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Abstract

Support Argumentation Frameworks (SAFs) are a type of the Abstract Argumentation Framework, where the interactions
between arguments have a positive nature. A quantitative way of evaluating the arguments in a SAF is by applying a gradual
semantics, which assigns a numerical value to each argument with the aim of ranking or evaluate them. In the literature,
studied gradual semantics determine precise probability values; however, in many applications there is the necessity of
imprecise evaluations which consider a range of values for assessing an argument. Thus, the first contribution of this article
is an imprecise gradual semantics (IGS) based on credal networks theory. The second contribution is a set of properties for
evaluating IGSs, which extend some properties proposed for precise gradual semantics. Besides, we suggest a classification of
semantics considering the set of properties and evaluate our proposed IGS according to the extended properties. Finally, the
practical application of the results is discussed by using an example from Network Science, i.e, PageRank. We also discuss
how gradual semantics benefit PageRank research by allowing to generate contrastive explanations about the scores in a

more natural way.
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1. Introduction

An abstract argumentation framework (AAF) is gener-
ally defined as a set of arguments and a binary relation
encoding disagreements — called attacks — between argu-
ments. Other studies on argumentation (e.g. [1][2]) have
demonstrated the necessity of encoding positive inter-
actions between arguments, which are called supports.
Generally, support interactions have been studied along
with attack interactions in what is known as Bipolar
Argumentation Frameworks (BAFs) [1]. The approach
that considers only the support interaction is known as
Support Argumentation Framework (SAF). SAFs have
interesting applications like trust evaluation, which stud-
ies trust relationships and measures different confidence
properties of entities in a society or network [3]. Another
possible application is for constructing persuasive essays,
which aim to make the reader to agree with an opinion
that is supported with arguments, examples, or expert
opinions. In [2], the authors claim that the interpretation
of the support relation may be diverse. They consider
three possible specializations: the deductive, the neces-
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sary, and the evidential support. Another specialization
that can be studied is the causal one, which is intended
to capture the following intuition: if an argument A sup-
ports another argument B in a causal way, this means that
the acceptance of A causes the acceptance of B or B is
accepted as an effect of accepting A.

An important notion in formal argumentation is the
acceptability of arguments. This is assessed by applying
argumentation semantics over the AAF. Many semantics
have been proposed (e.g. see [4][5][6]). These semantics
return sets of consistent arguments, that is, arguments
that can be accepted together (these sets are known as
extensions). Other family of semantics are based on nu-
merical evaluations or rankings, these are called gradual
semantics (e.g. see [7][8][9]), and they aim to assign a
numerical value to the arguments in order to rank them
according to their acceptability. In these gradual seman-
tics, each argument is assigned an initial value — known
as base score — and after evaluating its dialectical rela-
tions (attacks and/or supports) with other arguments,
another value is obtained, this is called the strength of
the argument. Numerous works about gradual evaluation
methods have been proposed (see [10][11][12][9]). How-
ever, all these methods consider that both the base score
and the strength are precise values, which depending on
the problem modelled by a SAF could be insufficient to
represent the epistemic value of the arguments.

For a better illustration of the problem, let us present
the following scenario. It is based on the PageRank (PR)
citation ranking [13], which is an algorithm designed to
measure the ranking of web pages in Google’s search
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engine. In PageRank, the web can be seen as a directed
graph, where nodes represent pages and edges repre-
sent the links between pages and the method measures
each node’s influence. PageRank counts the number and
quality of links to a page to determine a rough estimate
of how important that page is. The directed graph that
represents the web can be seen as a SAF and a gradual
semantics as a method for calculating the PageRank. Be-
sides, the influence between nodes can be seen as a sort
of causal relation where the positive quality of a page A
causes the positive quality of a page B.

The PR is a precise value fitted between 0 and 10 that
is calculated based on more than one criterion such as
the number and the quality of links to a page, the update
frequency or the internal coherence of the page, or even
on design issues. In [14], the authors suggest that the
value of PR is biased measuring external characteristics
and also subjective value indicators and propose to use
social metrics extracted from Semantic Web resources
for adjusting the link-based metrics used by PageRank
algorithm. Such social metrics are represented by im-
precise values that are combined with the other precise
metrics to return the final PR value, which is a precise
value. Even though, in [14] only the social metrics are
imprecise, any other used criteria can also be represented
by imprecise values and aggregating all of them in a pre-
cise value provokes loss of information. Besides, some
pages ranked with the same PR do not have the same
PR value. For example, a page with PR 4 might have
five times more PR than another page with PR 4, but the
Google score do not tell that until the log base threshold
has crossed the next value marker. Thus, there is no gran-
ularity between values. This problem can be smoothed
if the result is an imprecise value from which a rank-
ing can be constructed. By using this ranking, we can
know which pages are more important than others even
when they are assigned with the same PR. Therefore, this
ranking can also be employed for obtaining explanations
about the reasons for a page be a in given position, which
is an important

To the best of our knowledge, there is no a gradual
semantics evaluation method that returns imprecise val-
ues for ranking arguments in SAFs. Hence, we have our
first research questions: (i) How to model a SAF in the
settings of imprecise probability?, (ii) how to calculate the
imprecise values of arguments and how to compare them
in order to generate a ranking?, and (iii) how to generate
explanations from this ranking?

