥′

|𝑖,3 ≥ 𝑥|𝑖,3. By definition of ≤⊗,
𝑥′

1 ⊗ 𝑥′
2 ⊗ 𝑥′

3 ≥ 𝑥1 ⊗ 𝑥2 ⊗ 𝑥3.

4. Conditional Independence and
Approximation Fixpoint Theory

The notion of conditional independence is imme-
diately applicable to approximation operators. In
this section, we will derive results on the modulari-
sation of AFT-based semantics based on the results
derived in the previous section.

As observed in previous work [9], the bilattice ℒ2

of a product lattice ℒ = ⊗𝑖∈𝐼ℒ𝑖 is isomorphic to
the product lattice of bilattices

⨂︀
𝑖∈𝐼
ℒ2

𝑖 , and we
will sometimes move between these two constructs
without further remarks [9].

As an approximation operator is a ≤𝑖-monotonic
operator, we immediately obtain that the search
for Kripke-Kleene fixpoints, as well as any regular

68

Jesse Heyninck CEUR Workshop Proceedings 64–73

fixpoints, can be split on the basis of conditional
independence:

Proposition 4. Let an approximation operator 𝒪
over a bilattice of the product lattice ⊗𝑖∈{1,2,3}ℒ𝑖 be
given s.t. ℒ2

1 ⊥⊥𝒪 ℒ2
2 | ℒ2

3. Then the following hold:

• (𝑥, 𝑦) is the Kripke-Kleene fixpoint of 𝒪 iff
(𝑥|𝑖,3, 𝑦|𝑖,3) is the Kripke-Kleene fixpoint of
𝒪𝑖,3 for 𝑖 = 1, 2.

• (𝑥, 𝑦) is a fixpoint of 𝒪 iff (𝑥|𝑖,3, 𝑦|𝑖,3) is a
fixpoint of 𝒪𝑖,3 for 𝑖 = 1, 2.

Proof. This is an immediate consequence of Propo-
sitions 1, 2 and 3.

We now turn our considerations to the stable
operators. As a preliminary, we investigate the re-
lation between an approximation operator and the
lower and upper-bound component of this opera-
tor when it comes to respecting indpendencies. It
turns out that the component operators 𝒪𝑙 and 𝒪𝑢

respect conditional independencies, and, vice-versa,
that the respect of the two component operators of
conditional independencies implies respect of these
independencies by the approximation operator:

Proposition 5. Let an approximation operator 𝒪
over a bilattice of the product lattice ⊗𝑖∈{1,2,3}ℒ𝑖 be
given. Then ℒ2

1 ⊥⊥𝒪 ℒ2
2 | ℒ2

3 iff ℒ1 ⊥⊥𝒪𝑙 ℒ2 | ℒ3
and ℒ1 ⊥⊥𝒪𝑢 ℒ2 | ℒ3.

Proof. For the ⇒-direction, suppose that ℒ2
1 ⊥⊥𝒪

ℒ2
2 | ℒ2

3, i.e. there are some 𝒪𝑖,3 : ℒ𝑖 ⊗ ℒ3 →
ℒ𝑖 ⊗ ℒ3 s.t. 𝒪((𝑥1, 𝑦1) ⊗ (𝑥2, 𝑦2) ⊗ (𝑥3, 𝑦3))|𝑖,3 =
𝒪𝑖,3((𝑥𝑖, 𝑦𝑖) ⊗ (𝑥3, 𝑦3)) (for 𝑖 = 1, 2). As
𝒪((𝑥1, 𝑦1) ⊗ (𝑥2, 𝑦2) ⊗ (𝑥3, 𝑦3)) = (𝒪𝑙(𝑥1 ⊗ 𝑥2 ⊗
𝑥3, 𝑦1 ⊗ 𝑦2 ⊗ 𝑦3),𝒪𝑢(𝑥1 ⊗ 𝑥2 ⊗ 𝑥3, 𝑦1 ⊗ 𝑦2 ⊗ 𝑦3)),
this means there are some (𝒪𝑙)𝑖,3 and (𝒪𝑢)𝑖,3 s.t.
𝒪†(𝑥1 ⊗ 𝑥2 ⊗ 𝑥3, 𝑦1 ⊗ 𝑦2 ⊗ 𝑦3)|𝑖,3 = (𝒪†)𝑖,3(𝑥𝑖 ⊗
𝑥3, 𝑦𝑖⊗ 𝑦3) for † ∈ {𝑙, 𝑢} and 𝑖 = 1, 2, which implies
ℒ1 ⊥⊥𝒪𝑙 ℒ2 | ℒ3 and ℒ1 ⊥⊥𝒪𝑢 ℒ2 | ℒ3.

