
Semantics for Logic Programs with Choice Constructs on
the Basis of Approximation Fixpoint Theory (Preliminary
Report)
Jesse Heyninck

Open Universiteit, the Netherlands
University of Cape Town, South Africa

Abstract
Choice constructs are an important addition to the language of logic programming that greatly increase
its modeling capabilities. Their semantics are non-deterministic, in the sense that their might be several
interpretations that satisfy a choice construct. In this paper, the semantics of logic programs with choice
operators are studied using the recently proposed non-deterministic approximation fixpoint theory. We show
that this allows to represent the semantics of Liu, Pontenelli, Son and Trusczczyński and generalize these
semantics to the three-valued case. Furthermore, the framework allows us to give a principled account of the
difference and similarities between stable model semantics of choice programs and disjunctive logic programs.

Keywords
Approximation fixpoint theory, choice constructs, logic programming

1. Introduction
Logic programming is one of the most popular
declarative formalisms, as it offers an expressive,
rule-based modelling language and efficient solvers
for knowledge representation. An important part
of this expressiveness comes from choice construct,
that allow to state e.g. set constraints in the head of
rules. For example, the rule 1 ≤ {𝑝, 𝑞, 𝑟} ≤ 2 ← 𝑠
expresses that if 𝑠 is true, between 1 and 2 atoms
among 𝑝, 𝑞 and 𝑟 can be true. Choice constructs
are non-deterministic, in the sense that there is
more than one way to satisfy their head. For ex-
ample, 1 ≤ {𝑝, 𝑞, 𝑟} ≤ 2 can be satisfied by {𝑝},
{𝑝, 𝑞}, {𝑟}, Formulating semantics for such
non-deterministic rules has proven a challenging
task [1, 2, 3, 4], and, to the best of our knowl-
edge, attention has been restricted to two-valued
semantics. Furthermore, the relation with a related
non-deterministic construct, namely disjunction, is
not clear.

Approximation fixpoint theory (AFT) [5] is a
purely algebraic theory which was shown to unify
the semantics of, among others, logic programming
default logic and autoepistemic logic. The central

21st International Workshop on Nonmonotonic Reasoning,
September 2–4, 2023, Rhodes, Greece
$ jesse.heyninck@ou.nl (J. Heyninck)
� https://sites.google.com/view/jesseheyninck
(J. Heyninck)
� 0000-0002-3825-4052 (J. Heyninck)

© 2023 Copyright for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY
4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

objects of study of AFT are (approximating) opera-
tors and their fixpoints. For logic programming for
instance, it was shown that Fitting’s [6] three-valued
immediate consequence operator is an approximat-
ing operator of Van Emden and Kowalski’s [7] two-
valued immediate consequence operator and that
all major semantics of (normal) logic programming
can be derived directly from this approximating
operator. Recently, AFT was generalized to also
capture non-deterministic operators [8] which allow
for different options or choices in their output. It
was shown that many major semantics of disjunc-
tive logic programming (specifically the weakly sup-
ported, (partial) stable, and well-founded semantics
[9]) are captured by non-deterministic AFT.

In this paper, we commence an operator-based
study of the semantics of logic programs with choice
constructs in the head using the framework of non-
deterministic AFT. This has several advantages:
(1) it brings the semantics of these programs in
a principle-based framework for the definition of
semantics; (2) it gives immediately rise to a wide va-
riety of semantics, such as the three-valued fixpoint
and stable semantics, and the state semantics; (3)
it allows to compare these semantics with semantics
for other, related formalisms, notably, disjunctive
logic programs; and (4) allows to use concepts in-
vestigated for AFT such as stratification [10].

This study of choice constructs brings to light that
the stable semantics as they are currently defined
in non-deterministic AFT are too restrictive. This
leads to the generaliziation of the stable semantics to
what we call the constructive stable semantics. We

74

mailto:jesse.heyninck@ou.nl
https://sites.google.com/view/jesseheyninck
https://orcid.org/0000-0002-3825-4052
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Jesse Heyninck CEUR Workshop Proceedings 74–83

Preorder Type Definition
Element Orders

≤𝑖 ℘(𝒜𝒫)2 × ℘(𝒜𝒫)2 (𝑥1, 𝑦1) ≤𝑖 (𝑥2, 𝑦2) iff 𝑥1 ⊆ 𝑥2 and 𝑦1 ⊇ 𝑦2
≤𝑡 ℘(𝒜𝒫)2 × ℘(𝒜𝒫)2 (𝑥1, 𝑦1) ≤𝑡 (𝑥2, 𝑦2) iff 𝑥1 ⊆ 𝑥2 and 𝑦1 ⊆ 𝑦2

Set-based Orders
⪯𝑆

𝐿 ℘(℘(𝒜𝒫))× ℘(℘(𝒜𝒫)) 𝑋 ⪯𝑆
𝐿 𝑌 iff for every 𝑦 ∈ 𝑌 there is an 𝑥 ∈ 𝑋 s.t. 𝑥 ⊆ 𝑦

⪯𝐻
𝐿 ℘(℘(𝒜𝒫))× ℘(℘(𝒜𝒫)) 𝑋 ⪯𝐻

𝐿 𝑌 iff for every 𝑥 ∈ 𝑋 there is an 𝑦 ∈ 𝑌 s.t. 𝑥 ⊆ 𝑦
⪯𝐴

𝑖 ℘(℘(𝒜𝒫))2 × ℘(℘(𝒜𝒫))2 (𝑋1, 𝑌1) ⪯𝐴
𝑖 (𝑋2, 𝑌2) iff 𝑋1 ⪯𝑆

𝐿 𝑋2 and 𝑌2 ⪯𝐻
𝐿 𝑌1

Table 1
List of the preorders used in this paper (instantiated for the lattice ⟨𝒜𝒫 ,⊆⟩).

can show that these semantics generalize existing se-
mantics for choice programs [1] to the three-valued
case. Furthermore, we are able to show that the dif-
ferences between semantics for choice logic programs
and disjunctive logic programs can be explained ex-
actly by these two notions of stable semantics, which
coincide for normal logic programs. As such, our
study also sheds more light on the foundations of
current implementations of logic programming.
Outline of the Paper: This paper is constructed as
follows. In Section 2, the necessary background on
disjunctive logic programs and non-deterministic
approximation fixpoint theory is given. In Section
3, we formulate a non-deterministic approximation
operator for choice programs. In Section 4, we
show that this captures existing supported model
semantics and leads to a natural, three-valued gen-
eralization. In Section 5, we turn to the stable
semantics, and show that, when generalizing the
stable semantics as defined for non-deterministic
AFT, answer set semantics from the literature can
be represented. In Section 6, we make some obser-
vations on the relation between choice constructs
and disjunctions. Related work is discussed and the
paper is concluded in Section 7.
Notational Conventions and Defintiions: To increase
the readability of this paper, we have provided a
summary of the main notationa conventions and
definitions in Tables 1 and 2.

2. Background and Preliminaries
In this section, we recall disjunctive logic pro-
gramming and choice programs (Sec. 2.1) and non-
deterministic operators (Sec. 2.2).

2.1. Disjunctive Logic Programming and
Choice Rules

Disjunctive Logic Programs In what follows we
consider a propositional1 language L, whose atomic
formulas are denoted by 𝑝, 𝑞, 𝑟 (possibly indexed),
and that contains the propositional constants T
(representing truth), F (falsity), U (unknown), and
C (contradictory information). The connectives in
L include negation ¬, conjunction ∧ and disjunction
∨. Formulas are denoted by 𝜑, 𝜓, 𝛿 (again, possibly
indexed). Logic programs in L may be divided to
different kinds as follows: a (propositional) disjunc-
tive logic program 𝒫 in L (a dlp in short) is a finite
set of rules of the form

⋁︀𝑛

𝑖=1 𝑝𝑖 ← 𝜓, where the
head

⋁︀𝑛

𝑖=1 𝑝𝑖 is a non-empty disjunction of atoms,
and the body 𝜓 is a formula in L. A rule is called
normal, if its body is a conjunction of literals (i.e.,
atomic formulas or negated atoms), and its head is
atomic. A rule is disjunctively normal if its body is
a conjunction of literals and its head is a non-empty
disjunction of atoms. We will use these denomina-
tions for programs if all rules in the program satisfy
the denomination, e.g. a program is normal if all its
rules are normal. The set of atoms occurring in a
logic program 𝒫 is denoted 𝒜𝒫 .

The semantics of dlps are given in terms of four-
valued interpretations. A four-valued interpretation
of a program 𝒫 is a pair (𝑥, 𝑦), where 𝑥 ⊆ 𝒜𝒫 is
the set of the atoms that are assigned a value in
{T,C} and 𝑦 ⊆ 𝒜𝒫 is the set of atoms assigned
a value in {T,U}. Furthermore, let the involution
− is defined by −T = F, −F = T, −U = U and
−C = C. Truth assignments to complex formulas
are then recursively defined as follows:

• (𝑥, 𝑦)(𝑝) =

⎧⎪⎪⎨⎪⎪⎩
T if 𝑝 ∈ 𝑥 and 𝑝 ∈ 𝑦,
U if 𝑝 ̸∈ 𝑥 and 𝑝 ∈ 𝑦,
F if 𝑝 ̸∈ 𝑥 and 𝑝 ̸∈ 𝑦,
C if 𝑝 ∈ 𝑥 and 𝑝 ̸∈ 𝑦.

