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Abstract
User profiles are an essential Knowledge Representation tool in several areas of information technology. In a recent paper,
Fermé et al. presented a formal framework for representing user profiles and profile revision operators defined through a
Knowledge-Driven perspective. In this paper, we analyse the possibility of going from one given user profile to another by
means of a profile revision operator. More precisely, given two profiles 𝑃 and 𝑄 we present some conditions which ensure
that there is a profile revision operator ⊙ on 𝑃 and a sentence 𝛼 such that 𝑃 ⊙ 𝛼 = 𝑄. Furthermore, considering a fixed
operator ⊙, we characterize the change formulas 𝛼 which are such that 𝑃 ⊙ 𝛼 = 𝑄, by identifying upper and lower bounds
for their sets of models. Analogous results are obtained for the case of a “system of equations" 𝑃𝑖 ⊙𝑖 𝛼 = 𝑄𝑖 for every
𝑖 ∈ {1, . . . ,𝑚}. Furthermore, a similar study is carried out considering profile revision operators defined on sets of profiles
(which take sets of profiles to sets profiles rather than a single profile to a single profile).
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1. Introduction
The study of user profiles and their dynamics over time
has gained increasing attention in the field of information
technology [2, 3, 4, 5, 6]. In this paper, we expand the
work presented in [7] by investigating the existence of
profile revision operators ⊙𝑖 and of a change formula
𝛼 such that a list of one or more equations of the form
G𝑖⊙𝑖𝛼 = F𝑖 is satisfied, where G𝑖 and F𝑖 are, respectively,
the initial and final sets of profiles or single profiles of an
agent.

2. Background
2.1. Formal Preliminaries
Given a set 𝑆, we will denote by 𝒫(𝑆) the power set of
𝑆, i.e. the set of all subsets of 𝑆. Given a set 𝐴 a binary
relation ⪯ on 𝐴 is:
- reflexive if and only if 𝛼 ⪯ 𝛼 for all 𝛼 ∈ 𝐴;
- transitive if and only if it holds that if 𝛼 ⪯ 𝛽 and 𝛽 ⪯ 𝛿,
then 𝛼 ⪯ 𝛿, for all 𝛼, 𝛽, 𝛿 ∈ 𝐴;
- antisymmetric if and only if it holds that if 𝛼 ⪯ 𝛽 and
𝛽 ⪯ 𝛼, then 𝛼 = 𝛽, for all 𝛼, 𝛽 ∈ 𝐴.
- total if and only if 𝛼 ⪯ 𝛽 or 𝛽 ⪯ 𝛼 for all 𝛼, 𝛽 ∈ 𝐴.
- irreflexive if and only if 𝛼 ̸≺ 𝛼, for all 𝛼 ∈ 𝐴.
- a pre-order if it is reflexive and transitive.

21st International Workshop on Nonmonotonic Reasoning,
September 2-4, 2023, Rhodes, Greece
⋆

This paper is an extended abstract of the article [1].
*Corresponding author.
†

These authors contributed equally.
$ eduardo.ferme@staff.uma.pt (E. Fermé); mgarapa@staff.uma.pt
(M. Garapa); m_reis@staff.uma.pt (M. D. L., Reis)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

- an order if it is a pre-order which is also antisymmetric.
- a strict order if it is irreflexive and transitive.1

- a total strict order ≺ on 𝐴 if and only if it is a strict order
and it holds that if 𝛼 ̸= 𝛽, then 𝛼 ≺ 𝛽 or 𝛽 ≺ 𝛼, for all
𝛼, 𝛽 ∈ 𝐴.
Given a pre-order ⪯ on a set 𝐴, the associated strict part
≺ is defined by 𝛼 ≺ 𝛽 if and only if 𝛼 ⪯ 𝛽 and 𝛽 ̸⪯ 𝛼,
for all 𝛼, 𝛽 ∈ 𝐴. 𝛼 ⋍ 𝛽 will be used to denote that
𝛼 ⪯ 𝛽 and 𝛽 ⪯ 𝛼.

Let A be a set and Γ be a finite subset of A. Given a
total strict order ≺ on A, the minimum of Γ with respect
to ≺ is denoted by 𝑚𝑖𝑛(Γ,≺) and is defined as follows:
𝑃 = 𝑚𝑖𝑛(Γ,≺) iff
𝑃 ∈ Γ and 𝑃 ≺ 𝑄 for all 𝑄 ∈ Γ ∖ {𝑃}.