The ⇐-direction is similar.

We can now show that stable operators respect
the conditional independencies respected by the ap-
proximation operator from which they are derived:

Proposition 6. Let an approximation operator 𝒪
over a bilattice of the complete product lattice
⊗𝑖∈{1,2,3}ℒ𝑖 be given s.t. ℒ2

1 ⊥⊥𝒪 ℒ2
2 | ℒ2

3. Then
ℒ2

1 ⊥⊥𝒞(𝒪𝑙) ℒ2
2 | ℒ2

3 and ℒ2
1 ⊥⊥𝒞(𝒪𝑢) ℒ2

2 | ℒ2
3.

Proof. As 𝐿2
1 ⊥⊥𝒪 𝐿2

2 | 𝐿2
3, with Proposi-

tion 5, 𝐿1 ⊥⊥𝒪𝑙 𝐿2 | 𝐿3. As 𝒪𝑙(., 𝑦) is ≤-
monotonic ([16, Proposition 6]), lfp(𝒪𝑙(., 𝑦)) =

lfp((𝒪(., 𝑦))1,3) ⊗ (lfp((𝒪𝑙(., 𝑦))2,3)|2) (Proposi-
tion 3). As (𝒪𝑙(𝑥, 𝑦)) = (𝒪𝑙)1,3(𝑥|1,3, 𝑦|1,3) ⊗
(𝒪𝑢)2,3(𝑥|2,3, 𝑦|2,3)|2 for any 𝑥 ∈ ℒ (in
view of 𝐿1 ⊥⊥𝒪𝑙 𝐿2 | 𝐿3), we see that
𝒪𝑙(., 𝑦)))1,3 = (𝒪𝑙)1,3(., 𝑦|1,3). Thus, lfp(𝒪𝑙(., 𝑦)) =
lfp((𝒪𝑙)1,3)(., 𝑦1,3)) ⊗ lfp((𝒪𝑙)2,3(., 𝑦2,3))|2. As
𝒞(𝒪𝑙)(𝑦) = lfp(𝒪(., 𝑦) for any 𝑦 ∈ ℒ, this concludes
the proof.

Proposition 7. Let an approximation operator 𝒪
over a bilattice of the product lattice ⊗𝑖∈{1,2,3}𝑆𝑖 be
given s.t. ℒ2

1 ⊥⊥𝒪 ℒ2
2 | ℒ2

3. Then:

1. (𝑥, 𝑦) is a fixpoint of 𝑆(𝒪) iff (𝑥|𝑖,3, 𝑦|𝑖,3) is
a fixpoint of 𝑆(𝒪𝑖,3) for 𝑖 = 1, 2.

2. (𝑥, 𝑦) is the well-founded fixpoint of 𝒪 iff
(𝑥|𝑖,3, 𝑦|𝑖,3) is the well-founded fixpoint of
𝒪𝑖,3 for 𝑖 = 1, 2.

Proof. This follows immediately from Propositions
3 and 6.

5. Application to Logic Programs
In this section, we apply the theory developed in
the previous section to normal logic programs. We
can avoid clutter with a slight abuse of notation by
writing 𝒜1 ⊥⊥𝒫 𝒜2 | 𝒜3 to denote 2𝒜1 ⊥⊥ℐ𝒞𝒫 2𝒜2 |
2𝒜3 (for any 𝒜1 ∪ 𝒜2 ∪ 𝒜3 ⊆ 𝒜𝒫).

We first define what we call the marginalisation
of a program w.r.t. a set of atoms:

Definition 5. Let a normal logic program 𝒫 and some
𝒜 ⊆ 𝒜𝒫 be given. We define 𝒫𝒜 as the program
obtained by replacing in every rule 𝑟 ∈ 𝒫 every
occurrence of an atom 𝑝 ∈ 𝒜 by ⊥.

For example, {𝑝← 𝑞, 𝑟,¬𝑠}{𝑟,𝑠} = {𝑝← 𝑞,⊥,⊤}.
Given a program 𝒫 inducing a conditional indepen-
dence 𝒜1 ⊥⊥𝒫 𝒜2 | 𝒜3, the marginalisation 𝒫𝒜2

gives use the immediate consequence operator for
the sublattice 𝒜1 ∪ 𝒜3:

Proposition 8. Let a normal logic program 𝒫 be
given for which 𝒜𝒫 is partitioned into 𝒜1 ∪𝒜2 ∪𝒜3
s.t. 𝒜1 ⊥⊥𝒫 𝒜2 | 𝒜3. Then ℐ𝒞𝑖,3

𝒫 = ℐ𝒞𝒫𝒜𝑗
(for

𝑖, 𝑗 = 1, 2, 𝑖 ̸= 𝑗).