In addressing the former question, we use credal sets
[15] to model the uncertainty values of arguments and
credal networks theory [16] for modelling the relation
between arguments. Regarding the second one, we base
on credal networks theory for calculating the imprecise
value, which is modeled as an interval with a lower and an
upper bound. With these calculated values, three criteria
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are used for comparing the intervals. These are the loca-
tion, the precision of the interval, and the combination
of both. Thus, our approach allows a three dimensional
comparison, which generates a ranking that can be in-
terpreted depending on the application and also can be
used for explaining the reasons an argument is stronger
than another. In this sense, we propose the generation of
explanations for contrastive questions. Bouwel and We-
ber [17] distinguish three types of contrastive questions:
(i) P-contrast: why does object o have property P, rather
than property P’?, (ii) O-contrast: why does object o have
property P, while object o’ has property P'?, and (iii)
T-contrast: why does object o have property P at time ¢,
but property P’ at time ¢'?. In this work, we model the
first two types and consider that arguments can be seen
as objects and positions in the ranking as properties'.

In order to evaluate gradual semantics, some properties
have been defined and studied (see [18] for a survey).
However, none of these properties can be used to evaluate
IGSs. Thus, the next research questions addressed in
this article are: (iv) How the properties defined for precise
evaluation methods can be extended for imprecise gradual
semantics? and (v) Do the proposed IGS fulfil the suggested
properties? which of them?.

The remainder of this paper is structured as follows.
Next section gives a brief overview on credal networks
and SAFs. In Section 3, we introduce an imprecise gradual
semantics based on credal networks theory. In Section 4,
we present how contrastive explanations are constructed.
We study the properties of imprecise gradual semantics
in Section 5 and present a classification of semantics
in Section 6. A theoretical evaluation of the proposed
semantics is presented in Section 7. A discussion about
the proposal is presented in Section 8. Finally, Section 9
is devoted to conclusions and future work.

2. Background

In this section, we revise concepts of credal networks
and SAFs.

2.1. Credal Networks

Before presenting credal networks, let us define credal
sets (from Levi’s credal sets [15]). Let X = { X1, ..., X» }
be a set of probabilistic variables, a credal set defined by
probability distributions p(X) is denoted by K (X) and
K = {K(X1),..., K(X,)} denotes a finite set of credal
sets of the variables of X. In this work, we assume that
the cardinality of the credal sets of K is the same (let
us denote it by m) and is determined by the number of
agents. We also assume that p; (X) denotes the suggested

Here, we use the position in the ranking; however, any other prop-
erty can be used to require and generate an explanation.
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probability of the agent ¢ w.r.t. variable X such that
1<i<mand X € X.

A credal network is a graphical model that associates
nodes and variables with sets of probability measures
[19]. A credal network consists of a directed acyclic
graph, where each node in the graph is associated with a
random variable X and the parents (i.e., the variables cor-
responding to the immediate predecessors of X accord-
ing to the graph) of X are denoted by pa(X). Each vari-
able X is associated with a (conditional) credal set K (X |
pa(X)) = {p1(X | pa(X)), o, pn (X | pa(X))}. In-
ference is performed by applying Bayes rule to each mea-
sure in a joint credal set. The goal is to combine these
credal sets into a set of joint distributions. Next, let us
show how this combination will be done in order to ob-
tain the lower and upper bounds from the credal sets of
a credal network.

Given a random variable X and its credal set K (X),
the lower and upper bounds for variable X are deter-
mined as follows:

) I p(X) € K(X)}

P(X) = inf{p( @
) | p(X) € K(X)}

X
P(X) = sup{p(X

|p(X) e K
|p(X) e K

2.2. Support Argumentation Framework
(SAF)

In a SAF, arguments are abstract entities that have a base
score expressed by a numerical value which is generally
in the interval [0, 1]. The value 0 means that the argu-
ment is worthless whereas 1 means that the argument is
very strong. Thus, the base score on a set of arguments
ARG is a function 7 : ARG — [0, 1].

Definition 1. (SAF) [20] A SAF is an ordered tuple
S = (ARG, R™,T), where ARG is a non empty finite
set of arguments, T is a base score function on ARG and
R C ARG x ARG is a support relation. For A, B € ARG,
the notation (A, B) € R means that A supports B.

Regarding gradual semantics, it is a function that as-
signs to each argument in a SAF a value between 0 and
1. Thus, for all A € ARG, o(A) denotes the image of
argument A and it is called the strength degree of A.

Definition 2. (Gradual semantics) Let
S = (ARG,R",T) be a SAF. A gradual semantics
is a function o(A) : ARG — [0, 1].

3. Imprecise Gradual Semantics

In this section, we introduce an imprecise gradual seman-
tics based on credal networks theory. We present a credal
SAF, in which, we use credal sets to model the degrees of
belief about arguments. This means that each argument
in a SAF has associated a credal set, which contains a set
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of probability distributions. Such distributions can repre-
sent different concepts. For example, in the scenario of
the page rank, the probabilities in a credal set represent
the values of the criteria used to calculate the PageRank.