1For simplicity we restrict ourselves to the propositional
case.

75

Jesse Heyninck CEUR Workshop Proceedings 74–83

Immediate Consequence Operator for dlps
HD𝒫 (𝑥) = {Δ |

⋁︀
Δ← 𝜓 ∈ 𝒫 and (𝑥, 𝑥)(𝜓) = T},

IC𝒫 (𝑥) = {𝑦 ⊆
⋃︀

HD𝒫 (𝑥) | ∀Δ ∈ HD𝒫 (𝑥), 𝑦 ∩Δ ̸= ∅}.
Immediate Consequence Operator for choice programs

IC𝑐
𝒫 (𝑥) = {𝑧 ⊆

⋃︀
𝑟∈𝒫(𝑥) dom(hd(𝑟)) | ∀𝑟 ∈ 𝒫(𝑥) : 𝑧 |= hd(𝑟)}

Ndao ℐ𝒞𝒫 for disjunctive logic programs
ℋ𝒟𝑙

𝒫 (𝑥, 𝑦) = {Δ |
⋁︀

Δ← 𝜑 ∈ 𝒫, (𝑥, 𝑦)(𝜑) ≥𝑡 C},
ℋ𝒟𝑢

𝒫 (𝑥, 𝑦) = {Δ |
⋁︀

Δ← 𝜑 ∈ 𝒫, (𝑥, 𝑦)(𝜑) ≥𝑡 U},
ℐ𝒞†

𝒫 (𝑥, 𝑦) = {𝑥1 ⊆
⋃︀
ℋ𝒟†

𝒫 (𝑥, 𝑦) | ∀Δ ∈ ℋ𝒟†
𝒫 (𝑥, 𝑦), 𝑥1 ∩Δ ̸= ∅} († ∈ {𝑙, 𝑢}),

ℐ𝒞𝒫 (𝑥, 𝑦) = (ℐ𝒞𝑙
𝒫 (𝑥, 𝑦), ℐ𝒞𝑢

𝒫 (𝑥, 𝑦)).
Ndao ℐ𝒞𝑐

𝒫 for choice programs
ℋ𝒟𝑐,𝑙

𝒫 (𝑥, 𝑦) = {𝐶 | 𝐶 ← 𝜑 ∈ 𝒫, (𝑥, 𝑦)(𝜑) ∈ {T,C}},
ℋ𝒟𝑐,𝑢

𝒫 (𝑥, 𝑦) = {𝐶 | 𝐶 ← 𝜑 ∈ 𝒫, (𝑥, 𝑦)(𝜑) ∈ {T,U}},
ℐ𝒞𝑐,†

𝒫 (𝑥, 𝑦) = {𝑧 ⊆
⋃︀

𝐶∈ℋ𝒟𝑐,†
𝒫 (𝑥,𝑦) dom(𝐶) | ∀𝐶 ∈ ℋ𝒟𝑐,𝑙

𝒫 (𝑥, 𝑦), 𝑧 ∩ dom(𝐶) ∈ sat(𝐶)} († ∈ {𝑙, 𝑢}),
ℐ𝒞𝑐

𝒫 (𝑥, 𝑦) = (ℐ𝒞𝑐,𝑙
𝒫 (𝑥, 𝑦), ℐ𝒞𝑐,𝑢

𝒫 (𝑥, 𝑦)).

Table 2
Concrete Operators for dlps and choice programs

• (𝑥, 𝑦)(¬𝜑) = −(𝑥, 𝑦)(𝜑),

• (𝑥, 𝑦)(𝜓 ∧ 𝜑) = 𝑙𝑢𝑏≤𝑡{(𝑥, 𝑦)(𝜑), (𝑥, 𝑦)(𝜓)},

• (𝑥, 𝑦)(𝜓 ∨ 𝜑) = 𝑔𝑙𝑏≤𝑡{(𝑥, 𝑦)(𝜑), (𝑥, 𝑦)(𝜓)}.

A four-valued interpretation of the form (𝑥, 𝑥) may
be associated with a two-valued (or total) inter-
pretation 𝑥. (𝑥, 𝑦) is a three-valued (or consistent)
interpretation, if 𝑥 ⊆ 𝑦. Interpretations are com-
pared by two order relations: the information order ,
which is defined as (𝑥, 𝑦) ≤𝑖 (𝑤, 𝑧) iff 𝑥 ⊆ 𝑤 and
𝑧 ⊆ 𝑦, and the truth order , where (𝑥, 𝑦) ≤𝑡 (𝑤, 𝑧)
iff 𝑥 ⊆ 𝑤 and 𝑦 ⊆ 𝑧.

An extension to dlps of the immediate conse-
quence operator for normal programs [11] is defined
as follows:

Definition 1 (Immediate Consquence operator for
dlps). Given a dlp 𝒫 and a two-valued interpretation
𝑥, we define:

• HD𝒫(𝑥) = {Δ |
⋁︀

Δ ← 𝜓 ∈
𝒫 and (𝑥, 𝑥)(𝜓) = T}.

• IC 𝒫(𝑥) = {𝑦 ⊆
⋃︀

HD𝒫(𝑥) | ∀Δ ∈
HD𝒫(𝑥), 𝑦 ∩Δ ̸= ∅}.

Thus, IC 𝒫(𝑥) consists of sets of atoms that occur
in activated rule heads, each sets contains at least
one representative from every disjuncts of a rule in
𝒫 whose body is satisfied by 𝑥. Denoting by ℘(𝒮)
the powerset of 𝒮, IC 𝒫 is an operator on the lattice
⟨℘(𝒜𝒫),⊆⟩.

Given a dlp 𝒫 a consistent interpretation (𝑥, 𝑦) is
a (three–valued) model of 𝒫, if for every 𝜑← 𝜓 ∈ 𝒫,
(𝑥, 𝑦)(𝜑) ≥𝑡 (𝑥, 𝑦)(𝜓). The GL-transformation 𝒫

(𝑥,𝑦)

of a disjunctively normal dlp 𝒫 with respect to
a consistent interpretation (𝑥, 𝑦), is the positive
program obtained by replacing in every rule in 𝒫
of the form 𝑝1 ∨ . . . ∨ 𝑝𝑛 ←

⋀︀𝑚

𝑖=1 𝑞𝑖 ∧
⋀︀𝑛

𝑗=1 ¬𝑟𝑗

a negated literal ¬𝑟𝑖 (1 ≤ 𝑖 ≤ 𝑘) by (𝑥, 𝑦)(¬𝑟𝑖).
(𝑥, 𝑦) is a three-valued stable model of 𝒫 iff it is a
≤𝑡-minimal model of 𝒫

(𝑥,𝑦) . 2

Choice Rules Choice constructs have been stud-
ied in several works on logic programming [1], and
are, among others, part of the ASP-Core-2 stan-
dard [12]. We define a choice atom relative to a
set of atoms 𝒜 as an expression 𝐶 = (dom, sat)
where dom ⊆ 𝒜 and sat ⊆ ℘(dom). Intuitively, dom
denotes the domain of 𝐶, i.e. the atoms relevant
for the evaluation of 𝐶, whereas sat is the set of
satisfiers of 𝐶. We also denote, for 𝐶 = (dom, sat),
dom by dom(𝐶) and sat by sat(𝐶). For a concrete
example, consider 1 ≤ {𝑝, 𝑞, 𝑟} ≤ 2 which intu-
itively states that between 1 and 2 of the atoms 𝑝,
𝑞 and 𝑟 have to be true, corresponds to the choice
atom ({𝑝, 𝑞, 𝑟}, {{𝑝}, {𝑞}, {𝑟}, {𝑝, 𝑞}, {𝑝, 𝑟}, {𝑞, 𝑟}})
(notice that {𝑝, 𝑞, 𝑟} is the domain and not a satis-
fier of the choice atom). For such a set constraint,
we assume the domain and satisfiers are clear and
can be left implicit.

Where 𝐶 is a choice atom and 𝜑 is a formula in
ℒ, rule 𝐶 ← 𝜑 is a choice rule. 𝐶 is called the head
(denoted hd(𝑟)) and 𝜑 the body of a choice rule
𝐶 ← 𝜑. If 𝜑 is a conjunction of literals, we call it a
normal choice rule. A choice atom 𝐶 is monotone if
dom(𝐶) ∩ 𝑥 ∈ sat(𝐶) implies dom(𝐶) ∩ 𝑥′ ∈ sat(𝐶)

2An overview of other semantics for dlps can be found in
previous work on non-deterministic AFT [8].

76

Jesse Heyninck CEUR Workshop Proceedings 74–83

for any 𝑥 ⊆ 𝑥′ ⊆ 𝒜𝒫 . A choice program is a set of
choice rules, and it is normal respectively monotone
if all of the rules are normal respectively all the
heads of rules are monotone.

We now recall the supported model-semantics [1]
for choice programs. A set 𝑥 ⊆ 𝒜𝒫 satisfies a
constraint if dom(𝐶) ∩ 𝑥 ∈ sat(𝐶). 𝑥 satisfies a
rule 𝑟 if 𝑥 satisfies the head of 𝑟 or does not satisfy
some literal in the body of 𝑟. 𝑥 is a model of 𝒫
if it satisfies every rule in 𝒫. A rule 𝑟 ∈ 𝒫 is
𝑥-applicable if 𝑥 satisfies the body of 𝑟, and the
set of 𝑥-applicable rules in 𝒫 is denoted by 𝒫(𝑥).
𝑥 is a supported model of 𝒫 if it is a model and
𝑥 ⊆

⋃︀
𝑟∈𝒫(𝑥) dom(hd(𝑟)).