Proof. Consider some arbitrary but fixed 𝑖, 𝑗 =
1, 2, 𝑖 ̸= 𝑗. In view of 𝒜1 ∪ 𝒜2 ∪ 𝒜3, ℐ𝒞𝑖,3

𝒫 (𝑥𝑖 ∪
𝑥3) = ℐ𝒞𝒫(𝑥𝑖 ∪ 𝑥𝑗 ∪ 𝑥3)|𝑖,3 for any 𝑥𝑗 ⊆ 𝒜𝑗 . As
ℐ𝒞𝒫𝒜 (𝑥𝑖∪∅∪𝑥3) = ℐ𝒞𝒫(𝑥𝑖∪∅∪𝑥3), this concludes
the proof.

69

Jesse Heyninck CEUR Workshop Proceedings 64–73

We start by working out what the results in the
previous sections mean for the semantics of logic
programs. In particular, the search for supported,
(partial) stable and well-founded models can be split
up along conditionally independent sub-alphabets:

Corollary 1. Let a normal logic program 𝒫 be given
for which 𝒜𝒫 is partitioned into 𝒜1 ∪ 𝒜2 ∪ 𝒜3 s.t.
𝒜1 ⊥⊥𝒫 𝒜2 | 𝒜3. 𝑥1∪𝑥2∪𝑥3 is a supported (respec-
tively three-valued stable) model of 𝒫 iff 𝑥𝑖 ∪ 𝑥3 is
a supported (respectively three-valued stable) model
of 𝒫|𝒜𝑖∪𝒜3 (for 𝑖 = 1, 2). The well-founded model
of 𝒫 can be obtained as (𝑥1 ∪ 𝑥2 ∪ 𝑥3, 𝑦1 ∪ 𝑦2 ∪ 𝑦3),
where (𝑥𝑖 ∪ 𝑥3, 𝑦𝑖 ∪ 𝑦3) is the well-founded model of
𝒫𝒜𝑗 (for 𝑖, 𝑗 = 1, 2, 𝑖 ̸= 𝑗).

We now make some observations on how to detect
conditional independencies in a logic program. We
first need some further preliminaries. The depen-
dency order for a logic program 𝒫, ≤𝒫

dep⊆ 𝒜𝒫×𝒜𝒫 ,
is defined as 𝑝 ≤𝒫

dep 𝑞 iff there is some 𝑟 ∈ 𝒫 where
𝑞 is the head of 𝑟 and 𝑝 occurs in the body of 𝑟.
The dependency graph, denoted DP(𝒫) of 𝒫 is the
corresponding Hasse diagram of ≤𝒫

dep.
A first conjecture could be that, a sufficient cri-

terion fo 𝒜1 ⊥⊥𝒫 𝒜2 | 𝒜3 is that 𝒜3 graphically
separates 𝒜1 and 𝒜2, i.e. given DP(𝒫) = ⟨𝒜𝒫 , 𝑉 ⟩,
a set 𝒜3 s.t. ⟨𝒜𝒫 ∖𝒜3, 𝑉 ∩((𝒜𝒫 ∖(𝒜3)×(𝒜𝒫 ∖(𝒜3))
consists of two disconnected subgraphs ⟨𝒜1, 𝑉 ∩
(𝒜1 × 𝒜1)⟩ and ⟨𝒜2, 𝑉 ∩ (𝒜2 × 𝒜1)⟩ induces the
conditional independence 𝒜1 ⊥⊥𝒫 𝒜2|𝒜3. However,
this conjecture is too naive:

Example 3. Consider the program 𝒫 = 𝒫1 ∪ 𝒫2
where 𝒫1 = {𝑎1 ← ¬𝑏1; 𝑏1 ← ¬𝑎1; 𝑒 ← 𝑏1} and
𝒫2 = {𝑎2 ← ¬𝑏2; 𝑏2 ← ¬𝑎2; 𝑒← 𝑏2}. This program
has the following dependency graph:

e𝑏1𝑎1 𝑏2 𝑎2

We could conjecture the independency {𝑎1, 𝑏1} ⊥
⊥𝒫 {𝑎2, 𝑏2}|{𝑒}, but this does not hold, as

IC 𝒫({𝑎1, 𝑏2})|{𝑎1,𝑏1,𝑒} = {𝑎1, 𝑒}
̸= IC 𝒫({𝑎1}) = {𝑎1}.