3.1. Credal SAF

Before presenting the concept of credal SAF, we present
the imprecise strength definition. Like in precise SAFs,
in the imprecise context, an imprecise gradual semantics
is in charge of calculating the strength of each argument
in the SAF from their support relations. Thus, for any
A € ARG, the imprecise strength of A is given by the
function o7 (A), where o7 : ARG — [0, 1] % [0, 1]. The
first number of the interval represents the lower bound
and the second the upper bound. It also holds that the
lower bound is less or equal than the upper bound.

Let us recall that the support relation in our approach
can be interpreted as a causality relation that exists be-
tween arguments. Thus, an argument in a causality rela-
tion can play two different roles, it can either be caused
or be the cause, this means that we can have caused ar-
guments (this set is denoted by ARG.), arguments that
cause other ones (this set is denoted by ARG_,), and ar-
guments that have no causality relation with the rest
(this set is denoted by ARG,). We characterize these sets
as follows. Given a set of arguments ARG and a support
relation R*:

a) ARG = ARG U ARG_, U ARGo;

b) ARG, {B|(A,B) € TR'}, ARG_,
{A|(A,B) € R"}, and ARG, = {C|C ¢
ARG — (ARG, U ARG,)};

c) ARG and ARG_, are not necessarily pairwise dis-
joint; however, (ARG« U ARG_,) NARG, = (;

We can now define a credal SAF, where arguments are
assigned with credal sets, from which the imprecise base
score of each argument can be obtained.

Definition 3. (Credal SAF) An imprecise SAF based on
credal sets is a tuple Scs = (ARG, R, frc, 1) where (i)
ARG = ARG, UARG_, UARG,; (i) R C ARG x ARG is the
support relation between arguments; (iii) frc : ARG — KY
is a function that attributes a credal set to each argument,
where KU is the set of all possible credal sets; and (iv)
77 : ARG — [0, 1] % [0, 1] is a function for any A € ARG
that is called imprecise base score of A. This is obtained by
applying Equation (1) to fx (A).

Example 1. Let SEE be the credal SAF for the scenario of
the PageRank: SEE = (ARG, R, fx, 71) , where ARG =
{A,B,C,D,E,F}, R* = {(A,B),(B,C),(C,B),
(C,E). (A, E), (D,C), (C, F),(F,D),(F.E)}, and
both fx and 71 are shown in Figure 1 next to each
argument. fx is represented by a vector and 11 by an
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interval. Figure 1 shows the graph of the credal SAF
SEE. The nodes represent the pages and the edges the
support relation. The probability values of the credal sets
correspond to (i) the quantity and quality of the supporting
links, (ii) the update frequency, (iii) the internal coherence
of the page, and (iv) the design issues. The imprecise base
score are obtained from these credal sets by applying

Equation (1).
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Figure 1: Credal SAF Sgg for the PagerRank scenario. Inter-
vals next to each credal set represent the imprecise base score
of each argument.

Let us now better explain the correspondence between
arguments and credal sets. Arguments in ARG, have as-
sociated only one credal set because they are not caused
by any other argument. Arguments in ARG have as-
sociated an initial credal set and one conditional credal
set that has to be calculated based on the supporters. Fi-
nally, some arguments in ARG_, have associated only one
credal set and the others have also a conditional credal
set. This happens because some causing arguments are
also caused ones. Formally:

1. VA € ARG., there is a credal set K (A), that is, a
non conditional credal set;

2. VA € ARG, there is a credal set K(A) and a
conditional credal set K (A | pa(A));

3. VA € ARG_, — (ARG_, N ARG ), there is a credal
set K(A).

Example 2. (Cont. Example 1) In the credal SAF SEE,
we have that ARG, = ), ARG~ = {B,C,D,E,F},
and ARG_, = {A, B,C, D, F'}. Every argument = has
a credal set K(z) (forx € {A,B,C,D,E,F}) that
can be used to obtain its imprecise base score. Those ar-
guments that besides have a conditional credal set are
B,C,D,E, and F. Thus, K(B | A,C) is the condi-
tional credal set of B, K(C' | B, D) is for the conditional
credal set of C, K(D | F) is the conditional credal set of
D, K(E | A,C, F) is the conditional credal set of E, and
K(F | C) is the conditional credal set of F'.

3.2. Calculating the Imprecise Strength

This section shows how the imprecise strength of argu-
ments is calculated. Let us recall that such strength is
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represented by an interval. In the same manner as the
imprecise base score, the interval is the result of assess-
ing the credal set associated to each argument, which is
calculated considering the support relations. In the case
of causality, these relations are expressed as conditional
ones between arguments.

Definition 4. (Calculation of the imprecise strength)
Let Sos = (ARG, R™, fx,71) be a credal SAF and
A € ARG an argument, the imprecise strength of A, that is
o1(A) = [P(A), P(A)], is obtained as follows:
- Ifpa(A) = (), then P(A) and P(A) are obtained by
applying Equation (1) to fx (A)
-Ifpa(A) # 0, then

1. Obtain the conditional credal set for A (that is, K (A |
pa(A))) by applying the Bayes rule in the following way:

P(4) x P(pa(4) | A)
P(A | pa(A)) =
(A I pat ) P(pa(A))

2. Calculate P(A) and P(A) by applying Equation (1)

to the resultant conditional credal set K(A | pa(A)).