Given a pre-order ⪯ on A, the set of minimal elements
of Γ with respect to ⪯ is denoted by 𝑀𝑖𝑛(Γ,⪯) and
is defined as follows: 𝑀𝑖𝑛(Γ,⪯) = {𝑃 ∈ Γ : 𝑄 ̸≺
𝑃, for all 𝑄 ∈ Γ}.

We note that if ⪯ is a total pre-order, then
𝑀𝑖𝑛(Γ,⪯) = {𝑃 ∈ Γ : 𝑃 ⪯ 𝑄, for all 𝑄 ∈ Γ}.

2.2. Profiles Definition
Definition 1. [7] Let L =≪ 𝐿1, 𝐿2, ..., 𝐿𝑛 ≫ be a tuple
of labels. For each 𝑖 ∈ {1, . . . , 𝑛} let 𝐷𝑖 be a finite set
associated with label 𝐿𝑖, that we will designate by the
domain of 𝐿𝑖. A profile, associated with L, denoted by
𝑃L (or simply by 𝑃 if the tuple of labels is clear from
the context), is an element of 𝐷1 ×𝐷2 × ...×𝐷𝑛. The
set of all profiles associated with L will be denoted by
PL (or simply by P if the tuple of labels is clear from the

1Every irreflexive and transitive relation on a set 𝐴 is also antisym-
metric.
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context).2

Definition 2. [7] Given a tuple of labels L =≪
𝐿1, 𝐿2, ..., 𝐿𝑛 ≫, for each 𝑖 ∈ {1, ..., 𝑛}, let 𝐷𝑖 be
the domain associated with the label 𝐿𝑖. The alphabet of
symbols of the language ℒL (or simply ℒ) associated with
L that we will consider is:
1. 𝐿1, 𝐿2, ..., 𝐿𝑛 (labels); 2. (symbol of equality); 3. (,)

(punctuation symbols); 4. 𝑎, 𝑏, ... (elements of
𝑛⋃︀

𝑖=1

𝐷𝑖); 5.

⊥ (symbol to represent a contradiction); 6. ¬, ∧, ∨, →,
↔ (symbols of connectives).

Definition 3. [7] Let L =≪ 𝐿1, 𝐿2, ..., 𝐿𝑛 ≫ be a tuple
of labels. For each 𝑖 ∈ {1, ..., 𝑛}, let 𝐷𝑖 be the domain
associated with the label 𝐿𝑖.
An atomic formula in ℒL is defined by: if 𝐿𝑖 is a label
occurring in L and 𝑎 ∈ 𝐷𝑖, then 𝐿𝑖 = 𝑎 is an atomic
formula of ℒL.
A well-formed formula (wff) of ℒL is defined by:
1. Every atomic formula of ℒL is a wff of ℒL.
2. If 𝐴 and 𝐵 are wffs of ℒL, so are (¬𝐴), (𝐴 ∧ 𝐵),
(𝐴 ∨𝐵), (𝐴 → 𝐵) and (𝐴 ↔ 𝐵).

Definition 4. [7] Let L =≪ 𝐿1, 𝐿2, ..., 𝐿𝑘 ≫ be
a set of labels. For each 𝑖 ∈ {1, ..., 𝑘}, let 𝐷𝑖 be
the domain associated with the label 𝐿𝑖. A profile
𝑃 = ⟨𝑃1, 𝑃2, ..., 𝑃𝑘⟩ is said to satisfy a formula 𝛼,
denoted by 𝑃 |= 𝛼, if it can be shown inductively to do
so under the following conditions:
1. 𝑃 |= (𝐿𝑖 = 𝑎) iff 𝑃𝑖 = 𝑎; 2. 𝑃 |= (¬𝛽) iff 𝑃 ̸|= 𝛽;
3. 𝑃 |= (𝛽 ∧ 𝛿) iff 𝑃 |= 𝛽 and 𝑃 |= 𝛿; 4. 𝑃 |= (𝛽 ∨ 𝛿)
iff 𝑃 |= 𝛽 or 𝑃 |= 𝛿; 5. 𝑃 |= (𝛽 → 𝛿) iff 𝑃 ̸|= 𝛽 or
𝑃 |= 𝛿; 6. 𝑃 |= (𝛽 ↔ 𝛿) iff (𝑃 |= 𝛽 iff 𝑃 |= 𝛿).