A slightly more complicated graphical criterion
is a sufficient condition, though. In more detail,
if 𝒜3 graphically seperates 𝒜1 and 𝒜2 in DP(𝒫),
and if the program is stratified in a lower layer 𝒜3
and a higher layer 𝒜1 ∪ 𝒜2, then the conditional
independency 𝒜1 ⊥⊥𝒫 𝒜2 | 𝒜3 holds:

Proposition 9. Let a logic program 𝒫 with DP(𝒫) =
⟨𝒜𝒫 , 𝑉 ⟩ be given s.t. the following conditions hold

1. there is some 𝒜3 ⊆ 𝒜𝒫 s.t. ⟨𝒜𝒫 ∖ 𝒜3, 𝑉 ∩
((𝒜𝒫 ∖ (𝒜3) × (𝒜𝒫 ∖ (𝒜3)) consists of two

disconnected subgraphs ⟨𝒜1, 𝑉 ∩ (𝒜1 ×𝒜1)⟩
and ⟨𝒜2, 𝑉 ∩ (𝒜2 ×𝒜2)⟩, and

2. for every 𝑎 ∈ 𝒜3 and 𝑏 ∈ 𝒜𝑖 (𝑖 = 1, 2),
𝑏 <dep 𝑎.

Then 𝒜1 ⊥⊥𝒫 𝒜2 | 𝒜3 holds.

Proof. Suppose the conditions of the proposition
hold. Then for any 𝑝←

⋀︀
Δ ∧

⋀︀
Θ¬ (where Θ¬ =

{¬𝑝 | 𝑝 ∈ Θ}), (1) Δ∪Θ∩𝒜𝑖 ̸= ∅ implies 𝑝 ∈ 𝒜𝑖 (for
𝑖 = 1, 2), and (2) Δ∪Θ∪{𝑝} ⊆ 𝒜𝑖∪𝒜3 (for 𝑖 = 1, 2).
From (1), it follows that †: ℐ𝒞𝒫(𝑥1 ∪ 𝑥2 ∪ 𝑥3)|3 =
IC 𝒫𝒜1∪𝒜2

(𝑥3) for any 𝑥𝑖 ⊆ 𝒜𝑖 (𝑖 = 1, 2, 3). From
(2) and †, it then follows that: ℐ𝒞𝒫(𝑥1∪𝑥2∪𝑥3)|𝑖,3 =
ℐ𝒞𝒫𝒜𝑘

(𝑥𝑖 ∪ 𝑥3) for any 𝑥𝑗 ⊆ 𝒜𝑗 (𝑗 = 1, 2, 3) and
𝑖, 𝑘 = 1, 2 and 𝑖 ̸= 𝑘.

This gives an example of how conditional inde-
pendence can, at least partially, be identified on the
basis of the syntax of a logic program. The search
for more comprehensive, potentially even necessary,
criteria for identifying conditional independencies
are an avenue for future work.

6. Related Work
In this section, related work is discussed. We first
discuss Darwiche’s notion of conditional indepen-
dence [2], stratification as studied in approximation
fixpoint theory [9] and treewidth-based decompo-
sitions of logic programs in detail, and then make
shorter comparisons to other related works.

Darwiche’s Logical Notion of Independence In
the context of classical logic, a notion of condi-
tional independence was proposed by Darwiche [2].
Darwiche assumes a database Δ (i.e. a set of propo-
sitional formulas), which is used as a background
theory for inferences. The idea behind conditional
independence is then that a database Δ sanctions
the independence of two sets of atoms 𝑥1 and 𝑥2
conditional on a third set of atoms 𝑥3 if, given full
information about 𝑥3, inferences about 𝑥1 are inde-
pendent from any information about 𝑥2. In other
words, given a set of formulas Δ and three disjoint
sets of atoms 𝑥1, 𝑥2 and 𝑥3 be given, 𝑥1 ⊥⊥D

Δ 𝑥2 | 𝑥3
iff for every formula 𝜑1 based on 𝑥1, 𝜑2 based on 𝑥2
and complete conjunction of literals 𝜑3 based on 𝑥3
s.t. Δ ∪ {𝜑3, 𝜑2} is consistent, the following holds:

Δ ∪ {𝜑3} |= 𝜑1 iff Δ ∪ {𝜑2, 𝜑3} |= 𝜑1

Even though the application of our notion of con-
ditional independence to operators ranging over
sets of possible worlds (which is required to give

70

Jesse Heyninck CEUR Workshop Proceedings 64–73

an operator-based characterisation of propositional
logic) is outside the scope of this paper, we can
nevertheless show a close connection between our
notion of conditional independence and the one for-
mulated by Darwiche by defining inference based
on a logic program as follows (which gives rise to a
special case of simple-minded output as known from
input/output logics [20]):

Definition 6. Given a logic program 𝒫 and formulas
𝜑, 𝜓 based on 𝒜𝒫 , we define: 𝜑 |=𝒫 𝜓 if for every
𝑥 ⊆ 𝒜𝒫 s.t. 𝑥(𝜑) = T, IC 𝒫(𝑥)(𝜓) = T.