Once we have the interval that represents the impre-
cise strength, we need a way to compare such inter-
vals. For evaluating the ordering of the intervals we
will base on the approach of [21], which considers the
precision of the intervals (denoted by PREC), the location
of the intervals (denoted by LOCA), or the combination
of both (denoted by COMB). Thus, given an argument
A whose associated interval is I = [P(A), P(A)], the
evaluating criteria are calculated as follows: PREC(]) =
1 — (P(A) — P(A)), LocA(]) = ZATEA)L
COMB(I) = PREC(A) x LOCA(A).

When we compare two intervals, we can use their pre-
cision, their location, or the combination of both. Even
though these criteria are represented by a precise value;
actually, an argument is stronger if its precision is high
or its location is close to 1. This allows to compare argu-
ments in more than one way and gives flexibility to the ap-
proach, which is important depending on the context or
domain of the application. For example, in the PageRank
scenario, let us suppose that o7 (A") = [0.3,0.35] and
or(B’) = [0.6,1.0]. Thus, we have PREC(c;(A")) =
0.95, PREC(07(B’)) = 0.6, LOCA(or(A")) = 0.325,
LOCA(o;(B')) = 0.8, COMB(or(A")) = 0.31, and
COMB(o;(B’)) = 0.48. We can notice that A’ has better
precision than B’ whereas B’ has better location than
A’. If we only consider the precision criteria, we can say
that A’ has a better PR score than B’ and if we consider
location or the combined measure, we can say that B’
has a better PR score than A’. The question is: which is a
better criteria to be used in this context? even with a bet-
ter location, the range of values of B’ makes difficult to
classify it in a given PR. This means that a good location
with low imprecision shows a high uncertainty degree,

and
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which in this context is not desirable. Thus, although
the location of A’ is not good, its high precision helps to
better determine its PR.

Now, imagine another scenario where the impre-
cise strength of an argument C’ is the interval
[0.4,0.8] and the imprecise strength of another argu-
ment D’ is [0.5,0.7]. We have that PREC(c;(C")) =
0.6, PREC(o;(D')) = 0.8, LOCA(or(C")) = 0.5,
LOCA(or(D')) = 0.5, COMB(o;(C")) = 0.3, and
COMB(o;(D’)) = 0.4. If only location is considered,
we could say that both have the same strength; however,
we can use precision for breaking the tie and determine
which is stronger. The point is that although the criteria
for comparing intervals (other criteria can also be con-
sidered) are represented by precise values, this does not
diminish the quality of the information when expressed
with intervals.

Example 3. (Cont. Example 2). Let us recall that in the
credal SAF Sé’g?, we have that ARG, = (), which means
that there is no argument that has no support or does not
support another argument. Also, notice that only argument
A does not have any parent, that is, it is not supported
by any other argument. Regarding the rest of arguments,
all of them have at least one parent, which means that
the conditional credal sets for them have to be calculated.
Table 1 presents the values necessary for calculating the
imprecise strength of the arguments.

After the calculations, we have the following imprecise
strengths: or(A) = [0.0,0.7], o1(B) = [0.23,0.81],
or(C) = [0.2,0.66], o1 (D) = [0.67,0.94], o1 (FE) =
[0.64,0.8], and o1 (F') = [0.5,0.74]. The precision, loca-
tion, and combined values for each interval are presented
in Table 2. These evaluation criteria give us three ways
for comparing pages. We can assume that the value of the
decimal gives the PR of a page. Thus, if we use precision
for assigning the PR to the pages, E is the page with the
highest PR (that is 8). We can also observe that D and F
share the same PR (that is, 7); however, since F is more
precise then it is more relevant than D, which may impact
on which page will be showed first and therefore on the
visits to such pages. If we use location, D is the page with
the highest PR (that is 8), and if we use the combined value,
E has PR 8 and it is the best ranked page. Let us note that
the benefit of using imprecise evaluation for PR gives the
option of obtaining different rankings which may reflect
the preferences of users. For example demanding users may
use the combined value because they want to obtain pages
with both good location and precision. Other users may
want to get well located pages disregarding the precision
or vice-versa. Besides, precision and location are not the
only ways for comparing intervals, so this gives a range of
possibilities for modelling users preferences and therefore
turn PR result more customizable.

Table 1

Values for calculating the imprecise strength. The names of
the probabilities are shown in the top row. The rest of rows
show the values of the corresponding credal sets.

P(A,C | B)P(A,C) P(B,D|C)P(B,D) P(F|D) P(A,C,F | E)P(A,C,F)P(C|F)

0.3 0.45 0.5 0.74 0.55 0.55 0.57 0.5

0.48 0.45 0.55 0.66 0.5 0.5 0.55 0.65

0.45 0.55 0.65 0.59 0.62 0.6 0.62 0.6

0.6 0.52 0.7 0.79 0.4 0.7 0.65 0.62
Table 2

Precision, location, and combined values of the arguments for
the PageRank scenario. For the ranking: the values in bold
represent the best measures and the underlined, the worst
ones.