We now recall the answer set semantics for choice
programs by Liu, Pontelli, Son and Truszczyński [1],
which we call the LPST-answer set semantics. Let
𝑥 ⊆ 𝒜𝒫 be given. A set 𝑧 is non-deterministically
one-step provable from 𝑥 by means of 𝒫, if 𝑧 ⊆⋃︀

𝑟∈𝒫(𝑥) dom(hd(𝑟)) and 𝑧 |= hd(𝑟) for every 𝑟 ∈
𝒫(𝑥). The operator IC 𝑐

𝒫 : ℘(𝒜𝒫) → ℘(℘(𝒜𝒫)) is
defined as: IC 𝑐

𝒫(𝑥) =

{𝑧 ⊆
⋃︁

𝑟∈𝒫(𝑥)

dom(hd(𝑟)) | ∀𝑟 ∈ 𝒫(𝑥) : 𝑧 |= hd(𝑟)}

We now recall the definition of a computation:
Definition 2. A sequence of sets of atoms ⟨𝑥𝑖⟩∞𝑖=0
is a computation for 𝒫 if 𝑥0 = ∅ and the sequence
satisfies the following principles:

Convergence : 𝑥∞ ∈ IC 𝑐
𝒫(𝑥∞)

Persistence of reasons : There is a sequence of
programs ⟨𝑃𝑖⟩∞𝑖=0 such that for every 𝑖 ≥ 0,
𝑃𝑖 ⊆ 𝑃𝑖+1, 𝑃𝑖 ⊆ 𝑃 (𝑥𝑖) and 𝑥𝑖+1 ∈ IC 𝑐

𝒫𝑖
(𝑥𝑖).

Revision For every 𝑖 > 0, there is some 𝒫 ′ ⊆
𝒫(𝑥𝑖−1) with 𝑥𝑖 ∈ IC 𝑐

𝒫′ (𝑥𝑖−1).

Persistence of beliefs 𝑥𝑖 ⊆ 𝑥𝑖+1 for every 𝑖 ≥ 0.

A set 𝑥 is a LPST-answer set if there is a compu-
tation for 𝒫 whose result is 𝑥.
Example 1. Consider the program 𝒫 = {1 ≤
{𝑝, 𝑟} ≤ 2 ← ¬𝑟; 𝑝 ← 𝑞; 𝑞 ← 𝑝}. We see
that {𝑝, 𝑞} is a supported model, as it is a model
of 𝒫 and {𝑝, 𝑞} ⊆

⋃︀
𝑟∈𝒫({𝑝,𝑞}) dom(hd(𝑟)) (since

𝒫({𝑝, 𝑞}) = 𝒫). {𝑝, 𝑞} is also a LPST-answer set
of 𝒫. This is seen by observing that the following is
a computation for 𝒫: ⟨∅, {𝑝}, {𝑝, 𝑞}⟩.

2.2. Non-Deterministic Approximation
Fixpoint Theory

We now recall basic notions from non-deterministic
approximation fixpoint theory (AFT) by Heyinck,

Arieli and Bogaerts 2022, which generalizes approx-
imation fixpoint theory as introduced by Denecker,
Marek and Truszczyński (2000) to non-deterministic
operators, i.e. operators which map elements of a
lattice to a set of elements of that lattice (like the
operator IC 𝒫 over ⟨𝒜𝒫 ,⊆⟩ for dlps). We recall the
necessary details on non-deterministic AFT, refer-
ring to the original paper [8] for more details and
explanations.

A non-deterministic operator on ℒ is a function
𝑂 : ℒ → ℘(ℒ)∖{∅}. For example, the operator IC 𝒫
from Definition 1 is a non-deterministic operator on
the lattice ⟨℘(𝒜𝒫),⊆⟩.

As the ranges of non-deterministic operators are
sets of lattice elements, one needs a way to compare
them, such as the Smyth order and the Hoare order .
Let 𝐿 = ⟨ℒ,≤⟩ be a lattice, and let 𝑋,𝑌 ∈ ℘(ℒ).
Then: 𝑋 ⪯𝑆

𝐿 𝑌 if for every 𝑦 ∈ 𝑌 there is an
𝑥 ∈ 𝑋 such that 𝑥 ≤ 𝑦; and 𝑋 ⪯𝐻

𝐿 𝑌 if for every
𝑥 ∈ 𝑋 there is a 𝑦 ∈ 𝑌 such that 𝑥 ≤ 𝑦. Given
some 𝑋1, 𝑋2, 𝑌1, 𝑌2 ⊆ ℒ, 𝑋1 × 𝑌1 ⪯𝐴

𝑖 𝑋2 × 𝑌2 iff
𝑋1 ⪯𝑆

𝐿 𝑋2 and 𝑌2 ⪯𝐻
𝐿 𝑌1; and 𝑋1×𝑌1 ⪯𝑆

𝑡 𝑋2×𝑌2
iff 𝑋1 ⪯𝑆

𝐿 𝑋2 and 𝑌2 ⪯𝑆
𝐿 𝑌1

Let 𝐿 = ⟨ℒ,≤⟩ be a lattice. Given an oper-
ator 𝒪 : ℒ2 → ℒ2, we denote by 𝒪𝑙 the pro-
jection operator defined by 𝒪𝑙(𝑥, 𝑦) = 𝒪(𝑥, 𝑦)1,
and similarly for 𝒪𝑢(𝑥, 𝑦) = 𝒪(𝑥, 𝑦)2. An oper-
ator 𝒪 : ℒ2 → ℘(ℒ)∖∅ × ℘(ℒ)∖∅ is called a non-
deterministic approximating operator (ndao, for
short), if it is ⪯𝐴

𝑖 -monotonic (i.e. (𝑥1, 𝑦1) ≤𝑖 (𝑥2, 𝑦2)
implies 𝒪(𝑥1, 𝑦1) ⪯𝐴

𝑖 𝒪(𝑥2, 𝑦2)), and is exact (i.e.,
for every 𝑥 ∈ ℒ, 𝒪(𝑥, 𝑥) = 𝒪𝑙(𝑥, 𝑥) × 𝒪𝑙(𝑥, 𝑥)).
We restrict ourselves to ndaos ranging over con-
sistent pairs (𝑥, 𝑦). A non-deterministic opera-
tor 𝑂 : ℒ → ℘(ℒ) is downward closed if for ev-
ery sequence 𝑋 = {𝑥𝜖}𝜖<𝛼 of elements in ℒ such
that: (1) for every 𝜖 < 𝛼, 𝑂(𝑥𝜖) ⪯𝑆

𝐿 {𝑥𝜖}, and
(2) for every 𝜖 < 𝜖′ < 𝛼, 𝑥𝜖′ < 𝑥𝜖, it holds that
𝑂(𝑔𝑙𝑏(𝑋)) ⪯𝑆

𝐿 𝑔𝑙𝑏(𝑋).
The stable operator (given an ndao 𝒪) is de-

fined as follows. The complete lower stable operator
is defined by (for any 𝑦 ∈ ℒ) 𝐶(𝒪𝑙)(𝑦) = {𝑥 ∈
ℒ | 𝑥 ∈ 𝒪𝑙(𝑥, 𝑦) and ¬∃𝑥′ < 𝑥 : 𝑥′ ∈ 𝒪𝑙(𝑥′, 𝑦)}.
The complete upper stable operator is defined by
(for any 𝑥 ∈ ℒ) 𝐶(𝒪𝑢)(𝑥) = {𝑦 ∈ ℒ | 𝑦 ∈
𝒪𝑢(𝑥, 𝑦) and ¬∃𝑦′ < 𝑦 : 𝑦′ ∈ 𝒪𝑢(𝑥, 𝑦′)}. The sta-
ble operator : 𝑆(𝒪)(𝑥, 𝑦) = 𝐶(𝒪𝑙)(𝑦) × 𝐶(𝒪𝑢)(𝑥).
(𝑥, 𝑦) is a stable fixpoint of 𝒪 if (𝑥, 𝑦) ∈ 𝑆(𝒪)(𝑥, 𝑦).3

Other semantics, e.g. the well-founded state and
the Kripke-Kleene fixpoints and state are defined

3Notice that we slightly abuse notation and write (𝑥, 𝑦) ∈
𝑆(𝒪)(𝑥, 𝑦) to abbreviate 𝑥 ∈ (𝑆(𝒪)(𝑥, 𝑦))1 and 𝑦 ∈
(𝑆(𝒪)(𝑥, 𝑦))2, i.e. 𝑥 is a lower bound generated by
𝑆(𝒪)(𝑥, 𝑦) and 𝑦 is an upper bound generated by
𝑆(𝒪)(𝑥, 𝑦).

77

Jesse Heyninck CEUR Workshop Proceedings 74–83

by Heyninck et al (2022) and can be immediately
obtained once an ndao is formulated. Due to space
limitations, these semantics are not discussed here.