We can now show that our notion of conditional
independence implies Darwiche’s notion of condi-
tional independence, interpreted in the setting of
inference based on logic programs:

Proposition 10. Let a program 𝒫 for which 𝒜𝒫 is
partitioned into 𝒜1 ∪ 𝒜2 ∪ 𝒜3 s.t. 𝒜1 ⊥⊥𝒫 𝒜2 | 𝒜3,
some 𝜑1 based on 𝒜1, some 𝒜2 based on 𝒜2 and a
complete conjunction of literals 𝜑3 based on 𝒜3 be
given. Then 𝜑3 |=𝒫 𝜑1 iff 𝜑3 ∧ 𝜑2 |=𝒫 𝜑1.

Proof. Suppose that the assumptions of this propo-
sition holds. The ⇒-direction is immediate as |=𝒫
is monotonic.

Suppose now that 𝜑3 ∧𝜑2 |=𝒫 𝜑1. Then for every
𝑥1 ∪ 𝑥2 ∪ 𝑥3 ⊆ 𝒜𝒫 s.t. 𝑥1 ∪ 𝑥2 ∪ 𝑥3(𝜑3 ∧ 𝜑2) = T,
IC 𝒫(𝑥1 ∪ 𝑥2 ∪ 𝑥3)(𝜑1) = T. Notice that there is a
single 𝑥3 ⊆ 𝒜3 s.t. 𝑥3(𝜑3) and 𝑥1 ∪ 𝑥2 ∪ 𝑥3(𝜑3 ∧
𝜑2) = T is independent of 𝑥1 (i.e. 𝑥⋆

1 ∪ 𝑥2 ∪ 𝑥3(𝜑3 ∧
𝜑2) = T for any 𝑥⋆

1 ⊆ 𝒜1). As 𝒜1 ⊥⊥𝒫 𝒜2 | 𝒜3,
IC 𝒫(𝑥1∪𝑥⋆

2∪𝑥3)|1,3 = IC 𝒫(𝑥1∪𝑥⋆
2∪𝑥3)|1,3 for any

𝑥⋆
2 ⊆ 𝒜2, we see that for any 𝑥′

1 ⊆ 𝒜1, IC 𝒫(𝑥′
1 ∪

𝑥⋆
2 ∪ 𝑥3)|1(𝜑1) = T, which implies 𝜑3 |=𝒫 𝜑1.

Splitting Operators A concept related to condi-
tional independence studied in approximation fix-
point theory is that of stratification [9]. This work
essentially generalizes the idea of splitting as known
from logic programming, where the idea is to divide
a logic program in layers such that computations
in a given layer only depend on rules in the layer
itself or layers below. For example, the program
{𝑞 ←∼ 𝑟; 𝑟 ←∼ 𝑠; 𝑠←∼ 𝑝} can be stratified in the
layers {𝑝}, {𝑠, 𝑟}, {𝑞}. This concept was formulated
purely algebraically by Vennekens, Gilis and De-
necker [9]. Our study of conditional independence
took inspiration from this work in using product
lattices as an algebraic tool for dividing lattices, and
many proofs and results in our paper are similar
to those shown for stratified operators [9]. Concep-
tually, stratification and conditional independence
seem somewhat orthogonal, as conditional indepen-
dence allows to divide a lattice “horizontally” into

independent parts, whereas stratification allows to
divide a lattice “vertically” in layers that incremen-
tally depend on each other. It might be therefore
rather surprising that conditional independence can
be seen as a special case of stratification.

We first recall the definitions on stratifiability.
First, we denote, for a product lattice

⨂︀
𝑖∈𝐼

𝐿𝑖,
𝑥 ∈

⨂︀
𝑖∈𝐼

𝐿𝑖 and 𝑗 ∈ 𝐼, 𝑥|≤𝑗 = 𝑥|{𝑖∈𝐼|𝑖≤𝑗}. An
operator is stratifiable (over

⨂︀
𝑖∈𝐼

𝐿𝑖) iff for every
𝑥1, 𝑥2 ∈

⨂︀
𝑖∈𝐼

𝐿𝑖 and every 𝑗 ∈ 𝐼, if 𝑥1
|≤𝑗 = 𝑥2

|≤𝑗

then 𝑂(𝑥)|≤𝑗 = 𝑂(𝑦)|≤𝑗 .