A B C D E F

PREC 0.3 042 054 073 0.84 0.76
LOCA 0.35 0.52 043 0.81 072 0.62
coMB  0.105 0.22 023 059 0.61 047

4. Generating Contrastive
Explanations

In this section, we present how to generate explanations
for contrastive questions. These kinds of questions can be
answered with a contrastive explanation that compares
the properties of the intervals associated to arguments.
Producing this kind of explanation benefits from our
approach by enriching the returned information to the
user.

For generating the explanations, we will consider the
ranking based on the combined value; thus, we generate
the explanations based the criteria precision and loca-
tion. Given an argument A, the contrastive questions are
expressed in the following way:

-P-contrast: WHY (A, p», (A), pos) (Why is argument A in
position ps, (A), rather than in position pos?)
-O-contrast: WHY(A, po; (A), B, po;(B)) (Why is argu-
ment A in position po, (A) whereas argument B in posi-
tion ps, (B)?)

where p,, (A) and p,, (B) are functions that return a
position of argument A and argument B, respectively,
under an imprecise strength function o; and pos is an
expected position. This position can be based on the rank-
ing constructed using the COMB. The resultant contrastive
explanations can be seen as sequences of observations
that constitute beliefs for the agent.

For contrastive question WHY(A, p,,(A), pos), we
consider the case when p,,(A) > pos. Algorithm
1 shows how the explanation is generated. The al-
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gorithm takes as input a credal SAF S¢s and an im-
precise strength function o; and returns a set of be-
liefs EXP. The beliefs that can be generated are: (i)
better_loca_prec(x,y), which means that argument x
is more precise and better located than argument y; (ii)
better_loca(x,y), which means that argument x is bet-
ter located than argument y; and (iii) better_prec(z,y),
which means that argument x is more precise than argu-
ment y.

For contrastive question WHY (A, p,, (A), B, ps, (B)),
we consider the case when p,,(A) < ps,(B). Algo-
rithm 2 shows how the explanation is generated.

Example 4. (Cont. Example 3) Let’s consider Table
2, which shows the values for precision, location, and
the combination of both for the scenario of PageR-
ank. The ranking based on the combined value is
the following: E,D,F,C,B, A, where E is the best
ranked argument and A the worst one. Let us now
show two explanations: before the P-contrast question
WHY(A, 6, 3), we have EXP = {better_loca_prec(B, A),
better_loca_prec(C, A), better_loca_prec(F, A)}
and before the O-contrast question WHY(E, 1, D, 2), we
have EXP = better_loca(E, D).

Algorithm 1 Explanation for the P-contrast question
WHY(A, ps; (A), pos)

Require: Scs := <ARG,R+,fK,T1>, or
Ensure: EXP
1: ARG_PREV := {B € ARG | ps,(B) < po,;(A) and
Ppo;(B) = pos}
2: EXP:=()
3: for all B € ARG_PREV do

4. if PREC(o;(B)) > PREC(0;(A)) and
LOCA(o;(B)) > LOCA(o;(A)) then

5 EXP' := better_loca_prec(B, A)

6: else

7: if PREC(07(B)) > PREC(07(A)) then

8: EXP’' := better_prec(B, A)

9 end if

10:  else

11 EXP’ := better_loca(B, A)

122 endif

13 EXP := EXP UEXP’

14: end for

5. Axioms for IGSs

In this section, we extend some properties studied in [18]
for the imprecise context, that is, for IGSs. We study the
behaviour of these properties considering the intervals
and the evaluation criteria: precision and location.

Before presenting the axioms, let us make some asser-
tions about the notation:
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Algorithm 2 Explanation for the O-contrast question
WHY(Aa Poy (A)7 B7p0'1 (B))

Require: Scs := (ARG, R™T, fx,T1), 01
Ensure: EXP
1. if PREC(0(A)) > PREC(0s(B))
LOCA(o7(A)) > LOCA(o7(B)) then

and

2. EXP := better_loca_prec(A, B)
3: else

4 if o7(A) > o7*°(B) then

5 EXP := better_prec(A, B)

6: endif

7: else

8:  EXP := better_loca(A, B)

9: end if

- When we say that two intervals are equal, we mean
that both the lower and the upper bounds are the
same. Formally, given two intervals [P(A), P(A)]
and [P(B), P(B)] for arguments A and B, respectively.
When we say that [P(A), P(A)] = [P(B), P(B)], it
means that P(A) = P(B) and P(A) = P(B).

- We use T and L for denoting [1,1] and [0, 0], respec-
tively. Thus, when we say that [P(A4), P(4)] < T, we
mean that P(A) < 1 and P(A) < 1 and when we
say [P(A), P(A)] > L, we mean that P(A) > 0 and
P(A) > 0. Recall that it holds that P(A) < P(A).

We can now begin with the axioms. The first one is
about minimality. For the precise case, this axiom en-
sures that if an argument does not have any support, its
strength is equal to its base score. In the imprecise case,
we compare the interval of the imprecise base score with
the interval of the imprecise strength. When there is no
support for an argument both its lower and the upper
bounds have to remain the same to satisfy minimality. Re-
garding precision and location, these are not considered
because two different intervals may result in the same
precision (or location) value, which does not mean that
minimality was satisfied. Since intervals are compared
element by element, we call this axiom of absolute.