Example 2. An example of an ndao approximating
IC 𝒫 (Definition 1) is defined as follows (given a
dlp 𝒫 and an interpretation (𝑥, 𝑦)):

• ℋ𝒟𝑙
𝒫(𝑥, 𝑦) = {Δ |

⋁︀
Δ ← 𝜑 ∈

𝒫, (𝑥, 𝑦)(𝜑) ≥𝑡 C},

• ℋ𝒟𝑢
𝒫(𝑥, 𝑦) = {Δ |

⋁︀
Δ ← 𝜑 ∈

𝒫, (𝑥, 𝑦)(𝜑) ≥𝑡 U},

• ℐ𝒞†
𝒫(𝑥, 𝑦) = {𝑥1 ⊆

⋃︀
ℋ𝒟†

𝒫(𝑥, 𝑦) | ∀Δ ∈
ℋ𝒟†

𝒫(𝑥, 𝑦), 𝑥1 ∩Δ ̸= ∅} (for † ∈ {𝑙, 𝑢}),

• ℐ𝒞𝒫(𝑥, 𝑦) = (ℐ𝒞𝑙
𝒫(𝑥, 𝑦), ℐ𝒞𝑢

𝒫(𝑥, 𝑦)).

ℐ𝒞𝑙
𝒫 behaves as follows for 𝒫 = {𝑝 ∨ 𝑞 ← ¬𝑞}:

• For any interpretation (𝑥, 𝑦) for which 𝑞 ∈ 𝑥,
ℋ𝒟𝑙

𝒫(𝑥, 𝑦) = ∅ and thus ℐ𝒞𝑙
𝒫(𝑥, 𝑦) = {∅}.

• For any interpretation (𝑥, 𝑦) for which 𝑞 ̸∈ 𝑥,
HD𝑙

𝒫(𝑥, 𝑦) = {{𝑝, 𝑞}} and thus ℐ𝒞𝑙
𝒫(𝑥, 𝑦) =

{{𝑝}, {𝑞}, {𝑝, 𝑞}}.

Since ℐ𝒞𝑙
𝒫(𝑥, 𝑦) = ℐ𝒞𝑢

𝒫(𝑦, 𝑥) (see [8, Lemma 1]),
ℐ𝒞𝒫 behaves as follows:

• For any (𝑥, 𝑦) with 𝑞 ̸∈ 𝑥 and
𝑞 ̸∈ 𝑦, ℐ𝒞𝒫(𝑥, 𝑦) = {{𝑝}, {𝑞}, {𝑝, 𝑞}} ×
{{𝑝}, {𝑞}, {𝑝, 𝑞}},

• For any (𝑥, 𝑦) with 𝑞 ̸∈ 𝑥 and 𝑞 ∈ 𝑦,
ℐ𝒞𝒫(𝑥, 𝑦) = {∅} × {{{𝑝}, {𝑞}, {𝑝, 𝑞}},

• For any (𝑥, 𝑦) with 𝑞 ∈ 𝑥 and 𝑞 ̸∈ 𝑦,
ℐ𝒞𝒫(𝑥, 𝑦) = {{𝑝}, {𝑞}, {𝑝, 𝑞}} × {∅}, and

• For any (𝑥, 𝑦) with 𝑞 ∈ 𝑥 and 𝑞 ∈ 𝑦,
ℐ𝒞𝒫(𝑥, 𝑦) = {(∅, ∅)}.

We see e.g. that 𝐶(ℐ𝒞𝑙
𝒫)({𝑝}) = {{𝑝}, {𝑞}} and thus

({𝑝}, {𝑝}) is a stable fixpoint of ℐ𝒞𝒫 . (∅, {𝑞}) is the
second stable fixpoint of ℐ𝒞𝒫 . (∅, {𝑝, 𝑞}) is a fixpoint
of ℐ𝒞𝒫 that is not stable.

The operator ℐ𝒞𝒫 faithfully represents the seman-
tics of dlps: In general, (total) stable fixpoints of
ℐ𝒞𝒫 correspond to (total) stable models of 𝒫 [13],
and weakly supported models of ℐ𝒞𝒫 [14] correspond
to fixpoints of ℐ𝒞𝒫 [8].

3. Approximation Operator for
Choice Programs

In order to apply non-deterministic AFT to obtain
semantics for choice programs, the first task is to for-
mulate an non-deterministic approximation operator

ℐ𝒞𝑐
𝒫 that approximates the immediate consequence

operator IC 𝑐
𝒫 . The idea of designing approximation

operators for rules using choice constructs in rules
is quite similar to that of disjunctions in disjunc-
tive logic programs: given an interpretation (𝑥, 𝑦),
ℐ𝒞𝑐,𝑙

𝒫 (𝑥, 𝑦) should satisfy all choice constructs 𝐶 for
which a rule 𝐶 ← 𝜑 ∈ 𝒫 has a body 𝜑 that is made
true by (𝑥, 𝑦) (and similarly for ℐ𝒞𝑢,𝑐

𝒫 (𝑥, 𝑦)). In
more formal detail, first, we define the activated
headsℋ𝒟𝑐,𝑙

𝒫 simple as the heads of rules whose body
is true or inconsistent.

ℋ𝒟𝑐,𝑙
𝒫 (𝑥, 𝑦) = {𝐶 | 𝐶 ← 𝜑 ∈ 𝒫, (𝑥, 𝑦)(𝜑) ∈ {T,C}}

The lower bound of the immediate consequence
relation is now defined as the subsets of atoms oc-
curing in satisfiers of activated heads that contain a
satisfier for every every head rule, i.e. ℐ𝒞𝑐,𝑙

𝒫 (𝑥, 𝑦) =

{𝑧 ⊆
⋃︁

𝐶∈ℋ𝒟𝑐,𝑙
𝒫 (𝑥,𝑦)

dom(𝐶) | ∀𝐶 ∈ ℋ𝒟𝑐,𝑙
𝒫 (𝑥, 𝑦),

𝑧 ∩ dom(𝐶) ∈ sat(𝐶)}

The upper bound of the operator can be defined
symmetrically as ℐ𝒞𝑐,𝑢

𝒫 (𝑥, 𝑦) = ℐ𝒞𝑐,𝑙
𝒫 (𝑦, 𝑥). It can

easily be checked that this corresponds to defining
an ℐ𝒞𝑐,𝑢

𝒫 -operator based on heads that occur in rules
whose body is U or T:

ℋ𝒟𝑐,𝑢
𝒫 (𝑥, 𝑦) = {𝐶 | 𝐶 ← 𝜑 ∈ 𝒫, (𝑥, 𝑦)(𝜑) ∈ {U,T}}

Finally, IC 𝑐
𝒫(𝑥, 𝑦) is defined by combining the lower

and upper bound operators:

ℐ𝒞𝑐
𝒫(𝑥, 𝑦) = (ℐ𝒞𝑐,𝑙

𝒫 (𝑥, 𝑦), ℐ𝒞𝑐,𝑢
𝒫 (𝑥, 𝑦))

Example 3. Consider again the program 𝒫 from Ex-
ample 1. We see e.g. that ℐ𝒞𝑐

𝒫(∅, {𝑟}) = {∅} ×
{{𝑝}, {𝑞}, {𝑝, 𝑞}} as ℋ𝒟𝑐,𝑙

𝒫 (∅, {𝑟}) = ∅ whereas
𝐻𝐷𝑐𝑐,𝑢

𝒫 (∅, {𝑟}) = {{𝑝, 𝑞}}. On the other hand,
ℐ𝒞𝑐

𝒫({𝑝}, {𝑝}) = {{𝑞}, {𝑝, 𝑞}} × {{𝑞}, {𝑝, 𝑞}} as
ℋ𝒟𝑐,𝑙

𝒫 ({𝑝}, {𝑝}) = {{𝑞}, {𝑝, 𝑞}}.

It should be noticed that this operator is not
well-defined for every program:

Example 4. Let 𝒫 = {1 < {𝑝, 𝑞} < 2 ←; 2 <
{𝑝, 𝑞} ←}. For this program, no sets satisfying
both choice constructs exist, and thus ℐ𝒞𝑐

𝒫(𝑥, 𝑦) is
not defined (for any 𝑥, 𝑦 ⊆ 𝒜𝒫).

In what follows, for simplicity, we restrict atten-
tion to programs for which ℐ𝒞𝑐

𝒫(𝑥, 𝑦) ̸= ∅ for any
𝑥, 𝑦 ⊆ 𝒜𝒫 .

The operator ℐ𝒞𝑐
𝒫 is a symmetric approximation

of the immediate consequence operator IC 𝑐
𝒫 known

from the literature [1]:

78

Jesse Heyninck CEUR Workshop Proceedings 74–83

Proposition 1. ℐ𝒞𝑐
𝒫 is a symmetric non-

deterministic approximation operator approximating
IC 𝑐

𝒫 .

Proof. Symmetry follows by the definition of
the operator. For ⪯𝐴

𝑖 -monotonicity, consider
some (𝑥1, 𝑦1) ≤𝑖 (𝑥2, 𝑦2). We first show ⪯𝑆

𝐿-
monotonicity of ℐ𝒞𝑐,𝑙

𝒫 . By [8, Proof of Proposition
1], (𝑥1, 𝑦1)(𝜑) ≥𝑡 T implies (𝑥2, 𝑦2)(𝜑) ≥𝑡 T and
thus ℋ𝒟𝑐,𝑙

𝒫 (𝑥1, 𝑦1) ⊆ ℋ𝒟𝑐,𝑙
𝒫 (𝑥2, 𝑦2). Consider some

𝑧2 ∈ IC 𝑐,𝑙
𝒫 (𝑥2, 𝑦2). We show that 𝑧2 ∩

⋃︀
{dom(𝐶) |

𝐶 ← 𝜑 ∈ 𝒫, (𝑥1, 𝑦1)(𝜑) ∈ {C,T} ∈ IC 𝑐,𝑙
𝒫 (𝑥1, 𝑦1).