Proposition 11. Let a ≤⊗-monotonic operator 𝑂
on the product lattice

⨂︀
𝑖∈{1,2,3} 𝐿𝑖 be given. Then

𝐿1 ⊥⊥𝑂 𝐿2 | 𝐿3 iff 𝑂 is stratifiable over 𝐿1 ⊗ (𝐿2 ⊗
𝐿3) and 𝐿2 ⊗ (𝐿1 ⊗ 𝐿3).

Proof. For the ⇒-direction, suppose that 𝐿1 ⊥⊥𝑂

𝐿2 | 𝐿3. Suppose that 𝑥1, 𝑥2 ∈
⨂︀

𝑖∈{1,2,3} 𝐿𝑖 and
that 𝑥1

1 ⊗ 𝑥1
3 = 𝑥2

1 ⊗ 𝑥1
3. Then, as 𝐿1 ⊥⊥𝑂 𝐿2 | 𝐿3,

𝑂(𝑥1)|{1,3} = 𝑂1,3(𝑥1
1 ⊗ 𝑥1

3) = 𝑂1,3(𝑥2
1 ⊗ 𝑥2

3) =
𝑂(𝑥2)|{1,3}.

For the⇐-direction, suppose that 𝑂 is stratifiable
over 𝐿1 ⊗ (𝐿2 ⊗ 𝐿3) and 𝐿2 ⊗ (𝐿1 ⊗ 𝐿3). Then we
can define 𝑂(𝑥1⊗⊗𝑥3) = 𝑂(𝑥1⊗𝑥2⊗𝑥3)|𝑖,3 for any
𝑥2 ∈ 𝐿2 as 𝑂(𝑥1⊗𝑥2⊗𝑥3)|𝑖,3 = 𝑂(𝑥1⊗𝑥′

2⊗𝑥3)|𝑖,3
for any 𝑥′

2 ∈ 𝐿2.

On the other hand, stratification does not, in gen-
eral, imply conditional independence, as conditional
independence requires symmetry:

Example 4. Consider 𝒫 = {𝑞 ←∼ 𝑟; 𝑟 ←∼
𝑠; 𝑠←∼ 𝑝}. Then 𝒫 can be stratified in the layers
{𝑝}, {𝑠, 𝑟}, {𝑞} yet {𝑞} is not conditionally indepen-
dent from any of the other atoms.

Decomposing Logic Programs A lot of effort has
been devoted to the study of the paramterization
of the computational complexity of various compu-
tational tasks using treewidth decompositions as a
parameter [21]. These results show that the com-
putational effort required in solving a problem is
not a function of the overall size of the problem,
but rather of certain structural parameters of the
problem, i.e. the treewidth of a certain representa-
tion of the problem. These techniques have also
been successfully applied to answer set program-
ming [22]. In these works, the treewidth of the tree
decomposition of the dependence graph DP(𝒫) and
incidence graph (which also contains vertices for
rules) of a logic program are used as parameters
to obtain fixed-parameter tractability results. We
first notice that a treewidth-decomposition does
not always indicate a conditional independence

71

Jesse Heyninck CEUR Workshop Proceedings 64–73

(we refer here to the relevant literature for back-
ground on treewidth-decompositions [22]). Indeed,
Example 3 provides a case in point, as the tree-
decomposition would suggest the conditional inde-
pendence {𝑎1, 𝑏1} ⊥⊥𝒫 {𝑎2, 𝑏2} | {𝑒}, which does
not hold. On the other hand, given that we phrased
conditional independence semantically, some decom-
positions are not visible using the purely syntactic
approach from [22]:

Example 5. Let 𝒫 = {𝑝← 𝑞,∼ 𝑞; 𝑞 ← 𝑝,∼ 𝑝; 𝑞 ←∼
𝑟; 𝑝←∼ 𝑠}, with the following dependency graph:

𝑟 𝑞 𝑝 𝑠

The only treewidth decomposition is the following:

{𝑝, 𝑞}

{𝑞, 𝑟} {𝑝, 𝑠}

However (since the rules 𝑝 ← 𝑞,∼ 𝑞 and 𝑞 ←
𝑝,∼ 𝑝 are never applicable), it can be verified that
{𝑞, 𝑟} ⊥⊥𝒫 {𝑝, 𝑠} | ∅.

Thus, the exact relationships between conditional
independence and treewidth decompositions seem
rather intricate and remain to be investigated.