Axiom 1. (Absolute Minimality) An imprecise gradual
semantics satisfies absolute minimality iff for any imprecise
SAF S; = (ARG, R, T1), for any argument A € ARG, if
RT(A) = 0 then 71(A) = o1 (A).

The following axiom, called strengthening, has to do
with the role of supports. It states that a support strength-
ens its target by increasing its strength. In this case, we
can use the evaluation criteria in order to compare the
intervals. Thus, in terms of intervals, we can say that the
more precise the interval of an argument, the stronger
the argument and the closer to 1 the location of the in-
terval is the stronger its argument is. Besides, when the
interval of an argument is already [1,1], the supports are
useless.
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Axiom 2. (Strengthening) An imprecise gradual se-
mantics satisfies strengthening iff for any imprecise SAF
S; = (ARG, RY, ), for any argument A € ARG,
if crit(r7(A)) < 1 and 3B € R (A) such that
crit(r7(B)) > crit(r7(A)) then crit(rr(A4)) <
crit(or(A)) (forcrit € {PREC, LOCA, COMB}).

The next axiom is strengthening soundness, it states
that the only way of increasing the strength of an argu-
ment is by supporting it with an acceptable argument.
In this case, we also use precision and location because
these are criteria for evaluating the behavior of intervals,
this means, that they allow us to measure if an interval
is stronger than other.

Axiom 3. (Strengthening soundness) An imprecise
gradual semantics satisfies strengthening soundness iff
for any imprecise St = (ARG, R, 77), for any argu-
ment A € ARG, if crit(o(A)) > crit(r1(A)) then
3B € RT(A) such that crit(or(B)) > 0 (for crit €
{PREC, LOCA, COMB}).

The next axiom is about equivalence, the idea is that
arguments with equal conditions in terms of supporters
and base score have the same strength. In the imprecise
context, we consider that we can have two types of equiv-
alence: (i) the first type considers that two arguments
have the same interval as imprecise base score and (ii)
the second one considers that two arguments have the
same precision or/and location values, which not nec-
essarily means that both arguments have the same im-
precise base score. For example, assume that [0.3, 0.35]
and [0.5,0.55] be the imprecise base score of arguments
A and B, respectively. The precision value is the same
for both intervals: it is 0.95. Now, assume that [0.6, 1]
and [0.7,0.9] be the imprecise base score of arguments
A’ and B’, respectively. The location value is the same
of both intervals: it is 0.8. Thus, even different intervals
may have the same precision or location value, which
has to be reflected in the equivalence property. We call
the case (i) absolute equivalence and the case (ii) just
equivalence.

Axiom 4. ((Absolute) equivalence) An imprecise grad-
ual semantics satisfies absolute equivalence (resp. equiv-
alence) iff for any imprecise SAF S; = (ARG, R, 1),
for all argument A,B € ARG, if 71(A) = 71(B)
(resp. crit(rr(A)) = crit(r1(B))), there exisis
a bijective function f from R (A) to RT(B) such
that YC € TRY(A),0:1(C) = o1(f(C)) (resp.
crit(o7(C)) = crit(or(f(C))) theno;(A) = o1(B)
(resp. crit(or(A)) = crit(or(B)), for crit €
{PREC, LOCA, COMB}).

The following axiom, called dummy, states that argu-
ments with strength 0 have no impact on the arguments
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they support. In the context of impreciseness, we can
have two evaluations for dummy: (i) the first one consid-
ers that a dummy argument has associated the interval
[0, 0] and (ii) the second one considers that the value of
precision (location or measure) of the dummy argument
is zero. As in the case of equivalence, we call the former
absolute dummy and the latter just dummy.

Axiom 5. ((Absolute) dummy) An imprecise gradual
semantics satisfies absolute dummy (resp. dummy) iff for
any imprecise SAF St = (ARG, R, 71), for all argument
A, B € ARG, if 71(A) = 71(B) (resp. crit(r7(A)) =
crit(r7(B))), RT(A) = RT(B)\ {C} and C €
RT(B) with o1(C) = [0,0] (resp. crit(o:(C)) =
0) then or(B) = or(A) (resp. crit(or(B)) =
crit(o7(A)), forcrit € {PREC, LOCA, COMB}).

The following axiom has to do with the number of sup-
porters and their quality. It states that the more quantity
of acceptable supporters an argument has, the stronger
the argument is. In the context of impreciseness, the
quality is related to the precision and location of the sup-
porters. Thus, only when a supporter is more precise
or has a better location, it has a positive impact on the
strength of the supported argument.

Axiom 6. (Counting) An imprecise gradual seman-
tics satisfles counting iff for any imprecise SAF S =
(ARG, R, 71), for all argument A, B € ARG, if 77(A) =
71(B),01(B) < T and RT(A) = R (B) U {C} with
ie,o(C) > L, then crit(o1(A)) > crit(or(B)) (for
crit € {PREC,LOCA, COMB}).

6. Semantics Classification

In this section, we present a taxonomy of IGSs according
the fulfilment of the axioms.