Indeed, consider some 𝐶 ∈ ℋ𝒟𝑐,𝑙
𝒫 (𝑥1, 𝑦1). Then

𝐶 ∈ ℋ𝒟𝑐,𝑙
𝒫 (𝑥2, 𝑦2) and thus dom(𝐶) ∩ 𝑍2 ∈ sat(𝐶).

As 𝑧2 ∩
⋃︀
{dom(𝐶) | 𝐶 ← 𝜑 ∈ 𝒫, (𝑥1, 𝑦1)(𝜑) ∈

{C,T} ⊆ 𝑧2, this concludes the proof of ⪯𝑆
𝐿-

monotonicity. ⪯𝐻
𝐿 -monotonicity follows from sym-

metry and [8, Lemma 3]. Exactness is immediate,
as ℐ𝒞𝑐,𝑙

𝒫 (𝑥, 𝑥) = ℐ𝒞𝑐,𝑢
𝒫 (𝑥, 𝑥) for any 𝑥 ⊆ 𝒜𝒫 . That

ℐ𝒞𝑐
𝒫 approximates IC 𝑐

𝒫 is immediate.

4. Supported Model Semantics
We now turn to the study of the semantics for choice
programs obtained on the basis of our approxima-
tion operator ℐ𝒞𝑐

𝒫 . In this section, we look at the
fixpoints of ℐ𝒞𝑐

𝒫 , which we will see give a natural
four-valued generalisation of the supported model
semantics by [1]. Stable semantics are studied in
Section 5.

A first insight is that exact fixpoints of ℐ𝒞𝑐
𝒫 co-

incide with the supported models of Liu et al [1].

Proposition 2. Let a normal constraint program 𝒫
be given. Then 𝑥 ∈ ℐ𝒞𝑐,𝑙

𝒫 (𝑥, 𝑥) iff 𝑥 is a supported
model of 𝒫.

Proof. For the ⇒-direction, suppose that 𝑥 ∈
IC 𝑐,𝑙

𝒫 (𝑥, 𝑥). We first show 𝑥 is a model of 𝒫. In-
deed, consider a rule 𝐶 ← 𝐶1, . . . , 𝐶𝑛 s.t. 𝑥 sat-
isfies 𝐶𝑖 for 𝑖 = 1, . . . , 𝑛. Then (𝑥, 𝑥)(𝐶𝑖) = T
and thus 𝐶 ∈ ℋ𝒟𝑐,𝑙

𝒫 (𝑥, 𝑥), which implies, since
𝑥 ∈ IC 𝑐,𝑙

𝒫 (𝑥, 𝑥), that 𝑥 ∩ dom(𝐶) ∈ sat(𝐶). That 𝑥
is supported follows immediately from the fact that
𝑥 ∈ IC 𝑐,𝑙

𝒫 (𝑥, 𝑥) implies 𝑧 ⊆
⋃︀

𝐶∈ℋ𝒟𝑐,𝑙
𝒫 (𝑥,𝑥) dom(𝐶).

The ⇐-direction is analogous.

We now generalize this result to the three-valued
case. In order to do this, we first have to gener-
alize the four-valued truth-assignments to choice
constructs. The following forms a generalization of
assignment of truth-values to choice constructs that
forms a natural generalization of the assignment of
atoms to choice constructs. Other notions will be
investigated in future work.

Definition 3. Given a choice construct 𝐶 and an
interpretation (𝑥, 𝑦), we say that:

• (𝑥, 𝑦)(𝐶) = T if 𝑥 ∩ dom(𝑐) ∈ sat(𝐶) and
𝑦 ∩ dom(𝑐) ∈ sat(𝐶),

• (𝑥, 𝑦)(𝐶) = F if 𝑥 ∩ dom(𝑐) ̸∈ sat(𝐶) and
𝑦 ∩ dom(𝑐) ̸∈ sat(𝐶),

• (𝑥, 𝑦)(𝐶) = C if 𝑥 ∩ dom(𝑐) ̸∈ sat(𝐶) and
𝑦 ∩ dom(𝑐) ∈ sat(𝐶),

• (𝑥, 𝑦)(𝐶) = U if 𝑥 ∩ dom(𝑐) ∈ sat(𝐶) and
𝑦 ∩ dom(𝑐) ̸∈ sat(𝐶).

We can now define three-valued models of 𝒫 as con-
sistent interpretations (𝑥, 𝑦) for which (𝑥, 𝑦)(𝜑) ≥𝑡

(𝑥, 𝑦)(𝐶) for every 𝐶 ← 𝜑 ∈ 𝒫, and supported4

models as models (𝑥, 𝑦) of 𝒫 s.t. for every 𝑝 ∈ 𝑦,
there is a rule 𝐶 ← 𝜑 ∈ 𝒫 such that 𝑝 ∈ dom(𝐶)∩𝑥
and (𝑥, 𝑦)(𝜑) ≥𝑡 (𝑥, 𝑦)(𝑝). In other words, a model
is supported if for every atom 𝑝 that is not false, we
have a reason in the form of an activated rule for
accepting (or not rejecting) that atom.

We can now show that three-valued supported
models of 𝒫 coincide with pre-fixpoints (respectively
fixpoints) of ℐ𝒞𝑐

𝒫 :

Proposition 3. Let some normal choice program 𝒫
be given. Then (𝑥, 𝑦) is a three-valued supported
model of 𝒫 iff (𝑥, 𝑦) ∈ ℐ𝒞𝑐

𝒫(𝑥, 𝑦).

Proof. For the ⇒-direction, suppose that (𝑥, 𝑦) is
a three-valued supported model of 𝒫. As for ev-
ery 𝑝 ∈ 𝑦, there is a rule 𝐶 ← 𝜑 ∈ 𝒫 such that
𝑝 ∈ dom(𝐶) ∩ 𝑥 and (𝑥, 𝑦)(𝜑) ≥𝑡 (𝑥, 𝑦)(𝑝), 𝑥 ⊆⋃︀

𝐶∈ℋ𝒟𝑐,𝑙
𝒫 (𝑥,𝑦) dom(𝐶) (and similarly for 𝑦). That

for every 𝐶 ← 𝜑 ∈ ℋ𝒟𝑐,𝑙
𝒫 (𝑥, 𝑦), dom(𝐶)∩𝑥 ∈ sat(𝐶)

follows from (𝑥, 𝑦) being a model of 𝒫 (and simi-
larly for 𝑦). For the ⇐-direction, suppose (𝑥, 𝑦) ∈
IC 𝑐

𝒫(𝑥, 𝑦). That (𝑥, 𝑦) is a model follows straightfor-
wardly from the definition of IC 𝑐

𝒫(𝑥, 𝑦). Consider
now some 𝑝 ∈ 𝑦. As 𝑦 ⊆

⋃︀
𝐶∈ℋ𝒟𝑐,𝑢

𝒫 (𝑥,𝑦) dom(𝐶),
there is some 𝐶 ← 𝜑 ∈ 𝒫 s.t. 𝑝 ∈ dom(𝐶) ∩ 𝑦 (and
similarly for 𝑥).

For many other non-monotonic formalisms, one
can obtain an additional characterisation results,
namely a correspondence between pre-fixpoints of
an operator and models of the corresponding knowl-
edge base. For the general case of choice constructs,
this correspondence does not hold:

4In some works, these models have been called weakly sup-
ported models [14] for disjunctive logic programs.

79

Jesse Heyninck CEUR Workshop Proceedings 74–83

Example 5. Consider the program 𝒫 = {{𝑝, 𝑞} =
1←}. Then ({𝑝, 𝑞}, {𝑝, 𝑞}) is a pre-fixpoint of ℐ𝒞𝑐

𝒫
(as ℐ𝒞𝑐

𝒫({𝑝, 𝑞}, {𝑝, 𝑞}) = {{𝑝}, {𝑞}}×{{𝑝}, {𝑞}} ⪯𝑆
𝑡

({𝑝, 𝑞}, {𝑝, 𝑞})) yet it is not a model (as the only
models are {𝑝} and {𝑞}).

This non-correspondence between pre-fixpoints
and models does not hold due to the non-monotonic
nature of choice constructs: for monotone choice
constructs the correspondence holds:

Proposition 4. Let some normal choice program 𝒫
with monotone choice constructs be given. Then
(𝑥, 𝑦) is a model of 𝒫 iff ℐ𝒞𝑐

𝒫(𝑥, 𝑦) ⪯𝑆
𝑡 (𝑥, 𝑦).