Other operator-based formalisms have been anal-
ysed in terms of treewidth decompositions [23, 24].
A benefit of our operator-based approach is that all
results are purely algebraic and therefore language-
independent, which means that applications to spe-
cific formalisms are derived as straightforward corol-
laries. Furthermore, the results for AFT-based se-
mantics, which subsume many KR-formalisms (see
[8] for an overview), are not restricted to the to-
tal stable fixpoints, in contrast to many studies on
fixed-parameter tractability. An investigation into
the benefits to computational complexity on the
basis of conditional independence is one of the most
important avenues for future work, and we conjec-
ture that fixed parameter tractability results based
on the decomposition in modules using conditional
independence will be obtainable.

Other Related Work Conditional independence
has been investigated in several other logic-based
frameworks, such as (iterated) belief revision [5, 25],
conditional logics [26] and formal argumentation
[27, 28]. The benefit of our work is that the algebraic
nature allows for the straightforward application to
other formalisms with a fixpoint semantics.

7. Conclusion
In this paper, the concept of conditional indepen-
dence, well-known from probability theory, was for-
mulated and studied for operators. This allows to
use this concept to a wide variety of formalisms for
knowledge representation that admit an operator-
based characterisation. As a proof-of-concept, we
have applied it to the semantics of normal logic
programs.

There exist several fruitful avenues for future
work. Firstly, we will investigate whether and
how modularisation based on conditional indepen-
dence can be used to obtain purely algebraic fixed-
parameter results. Secondly, we want to investigate
related notions of independence, such as context-
specific independence [29]. A third avenue for future
work is a more extensive application of the theory to
concrete formalisms, both in breadth (by applying
the theory to further formalisms) and in depth (e.g.
by investigating more syntactic methods to identify
conditional independencies, and by evaluating the
computational gain experimentally).

References
[1] J. Pearl, D. Geiger, T. Verma, Conditional

independence and its representations, Kyber-
netika 25 (1989) 33–44.

[2] A. Darwiche, A logical notion of conditional
independence: properties and applications, Ar-
tificial Intelligence 97 (1997) 45–82.

[3] J. Lang, P. Liberatore, P. Marquis, Conditional
independence in propositional logic, Artificial
Intelligence 141 (2002) 79–121.

[4] G. Kern-Isberner, J. Heyninck, C. Beierle,
Conditional independence for iterated belief
revision, in: L. D. Raedt (Ed.), Proceed-
ings of the Thirty-First International Joint
Conference on Artificial Intelligence, IJCAI-
22, 2022, pp. 2690–2696. doi:10.24963/ijcai.
2022/373, main Track.

[5] M. J. Lynn, J. P. Delgrande, P. Peppas, Us-
ing conditional independence for belief revi-
sion, in: Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, 2022, pp.
5809–5816.

[6] Jesse Heyninck, G. Kern-Isberner, T. A. Meyer,
J. Haldimann, C. Beierle, Conditional syntax
splitting for non-monotonic inference operators,
in: Proceedings of the 37th AAAI Conference
on Artificial Intelligence (AAAI’23), 2023.

[7] M. Denecker, V. Marek, M. Truszczyński, Uni-
form semantic treatment of default and au-

72

http://dx.doi.org/10.24963/ijcai.2022/373
http://dx.doi.org/10.24963/ijcai.2022/373

Jesse Heyninck CEUR Workshop Proceedings 64–73

toepistemic logics, Artificial Intelligence 143
(2003) 79–122.

[8] J. Heyninck, B. Bogaerts, Non-deterministic
approximation operators: ultimate opera-
tors, semi-equilibrium semantics and aggre-
gates (full version), CoRR abs/2305.10846
(2023). URL: https://doi.org/10.48550/arXiv.
2305.10846. doi:10.48550/arXiv.2305.10846.
arXiv:2305.10846.

[9] J. Vennekens, D. Gilis, M. Denecker, Splitting
an operator: Algebraic modularity results for
logics with fixpoint semantics, ACM Transac-
tions on computational logic (TOCL) 7 (2006)
765–797.

[10] B. Bogaerts, J. Vennekens, M. Denecker,
Grounded fixpoints and their applications in
knowledge representation, Artificial Intel-
ligence 224 (2015) 51 – 71. doi:10.1016/j.
artint.2015.03.006.

[11] M. Truszczyński, Strong and uniform equiv-
alence of nonmonotonic theories–an algebraic
approach, Annals of Mathematics and Artifi-
cial Intelligence 48 (2006) 245–265.

[12] J. Heyninck, O. Arieli, B. Bogaerts, Non-
deterministic approximation fixpoint the-
ory and its application in disjunctive
logic programming, CoRR abs/2211.17262
(2022). URL: https://doi.org/10.48550/arXiv.
2211.17262. doi:10.48550/arXiv.2211.17262.
arXiv:2211.17262.

[13] M. H. van Emden, R. A. Kowalski, The se-
mantics of predicate logic as a programming
language, J. ACM 23 (1976) 733–742.