In the presented axioms, we can notice that there are
different criteria that are considered for comparing the
intervals. Let us recall that the fact that one interval is
more precise than other does not mean that it is better
located and vice-versa. What we can say is that these cri-
teria have an impact on how a semantics fulfils an axiom.
We can have that a semantics fulfils an axiom when the
criteria precision is used and when the criteria location
is not used and vice-verse. We can have semantics that
fulfil an axiom when the combination of precision and
location is used. Furthermore, there may be semantics
that fulfil an axiom when both precision and location are
applied. Considering these aspects, we can classify an
IGS as follows:

1. Absolute semantics: An IGS is absolute when the
semantics satisfies absolute minimality, absolute equiva-
lence, and absolute dummy.
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2. One-criterion semantics: An IGS is one-criterion
when the all the axioms that it fulfils are satisfied in only
one criterion: either precision or location.
3. Two-criteria semantics: An IGS is two-criteria when
the axioms that it fulfils are satisfied in both precision
and location.
4. Combined semantics: An IGS is combined when the
axioms it fulfils are satisfied in the combination of both
criteria, that is, precision and location.

Note that absolute, one-criterion, and two-criteria IGSs
are disjoint sets. From the above classification, we can
conclude the following theorem.

Theorem 1. Given anIGSo;:

1. If oy satisfies absolute equivalence (resp. absolute
dummy), then o also satisfies equivalence (resp. dummy).
2. If o1 is an absolute semantics, then o will be also a
combined semantics.

Proof 1. LetScs = (ARG, R™, fx,71) be a credal SAF.
1. If o1 satisfies absolute equivalence, this means that
VA,B € ARG, o1(A) or(B). This in turn means
that P(A) = P(B) and P(A) = P(B). Since the in-
tervals are the same, when we apply the precision, loca-
tion, or combination criterion, the result is the same. Thus,
we have crit(or(A)) = crit(or(B)) (for crit €
{PREC, LOCA, COMB} ), which means that o1 satisfies equiv-
alence. The same reasoning applies for absolute dummy.

2. If oy is absolute, this means that P(A) = P(B) and
P(A) = P(B). Since the intervals are the same, when we
apply the combination criterion, the result is the same. So,

o is a combined semantics.

7. Theoretical Evaluation

In this section, we evaluate the proposed imprecise grad-
ual semantics by checking which properties it fulfils and
which it does not.

The first theorem states that the properties that are
fulfilled by the proposed gradual semantics are absolute
minimality and strengthening soundness. In the case of
absolute minimality, since no equation has to be applied
for calculating a conditional credal set, the credal sets for
calculating the imprecise base score and the imprecise
strength are the same, so the lower and upper bounds are
also the same. Regarding strengthening soundness, the
only way for an interval become more precise or better
located is by improving the associated credal set and this
can only happen when it has supporters.

Theorem 2. Given an imprecise SAF S;
(ARG, R, 71). The imprecise gradual semantics
based on credal network theory fulfils absolute minimality
and strengthening soundness.
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Proof 2. Let Scs = (ARG, R, fx,71) be a credal SAF.
- For absolute minimality: Let S; = (ARG, R, /)
be the respective imprecise SAF of Sc.s. This means that
VA € ARG, 77 is obtained by applying Equation (1) over
fx. When we say that RT(A) = 0, this means that
A € ARG, or pa(A) = 0. According to Definition 4, for
obtaining o1(A), Equation (1) has to be applied to fi.
Since Equation (1) is applied to the same credal set, this
means that 71 (A) = o1 (A).

- For strengthening soundness: By Reductio ad ab-
surdum. Let us assume that 3B € R (A) such that
crit(or(B)) > 0 (for crit € {PREC,LOCA,COMB}).
This means that Equation (1) has to be applied to fx , which
in turn means that crit(o;(A)) = crit(r7(A)). This
contradicts the premise of the axiom.

The proposed imprecise gradual semantics bases its
calculations on credal sets, which contain the proba-
bility values necessary for the inference by applying
Bayes rule. We can notice that when we apply Equa-
tion (1) to two different credal sets we can obtain the
same imprecise base score or imprecise strength; how-
ever, it does not ensure that after the inference with
another credal set, the resultant intervals will be the
same. For example, let K(A) = {0.4,0.76,0.56,0.87}
and K(B) = {0.75,0.4,0.87,0.6} be two credal sets
whose lower and upper bounds are [0.4, 0.87]; however,
if we aggregate each of them with a third credal set by
applying Bayes rule, the result will be different, even
considering that this third credal set and the conditionals
are the same for both. Thus, the only way to guarantee
the same result is by using the same credal sets in all the
inference process. Therefore, we can say that considering
that all the credal sets have the same values, some axioms
can be fulfilled. In the case of absolute equivalence, the
credal sets of the equivalente arguments, the credal sets
of their parents, and their conditional credal sets have to
be the same. In the case of absolute dummy, the credal
sets of one or more of their parents are the same because
they all have zero as probability values.

Definition 5. (Equality in credal sets) Let K (A) and
K(B) be two credal sets. We say that K(A) and K(B)
are equal when Vip;(A) = p;(B) for 1 <14 < m, where
m is the total number of elements of the credal sets.