Proof. For the ⇒-direction, suppose that (𝑥, 𝑦)
is a model of 𝒫. We show that 𝑥 ∩⋃︀

𝐶∈ℋ𝒟𝑐,𝑙
𝒫 (𝑥,𝑦) dom(𝐶) ∈ ℐ𝒞𝑐

𝒫(𝑥, 𝑦) (a similar state-
ment can be shown for 𝑦), which implies 𝑥 ⪯𝑆

𝐿

ℐ𝒞𝑐,𝑙
𝒫 (𝑥, 𝑦) (and similarly for 𝑦. Indeed, consider

some 𝐶 ∈ ℋ𝒟𝑐,𝑙
𝒫 (𝑥, 𝑦), i.e. there is some 𝐶 ← 𝜑 ∈ 𝒫

with 𝜑 ∈ {T,C}. Then 𝑥 ∩ dom(𝑐) ∈ sat(𝐶). Thus
𝑥 ∩ dom(𝐶) ∈ ℐ𝒞𝑐

𝒫(𝑥, 𝑦). For the ⇐-direction, sup-
pose that 𝐶 ← 𝜑 ∈ 𝒫 and (𝑥, 𝑦)(𝜑) = T. Then
𝐶 ∈ ℋ𝒟𝑐,𝑙

𝒫 (𝑥, 𝑦) and thus for every 𝑥1 ∈ ℐ𝒞𝑐,𝑙
𝒫 (𝑥, 𝑦),

𝑥1 ∩ dom(𝐶) ∈ sat(𝐶). As ℐ𝒞𝑐,𝑙
𝒫 (𝑥, 𝑦) ⪯𝑆

𝐿 𝑥 and 𝐶
is monotone, 𝑥1 ∩ dom(𝐶) ∈ sat(𝐶).

5. Stable Semantics
We now move to the stable semantics. We first
consider the stable semantics as defined by Heyn-
inck, Arieli and Bogaerts [8]. There, the stable
operator based on 𝒪 was defined as the ≤𝑡-minimal
fixpoints of 𝒪𝑙(., 𝑦). The usefulness of the stable
semantics as defined by Heyninck, Arieli and Bo-
gaerts is demonstrated by the characterisation of
the (partial) stable model semantics for disjunc-
tive logic programs. However, for choice constructs,
the selection of minimal fixpoints might be overly
strong:

Example 6. Consider the program 𝒫 = {1 ≤
{𝑝, 𝑞} ≤ 2←}. Intuitively, this rule allows to choose
between one and two among 𝑝 and 𝑞. The stable
version of IC 𝑐

𝒫 behaves as follows:

𝑆(IC 𝑐,𝑙
𝒫)(𝑥) = {{𝑝}, {𝑞}} for any 𝑥 ⊆ 𝒜𝒫

This means that this program has two stable fixpoints
of IC 𝑐

𝒫 : {𝑝} and {𝑞}. This is clearly undesirable, as
according to the intuitive reading of 𝒫, {𝑝, 𝑞} should
be allowed as a stable interpretation as well (notice
this is also an LPST-answer set).

In the context of choice operators, minimality
is not a satisfactory generalisation of the ideas
underlying the stable semantics for normal logic
programs. If we take one step back, we can ex-
plain the choice for minimal fixpoints, and their
shortcomings in the context of choice constructs,
in stable non-deterministic operators as defined by
Heyninck, Arieli and Bogaerts [8] as follows. For
deterministic operators, the stable version of an
approximation operator 𝒪 is defined as the glb of
fixpoints of 𝒪𝑙(., 𝑦). For deterministic operators
over finite lattices, the minimal fixpoint of 𝒪𝑙(., 𝑥)
is identical to the glb of fixpoints of 𝒪𝑙(., 𝑦), and it
is also identical to the fixpoint obtained by iterating
𝒪𝑙(., 𝑦) starting from ⊥ (i.e.

⋃︀∞
𝑖=1𝒪

𝑖
𝑙(., 𝑦). For non-

deterministic operators, this correspondence does
not hold. Indeed, as already observed by Heyn-
inck, Arieli and Bogaerts [8], the glb of fixpoints
of 𝒪(., 𝑥) is often too weak (e.g. for the program
𝒫 from Example 6 we get {𝑝} ∩ {𝑞} ∩ {𝑝, 𝑞} = ∅
as the glb of fixpoints. However, this still leaves
an alternative choice: namely looking at fixpoints
reachable by applications of 𝒪(., 𝑦) starting from ⊥.
In other words, we are interested in the fixpoints of
ℐ𝒞𝑐,𝑙

𝒫 (., 𝑦) that are grounded in the sense that we
can justify them using a sequence of applications of
ℐ𝒞𝑐,𝑙

𝒫 (., 𝑦), starting from ∅. More colloquially, the
fixpoint should be derivable from the ground up. To
formalize this, we first generalize the notion of a
well-founded sequence from [15].

Definition 4. Given a non-deterministic operator
𝑂 : ℒ → ℘(ℒ), a sequence 𝑥0, . . . , 𝑥𝑛 ⊆ ℒ is well-
founded relative to 𝑂 if:

• 𝑥0 = ⊥,

• 𝑥𝑖 ≤ 𝑥𝑖+1 and 𝑥𝑖+1 ∈ 𝑂(𝑥𝑖) for every suc-
cessor ordinal 𝑖 ≥ 0.

• 𝑥𝜆 = (𝑙𝑢𝑏{𝑥𝑖}𝑖<𝜆) for a limit ordinal 𝜆.5

We denote the well-founded sequences relative to 𝑂
by wfs(𝑂).

Notice that, in contradistinction to the determin-
istic version of a well-founded sequence, we require
not merely that 𝑥𝑖+1 ⪯𝑆

𝐿 𝑂(𝑥𝑖) (or, in the case
of deterministic operators 𝑂, 𝑥𝑖+1 < 𝑂(𝑥𝑖)) but
𝑥𝑖+1 ∈ 𝑂(𝑥𝑖). This is to ensure that 𝑥𝑖+1 can actu-
ally be constructed from 𝑥𝑖. For non-deterministic
operators, this is not ensured by merely requiring
𝑥𝑖+1 ⪯𝑆

𝐿 𝑂(𝑥𝑖):
5Even though we assume finite programs, we define here well-
founded sequences and the corresponding stable operator
for the general case of non-deterministic operators 𝑂, and
thus consider limit ordinals.

80

Jesse Heyninck CEUR Workshop Proceedings 74–83

Example 7. Let 𝒫 = {{𝑝, 𝑞} = 2 ←}. If we would
allow for 𝑥𝑖+1 ⪯𝑆

𝐿 𝑂(𝑥𝑖) in the second condition
of Definition 4, ∅, {𝑝} would be a well-founded se-
quence according to ℐ𝒞𝑐,𝑙

𝒫 (., 𝑦) (for any 𝑦 ⊆ {𝑝, 𝑞})
as {𝑝} ⪯𝑆 ℐ𝒞𝑐,𝑙

𝒫 ({𝑝}, 𝑦) = {{𝑝, 𝑞}}. However, we
have no way of deriving just 𝑝 from the program 𝒫.

We can now define the constructive complete op-
erator as follows:

Definition 5. Given an ndao 𝒪, the complete con-
structive lower bound operator is defined as:

𝐶𝑐(𝒪𝑙)(𝑦) = {𝑥 ∈ 𝒪𝑙(𝑥, 𝑦) | ∃𝑥0, .., 𝑥 ∈ wfs(𝒪𝑙(., 𝑦))}

The complete constructive upper bound operator
is defined analogously, and the constructive stable
operator is defined as 𝑆𝑐(𝒪)(𝑥, 𝑦) = 𝐶𝑐(𝒪𝑙)(𝑦) ×
𝐶𝑐(𝒪𝑢)(𝑥). A pair (𝑥, 𝑦) is a constructive stable
fixpoint iff (𝑥, 𝑦) ∈ 𝑆𝑐(𝒪)(𝑥, 𝑦).

Notice that for deterministic operators over finite
lattices, all notions of complete and stable operator
coincide (see also [8, Proposition 11]).

We illustrate the constructive stable semantics
with the program from Example 6:

Example 8 (Example 6 continued). Consider again
the program from Example 6. We see that (for
any 𝑦 ⊆ {𝑝, 𝑞}), 𝑆𝑐(𝒪𝑙)(𝑦) = {{𝑝}, {𝑞}, {𝑝, 𝑞}}, as
∅, {𝑝}, ∅, {𝑞} and ∅, {𝑝, 𝑞} are all well-founded se-
quences relative to IC 𝑐

𝒫 . Thus, the total constructive
stable fixpoints of IC 𝑐

𝒫 are ({𝑝}, {𝑝}), ({𝑞}, {𝑞}) and
({𝑝, 𝑞}, {𝑝, 𝑞}).

For finite lattices6, the constructive stable op-
erator is a generalization of the minimality-based
stable operator by Heyninck, Arieli and Bogaerts
[8] for finite lattices:

Proposition 5. Let an ndao 𝒪 over a finite lattice
𝐿 = ⟨ℒ,≤⟩ be given. Then 𝐶𝑐(𝒪†)(𝑦) ⊇ 𝐶(𝒪†)(𝑦)
for any 𝑦 ∈ ℒ and † = 𝑙, 𝑢.

Proof. We first show that (†): for any ⪯𝑆
𝐿-

monotonic operator 𝑂, for every 𝑥 ∈ min≤{𝑥 ∈
ℒ | 𝑥 ∈ 𝑂(𝑥)}, there is a well-founded sequence
𝑥0, . . . , 𝑥𝑛, 𝑥 relative to 𝑂. Indeed, since ⊥ ≤ 𝑥,
𝑂(⊥) ⪯𝑆

𝐿 𝑂(𝑥) and thus (since 𝑥 ∈ 𝑂(𝑥)), there
is some 𝑥1 ∈ 𝑂(⊥) s.t. 𝑥1 ≤ 𝑥. Repeating this
line of reasoning, we obtain a sequence ⊥ = 𝑥0 ≤
𝑥1 ≤ . . . ≤ 𝑥 s.t. 𝑥𝑖 ∈ 𝑂(𝑥𝑖−1) for any 𝑖 ≥ 0. That
there is some 𝑖 ≥ 0 s.t. 𝑥 ∈ 𝑂(𝑥𝑖) follows from
the assumption that we have a finite lattice 𝐿. We
can now show the proposition. Indeed, since 𝒪 is
⪯𝐴

𝑖 -monotonic, with [8, Lemma 3], 𝒪(., 𝑦) is ⪯𝑆
𝐿-

monotonic. The Proposition follows from †.
6The generalisation of this result to infinite lattices is left
for future work.