[14] M. Gelfond, V. Lifschitz, Classical negation in
logic programs and disjunctive databases, New
generation computing 9 (1991) 365–385.

[15] T. C. Przymusinski, The well-founded seman-
tics coincides with the three-valued stable se-
mantics, Fundamenta Informaticae 13 (1990)
445–463.

[16] M. Denecker, V. Marek, M. Truszczyński, Ap-
proximations, stable operators, well-founded
fixpoints and applications in nonmonotonic
reasoning, in: Logic-based Artificial Intelli-
gence, volume 597 of The Springer Interna-
tional Series in Engineering and Computer
Science, Springer, 2000, pp. 127–144.

[17] M. Denecker, V. W. Marek, M. Truszczyn-
ski, Ultimate approximations in nonmonotonic
knowledge representation systems, in: Proceed-
ings of the Eights International Conference on
Principles of Knowledge Representation and
Reasoning, 2002, pp. 177–190.

[18] N. Pelov, M. Denecker, M. Bruynooghe, Well-
founded and stable semantics of logic programs

with aggregates, Theory and Practice of Logic
Programming 7 (2007) 301–353.

[19] A. Van Gelder, K. A. Ross, J. S. Schlipf, The
well-founded semantics for general logic pro-
grams, Journal of the ACM 38 (1991) 619–649.

[20] D. Makinson, L. van der Torre, What is in-
put/output logic?, in: Foundations of the For-
mal Sciences II: Applications of Mathematical
Logic in Philosophy and Linguistics, Papers of
a Conference held in Bonn, November 10–13,
2000, Springer, 2003, pp. 163–174.

[21] G. Gottlob, F. Scarcello, M. Sideri, Fixed-
parameter complexity in ai and nonmonotonic
reasoning, Artificial Intelligence 138 (2002)
55–86.

[22] J. K. Fichte, M. Hecher, M. Morak, S. Woltran,
Answer set solving with bounded treewidth
revisited, in: Logic Programming and Non-
monotonic Reasoning: 14th International Con-
ference, LPNMR 2017, Espoo, Finland, July
3-6, 2017, Proceedings 14, Springer, 2017, pp.
132–145.

[23] J. K. Fichte, M. Hecher, I. Schindler, Default
logic and bounded treewidth, Information and
Computation 283 (2022) 104675.

[24] W. Dvořák, R. Pichler, S. Woltran, Towards
fixed-parameter tractable algorithms for ab-
stract argumentation, Artificial Intelligence
186 (2012) 1–37.

[25] G. Kern-Isberner, J. Heyninck, C. Beierle, Con-
ditional independence for iterated belief revi-
sion, in: 31st International Joint Conference
on Artificial Intelligence, International Joint
Conferences on Artificial Intelligence, 2022, pp.
2690–2696.

[26] J. Heyninck, G. Kern-Isberner, T. Meyer, Con-
ditional syntax splitting, lexicographic entail-
ment and the drowning effect (2022).

[27] T. Rienstra, M. Thimm, K. Kersting, X. Shao,
Independence and d-separation in abstract ar-
gumentation, in: Proceedings of the Inter-
national Conference on Principles of Knowl-
edge Representation and Reasoning, volume 17,
2020, pp. 713–722.

[28] S. A. Gaggl, S. Rudolph, H. Strass, On the de-
composition of abstract dialectical frameworks
and the complexity of naive-based semantics,
Journal of Artificial Intelligence Research 70
(2021) 1–64.

[29] C. Boutilier, N. Friedman, M. Goldszmidt,
D. Koller, Context-specific independence in
bayesian networks, in: Proc. 12th Conf. on
Uncertainty in Artificial Intelligence (UAI’96),
1996, pp. 115–123.

73

https://doi.org/10.48550/arXiv.2305.10846
https://doi.org/10.48550/arXiv.2305.10846
http://dx.doi.org/10.48550/arXiv.2305.10846
http://arxiv.org/abs/2305.10846
http://dx.doi.org/10.1016/j.artint.2015.03.006
http://dx.doi.org/10.1016/j.artint.2015.03.006
https://doi.org/10.48550/arXiv.2211.17262
https://doi.org/10.48550/arXiv.2211.17262
http://dx.doi.org/10.48550/arXiv.2211.17262
http://arxiv.org/abs/2211.17262

	1 Introduction
	2 Background and Preliminaries
	2.1 Logic Programming
	2.2 Lattices and sub-lattices
	2.3 Approximation Fixpoint Theory

	3 Conditional Independence
	4 Conditional Independence and Approximation Fixpoint Theory
	5 Application to Logic Programs
	6 Related Work
	7 Conclusion