Theorem 3. Given an imprecise SAF Sr
(ARG, RT,77). Let A,B € ARG be two arguments
that are absolute equivalent. The IGS based on credal

network theory fulfils absolute equivalence when VA, B:

R*(A) =R"(B);

K(A) and K (B) are equal;

pa(A) and pa(B) are the same;

pa(A) | A and pa(B) | B are the same.
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Proof 3. Let Scs = (ARG, R™, fx,71) be a credal SAF.
Let K(A) and K (B) be the credal sets for arguments A
and B, respectively. Let us assume that K(A) = K(B).
After applying Equation (1) to both, we can say that
71(A) = 71(B). Following the premise of the axiom, we
know that both arguments have the same supports. Let us
also assume that (i) the credal sets of such supports are also
equal and (ii) the calculated conditional credal have the
same values. This means that after applying Equation (1)
to credal sets and conditional credal sets, the value of the
imprecise strength will be the same: 01 (A) = o1(B).

Regarding the other axioms, their fulfilment can not be
guaranteed due to nature of the inference, which is based
on the Bayes rule. For instance, for counting axiom, the
amount of supporters do not mean that the supported
will increase its strength, it depends on the quality of the
values of all the supporters together with the conditional
credal set of the parents of the supported argument given
the supported one.

8. Discussion

In this section, we discuss our approach by comparing it
with credal networks. We make such comparison because
we base on credal networks for the calculation of the
imprecise strength and it is important to highlight what
differences gradual semantics from it. We are not going to
compare our approach directly with related work because,
to the best of our knowledge, there is no an IGS nor a
set of properties for evaluating it. Besides, we compare
our proposed explanation generation with some related
work.

A credal network is a method for information fusion
where the inference derives the probability of one or
more random variables taking a specific value or set of
values. On the other hand, gradual semantics aims to
calculate the strength value of the arguments of an AAF
with the aim of ranking or ordering them. The strength
value and the ranking can be used to make decisions or
determine how acceptable each argument is. For example,
imagine a scenario of a negotiation persuasive dialogue
where two agents (proponent and opponent) want to
convince the other to accept a proposal [22]. In this
scenario, the agents exchange rhetorical arguments that
represent threats and rewards. Both agents generate
such arguments and have to decide which of them to
send to his respective opponent. The calculation of the
strength of such arguments can help the agents to make
such decision. On the other hand, in the scenario of the
PageRank, the strength value of each page can be seen
as a measure of how acceptable each page is. The more
acceptable, the more PR value the page has.

Since, the support relation that we are tackling in our
approach is the causal one, we use credal networks the-
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ory to calculate the strength of arguments; however, the
intended meaning of gradual semantics complements the
interpretability of the resultant values. In the case of
SAFs, the calculated strength may reflect how supported
an argument is. This can be interpreted in two ways:
(i) an argument is strong because it has many supports
and/or (ii) an argument, even with few supports, is strong
because its supports are strong enough. This interpreta-
tion can be the base for generating explanations about the
behaviour of the elements of the graph and for analyse
such behaviour in the light of other interactions.

Our approach also complement the calculations by
applying the location and precision criteria in order to
rank the resultant intervals. The use of more than one
dimension for comparing the intervals, gives flexibility
to the approach and allows to use one or more of them
depending on the domain of application. We have pro-
posed to use such criteria; however, any other criteria
can be used with this aim.

To the best of our knowledge there are few works that
study explainability in gradual semantics. Albini et al.
[23] generate three types of explications for PR. They
use a QBAF for modelling the problem and generate con-
trastive explanations as well. In their case, they focus on
answering ‘What are the links that make pages A and
B have different scores?”. We can note that the contrast
focus is different and they do not consider the ranking
generated by the gradual semantics. In [24], the authors
focus on explaining which arguments are responsible
of causing the change in the strengths of other argu-
ments. Thus, the explanations are sets of arguments.
Even though, they also study explainability in QBAFs,
their explanations are qualitative.

9. Conclusions and Future Work

This work presented an IGS for SAFs considering that
the support relation is causality. We use credal sets to
model the probability values of each argument and credal
networks theory for calculating the imprecise strength,
which is represented by an interval. For ranking the in-
terval, we use two criteria, the location and the precision
of the interval. From the resultant ranking, we propose
to generate contrastive explanations about the positions
of the arguments.

In order to evaluate our proposed IGS, we study and
propose a set of axioms that describe the behavior of
IGSs. We demonstrated that our approach fulfils abso-
lute minimality and strengthening soundness and fulfils
absolute equivalence and absolute dummy under some
circumstances. Besides, we propose a classification of
IGSs based on the fulfilment of axioms.

In general, in formal argumentation explanations have
a qualitative nature, that is, they are based on sets of
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arguments, even though when they are based on Quanti-
tative Bipolar Argumentation Frameworks (QBAFs) (e.g.,
see [24]). There exist few works for quantitative expla-
nations (e.g. in [23]), which evidences a need for further
study this topic.

Regarding future work, we plan to extend our study of
properties for IGSs for AAFs and BAFs. We also plan to
study other methods for calculating imprecise strength,
for example, using Cognitive Fuzzy Maps. Furthermore,
we want to further study the generation of richer expla-
nations.
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