Thus, what appears to be a change to the se-
mantics of [8] on first sight, can be seen as a mere
generalization of these semantics. From the above
Proposition 5, it follows immediately that the set of
fixpoints of 𝑆(𝒪) is a subset of the set of fixpoints
of 𝑆𝑐(𝒪):

Corollary 1. For any ndao 𝒪, if (𝑥, 𝑦) ∈ 𝑆(𝒪)(𝑥, 𝑦)
then (𝑥, 𝑦) ∈ 𝑆𝑐(𝒪)(𝑥, 𝑦)

Proof. If (𝑥, 𝑦) ∈ 𝑆(𝒪)(𝑥, 𝑦) then with Proposi-
tion 5, 𝑥 ∈ 𝑆𝑐(𝒪𝑙)(𝑦) and 𝑦 ∈ 𝑆𝑐(𝒪𝑢)(𝑥) and thus
(𝑥, 𝑦) ∈ 𝑆𝑐(𝒪)(𝑥, 𝑦).

The fact that constructive stable operators gen-
eralize (minimality-based) stable operators means
we can also obtain results on the well-definedness
of constructive stable operators on the basis of the
insights on (minimality-based) stabel operators [8].

Proposition 6. For any ndao and 𝑥, 𝑦 ∈ ℒ s.t.
𝒪𝑙(., 𝑦) and 𝒪𝑢(𝑥, .) are downward closed and ⪯𝑆

𝐿-
monotonic, 𝐶𝑐(𝒪𝑙)(𝑦) ̸= ∅ and 𝑆𝑐(𝒪𝑦)(𝑥) ̸= ∅.

Proof. Immediate as 𝐶(𝒪𝑙)(𝑦) ̸= ∅ and
𝐶(𝒪𝑦)(𝑥) ̸= ∅ in view of [8, Proposition 13] and
𝐶𝑐(𝒪𝑙)(𝑦) ⊇ 𝑆𝑙(𝒪)(𝑦) and 𝐶𝑐(𝒪𝑢)(𝑥) ⊇ 𝑆𝑢(𝒪)(𝑥)
(Proposition 5).

A property that (unsurprisingly) does not gen-
eralize from the (minimality-based) stable opera-
tor to the constructive stable operator is the ≤𝑡-
minimality of stable fixpoints [8, Proposition 14].
This can be seen by observing that in Example 8,
({𝑝}, {𝑝}), ({𝑞}, {𝑞}) and ({𝑝, 𝑞}, {𝑝, 𝑞}) are stable
fixpoints of ℐ𝒞𝑐, which demonstrates that there
might be non-≤𝑡-minimal fixpoints of 𝑆𝑐(ℐ𝒞𝑐,𝑙

𝒫).
We now show that the total constructive stable

fixpoints of ℐ𝒞𝑐
𝒫 coincide with the stable models

according to Liu et al [1].

Proposition 7. Let a normal choice program 𝒫 be
given. Then (𝑥, 𝑥) is a total constructive stable
fixpoint of ℐ𝒞𝑐

𝒫 iff 𝑥 is a LPST-answer set of 𝒫.

Proof. For the ⇒-direction, suppose that 𝑥 ∈
𝑆𝑐(ℐ𝒞𝑐

𝒫)(𝑥). This means that there is a well-
founded sequence 𝑥0, . . . , 𝑥𝑛 relative to ℐ𝒞𝑐

𝒫(., 𝑥)
s.t. 𝑥𝑛 = 𝑥. We show that 𝑥0, . . . , 𝑥𝑛 is a computa-
tion. We first show convergence. Indeed, since
(𝑥, 𝑥) ∈ 𝑆(ℐ𝒞𝑐

𝒫)(𝑥, 𝑥) implies 𝑥 ∈ ℐ𝒞𝑐
𝒫(𝑥, 𝑥) =

IC 𝑐
𝒫(𝑥∞) this is immediate. The latter follows

from the fact that 𝑥∞ = 𝑥 and the definition
of ℐ𝒞𝑐

𝒫 . We now show persistence of reasons.
We define 𝒫𝑖 = {𝐶 ← 𝜑 ∈ 𝒫 | (𝑥𝑖, 𝑥)(𝜑) =
T, dom(𝐶) ∩ 𝑥+1 ∈ sat(𝐶)}. We first show that
𝒫𝑖 ⊆ 𝒫(𝑥𝑖). Consider some 𝐶 ←

⋀︀𝑚

𝑗=1 𝛼𝑗 ∧

81

Jesse Heyninck CEUR Workshop Proceedings 74–83

⋀︀
¬𝑚′

𝑗′=1𝛽𝑗′ ∈ 𝒫𝑖. (𝑥𝑖, 𝑥)(
⋀︀𝑚

𝑗=1 𝛼𝑗∧
⋀︀
¬𝑚′

𝑗′=1𝛽𝑗′) = T
implies 𝛼𝑗 ∈ 𝑥𝑖 for every 𝑗 = 1, . . . ,𝑚 and 𝛽𝑗′ ̸∈ 𝑥
for every 𝑗′ = 1, . . . ,𝑚′, which implies 𝛽𝑗′ ̸∈ 𝑥𝑖

(as 𝑥𝑖 ⊆ 𝑥) for every 𝑗′ = 1, . . . ,𝑚′ and thus
𝐶 ←

⋀︀𝑚

𝑗=1 𝛼𝑗 ∧
⋀︀
¬𝑚′

𝑗′=1𝛽𝑗′ ∈ 𝒫(𝑥𝑖). We now
show that 𝑥𝑖+1 ∈ IC 𝑐

𝒫𝑖
(𝑥𝑖). Indeed, consider some

𝐶 ←
⋀︀𝑚

𝑗=1 𝛼𝑗 ∧
⋀︀
¬𝑚′

𝑗′=1𝛽𝑗′ ∈ 𝒫𝑖 s.t. 𝛼𝑗 ∈ 𝑥𝑖 for 𝑗 =
1, . . . ,𝑚 and 𝛽𝑗′ ̸∈ 𝑥𝑖 for 𝑗′ = 1, . . . ,𝑚′. By con-
struction of 𝒫𝑖, (𝑥𝑖, 𝑥)(

⋀︀𝑚

𝑗=1 𝛼𝑗 ∧
⋀︀
¬𝑚′

𝑗′=1𝛽𝑗′) = T
and dom(𝐶)∩𝑥+1 ∈ sat(𝐶). Thus, 𝑥𝑖+1 ∈ IC 𝑐

𝒫𝑖
(𝑥𝑖).

We now show that 𝒫𝑖 ⊆ 𝒫𝑖+1 for every 𝑖 ≥ 0. Con-
sider some 𝐶 ←

⋀︀𝑚

𝑗=1 𝛼𝑗∧
⋀︀𝑚′

𝑗′=1 ¬𝛽𝑗′ ∈ 𝒫𝑖. Clearly,
(𝑥𝑖+1, 𝑥)(

⋀︀𝑚

𝑗=1 𝛼𝑗 ∧
⋀︀𝑚′

𝑗′=1 ¬𝛽𝑗′) = T as well. What
remains to be shown is that 𝑥𝑖+1∩dom(𝐶) ∈ sat(𝐶),
which follows from 𝑥𝑖+1 ∈ ℐ𝒞𝑐

𝒫(𝑥𝑖, 𝑥). Persis-
tence of beliefs is immediate. Revision follows from
the fact that 𝑥𝑖 ∈ ℐ𝒞𝑐

𝒫(𝑥𝑖−1, 𝑥) for every 𝑖 > 0
and thus (as 𝒫 is a normal choice program) also
𝑥𝑖 ∈ IC 𝑐

𝒫(𝑥𝑖−1).
For the ⇐-direction, suppose that 𝑥 is a stable

model of 𝒫 according to [1], i.e. there is a compu-
tation ⟨𝑥𝑖⟩∞𝑖=0 whose result is 𝑥. We show there
is a well-founded sequence 𝑥0, 𝑧1, . . . , 𝑥 relative to
ℐ𝒞𝑐,𝑙

𝒫 (., 𝑥). With Persistence of reasons, for every
𝑥𝑖, there is some 𝒫 ′ ⊆ 𝒫 s.t. 𝑥𝑖 ∈ ℐ𝒞𝑐,𝑙

𝒫′ (𝑥𝑖−1, 𝑥).
We let 𝑧𝑖 = 𝑥𝑖 ∪

⋃︀
{𝑥 ∩ dom(𝐶) | 𝐶 ← 𝜑 ∈

𝒫 ∖ 𝒫 ′, (𝑥𝑖, 𝑥)(𝜑) = T}. Notice that 𝑧𝑖 ⊆ 𝑥. We
now show: (1) 𝑧𝑖 ⊆ 𝑧𝑖+1 for every 𝑖 ≥ 0; and (2)
𝑧𝑖+1 ∈ ℐ𝒞𝑐,𝑙

𝒫 (𝑧𝑖, 𝑥) for every 𝑖 ≥ 0. For (1): im-
mediate as 𝑥𝑖 ⊆ 𝑥𝑖+1 and (𝑥𝑖, 𝑥)(𝜑) = T implies
(𝑥𝑖+1, 𝑥)(𝜑) = T for any 𝜑 ∈ ℒ. For (2): observe
first that 𝑥𝑖+1 ∈ ℐ𝒞𝑐,𝑙

𝒫′ (𝑥𝑖, 𝑥) for some 𝒫 ′ ⊆ 𝒫(𝑥)
according to persistence of reasons. Thus, for every
𝐶 ← 𝜑 ∈ 𝒫 ′, (𝑥𝑖, 𝑥)(𝜑) = T implies (𝑥, 𝑥)(𝜑) = T,
which means also (𝑧𝑖, 𝑥)(𝜑) = T. Furthermore, by
definition of 𝑧𝑖+1, for every 𝐶 ← 𝜑 ∈ 𝒫 ∖ 𝒫 ′, 𝐶 is
satisfied by 𝑧𝑖+1. Thus, 𝑧𝑖+1 ∈ ℐ𝒞𝑐,𝑙

𝒫 (𝑧𝑖, 𝑥).

6. Disjunctions are Choice
Constructs

Our study allows us to give a principled account of
the relation between stable semantics for disjunctive
logic programs and choice programs. We first show
that the operator for disjunctive logic programs is a
special case of the operator for choice programs. In
more technical detail, for a disjunctive logic program
𝒫, we define D2C(𝒫) = {1 ≤ Δ ← 𝜑 |

⋁︀
Δ ← 𝜑 ∈

𝒫}. In other words, we replace every disjunction
by the constraint that requires at least one element
of Δ is true (recall ℐ𝒞𝒫 is defined in Example 2).
Proposition 8. For any disjunctive logic program 𝒫,

ℐ𝒞𝒫 = ℐ𝒞𝑐
D2C(𝒫).

Proof. It suffices to observe that 𝑥∩ dom(1 ≤ Δ) ∈
sat(1 ≤ Δ) iff Δ ∩ 𝑥 ̸= ∅.

From this, it immediately follows that all seman-
tics coincide for disjunctive logic programs and their
conversion into choice rules. In other words, the
operator-based perspective of AFT allows us to
point in a very exact way to the difference between
disjunctive logic programs and choice programs: the
difference is not in how the constructs of disjunc-
tion and choice atoms are treated (i.e. when they
should be made true or false), but rather in how
the stable semantics is constructed: for disjunc-
tions, typically (e.g. in the most popular solvers
[16, 17]), the minimality-based stable operator is
used, whereas for choice constructs, the constructive
stable operator is more apt (in order not to exclude
perfectly fine candidate answer sets).

This also gives an answer to the question of how
to combine disjunctions and choice constructs in
logic programs: one can well combine both con-
structs, but one has to make a choice as to which
stable semantics are used: either one preserves the
minimality of answer sets as in disjunctive logic pro-
grams and loses some reasonable potential stable
models, or one gives up the minimality requirement
by using the constructive stable semantics. In this
context, it is perhaps interesting to note that the
constructive stable semantics still coincides with the
standard stable semantics for normal logic programs.
In that case, all stable models are minimal.

7. Conclusion, in view of Related
Work

In this paper, we studied the semantics of choice
programs in the framework of non-deterministic
approximation fixpoint theory. One of the main
insights was that stable operators based on mini-
mality rule out intuitive acceptable models, which
lead us to formulate the constructive stable seman-
tics. It was shown that the supported and answer
set semantics defined by Liu et al [1] can be repre-
sented in our framework, which means we obtain
three-valued generalizations of these semantics. An
additional benefit of the work done in this paper
is the modularity of the AFT-framework: if one is
interested in using another approximation operator
(several of which have been proposed in the litera-
ture on logic programming [18, 18, 19]), one only
needs to show the operator is actually an ndao, and
the AFT-framework immediately defines a whole

82

Jesse Heyninck CEUR Workshop Proceedings 74–83

family of semantics. In future work, we plan to
look at other such operators, based on existing op-
erators for normal [18], disjunctive [8] or aggregate
programs [19]. Another main result in this paper
is that we get a principled view on the relation
between disjunction and choice programs.

To the best of our knowledge, this is the first
application of AFT to the semantics of choice pro-
grams. As our semantics basically generalize the
semantics of Liu et al [1], the relations between the
LPST-answer sets and other semantics for choice
programs [2, 3, 4] hold for our framework as well.

The study undertaken in this paper is subject
to several restrictions: we assume finite programs,
do not allow for choice constructs or aggregates
in the body, and assume ℐ𝒞𝑐

𝒫(𝑥, 𝑦) ̸= ∅ for every
consistent interpretation. In future work, we will
generalize our results beyond these assumptions.

References
[1] L. Liu, E. Pontelli, T. C. Son, M. Truszczyński,

Logic programs with abstract constraint atoms:
The role of computations, Artificial Intelligence
174 (2010) 295–315.

[2] V. W. Marek, J. B. Remmel, Set constraints
in logic programming, in: Logic Programming
and Nonmonotonic Reasoning: 7th Interna-
tional Conference, LPNMR 2004 Fort Laud-
erdale, FL, USA, January 6-8, 2004 Proceed-
ings 7, Springer, 2004, pp. 167–179.

[3] W. Faber, N. Leone, G. Pfeifer, Recursive
aggregates in disjunctive logic programs: Se-
mantics and complexity, in: Proceedings of
JELIA’04, volume 3229 of Lecture Notes in
Computer Science, Springer, 2004, pp. 200–
212.

[4] T. C. Son, E. Pontelli, A constructive semantic
characterization of aggregates in answer set
programming, Theory and Practice of Logic
Programming 7 (2007) 355–375.

[5] M. Denecker, V. Marek, M. Truszczyński, Ap-
proximations, stable operators, well-founded
fixpoints and applications in nonmonotonic rea-
soning, in: Logic-based Artificial Intelligence,
volume 597 of Engineering and Computer Sci-
ence, Springer, 2000, pp. 127–144.

[6] M. Fitting, A kripke-kleene semantics for logic
programs, The Journal of Logic Programming
2 (1985) 295–312.

[7] M. H. Van Emden, R. A. Kowalski, The se-
mantics of predicate logic as a programming
language, Journal of the ACM (JACM) 23
(1976) 733–742.

[8] J. Heyninck, O. Arieli, B. Bogaerts, Non-
deterministic approximation fixpoint theory
and its application in disjunctive logic pro-
gramming, arXiv preprint arXiv:2211.17262
(2022).

[9] J. Alcântara, C. V. Damásio, L. M. Pereira,
A well-founded semantics with disjunction, in:
Proceedings of ICLP’05, Springer, 2005, pp.
341–355.

[10] J. Vennekens, D. Gilis, M. Denecker, Splitting
an operator: Algebraic modularity results for
logics with fixpoint semantics, ACM Trans-
actions on Computational Logic 7 (2006) 765–
797.

[11] M. H. van Emden, R. A. Kowalski, The se-
mantics of predicate logic as a programming
language, Journal of the ACM 23 (1976) 733–
742.

[12] F. Calimeri, W. Faber, M. Gebser, G. Ianni,
R. Kaminski, T. Krennwallner, N. Leone,
F. Ricca, T. Schaub, Asp-core-2: Input lan-
guage format, ASP Standardization Working
Group (2012).

[13] M. Gelfond, V. Lifschitz, Classical negation in
logic programs and disjunctive databases, New
generation computing 9 (1991) 365–385.

[14] S. Brass, J. Dix, Characterizations of the stable
semantics by partial evaluation, in: Proceed-
ings of LPNMR’95, Springer, 1995, pp. 85–98.

[15] M. Denecker, J. Vennekens, The well-founded
semantics is the principle of inductive defini-
tion, revisited, in: Fourteenth International
Conference on the Principles of Knowledge
Representation and Reasoning, 2014.

[16] M. Gebser, R. Kaminski, B. Kaufmann, M. Os-
trowski, T. Schaub, P. Wanko, Theory solving
made easy with clingo 5, in: Technical Com-
munications of the 32nd International Con-
ference on Logic Programming (ICLP 2016),
Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, 2016.

[17] T. Eiter, M. Fink, T. Krennwallner, C. Redl,
Conflict-driven asp solving with external
sources, Theory and Practice of Logic Pro-
gramming 12 (2012) 659–679.

[18] M. Denecker, M. Bruynooghe, J. Vennekens,
Approximation fixpoint theory and the seman-
tics of logic and answers set programs, in: Cor-
rect reasoning, Springer, 2012, pp. 178–194.

[19] L. Vanbesien, M. Bruynooghe, M. Denecker,
Analyzing semantics of aggregate answer set
programming using approximation fixpoint the-
ory, Theory and Practice of Logic Program-
ming 22 (2022) 523–537.

83

	1 Introduction
	2 Background and Preliminaries
	2.1 Disjunctive Logic Programming and Choice Rules
	2.2 Non-Deterministic Approximation Fixpoint Theory

	3 Approximation Operator for Choice Programs
	4 Supported Model Semantics
	5 Stable Semantics
	6 Disjunctions are Choice Constructs
	7 Conclusion, in view of Related Work