We say that 𝑃 is a model of 𝛼 if and only if 𝑃 |= 𝛼.
The set of models of 𝛼 is denoted by ‖𝛼‖. It holds that
‖ ⊥ ‖ = ∅. A set of profiles Γ is said to satisfy 𝛼 if and
only if every profile in Γ is a model of 𝛼. We say that 𝛼 is
a tautology if and only if ‖𝛼‖ = PL. We will use |= 𝛼 to
denote that 𝛼 is a tautology.

The following definition introduces the notion of Γ-
faithful binary relation on PL.

Definition 5. [7] Let L be a tuple of labels and Γ be a
non-empty subset of PL. A binary relation ⪯Γ on PL is
Γ-faithful if it satisfies:
1. If 𝑃𝑖 ∈ Γ and 𝑃𝑗 ∈ Γ, then 𝑃𝑖 ≺Γ 𝑃𝑗 does not hold.
2. If 𝑃𝑖 ∈ Γ and 𝑃𝑗 ∈ PL ∖ Γ, then 𝑃𝑖 ≺Γ 𝑃𝑗 .

We will use ⪯𝑃 as an abbreviations of ⪯{𝑃}. We will
also write 𝑃 -faithful instead of {𝑃}-faithful. Note that
if ≺𝑃 is a strict order on PL, then the first condition of
Definition 5 follows trivially, since ≺𝑃 is irreflexive, and
the second condition can be rewritten as 𝑃 ≺𝑃 𝑃𝑖 for all
𝑃𝑖 ∈ PL ∖ {𝑃}.
2Note that PL is finite.

2.2.1. Model 1. From One Profile to One Profile

In this subsection we present the first model for profile
dynamics. In this model, we revise a profile by a formula
of the language obtaining as output a profile.

Definition 6. [7] Let L =≪ 𝐿1, 𝐿2, ..., 𝐿𝑛 ≫ be a
tuple of labels and let 𝑃 be a profile associated with L.
An operator ⊙ is a PtoP profile revision on 𝑃 if and only
if there is a P-faithful total strict order ≺𝑃 on PL, , such
that for all sentences 𝛼:

𝑃 ⊙ 𝛼 =

{︂
𝑚𝑖𝑛(‖𝛼‖,≺𝑃 ) if ‖𝛼‖ ̸= ∅
𝑃 otherwise

The operator ⊙ defined as presented above will be
denoted by ⊙≺𝑃 .

An axiomatic characterizations for PtoP profile revi-
sion operators has been presented in [7]. That axiomatic
characterizations includes, among others, the following
postulates, which are based on the modified version of
the AGM revision postulates and the update postulates
proposed by Katsuno and Mendelzon [8, 9].
(P1) If ‖𝛼‖ ≠ ∅, then 𝑃 ⊙ 𝛼 |= 𝛼.
(P2) If ‖𝛼‖ = ∅, then 𝑃 ⊙ 𝛼 = 𝑃 .
(P3) If 𝑃 |= 𝛼, then 𝑃 ⊙ 𝛼 = 𝑃 .

2.2.2. Model 2. From a Set of Profiles to a Set of
Profiles

We now present a model which addresses the problem of
revising a set of profiles.

Definition 7. [7] Let L =≪ 𝐿1, 𝐿2, ..., 𝐿𝑛 ≫ be a
tuple of labels and let Γ be a non-empty subset of PL. An
operator ⊙ is a SPtoSP profile revision on Γ if and only
if there exists a Γ-faithful pre-order ⪯Γ on PL, such that,
for all sentences 𝛼:

Γ⊙ 𝛼 =

{︂
𝑀𝑖𝑛(‖𝛼‖,⪯Γ) if ‖𝛼‖ ̸= ∅
Γ otherwise

The operator ⊙ defined as presented above will be
denoted by ⊙⪯Γ .

In [7], an axiomatic characterizations for SPtoSP pro-
file revision operators has been presented which contains,
among others, the following postulates:
(SP1) If ‖𝛼‖ ̸= ∅, then Γ⊙ 𝛼 ⊆ ‖𝛼‖.
(SP2) If ‖𝛼‖ = ∅, then Γ⊙ 𝛼 = Γ.
(SP3) Γ⊙ 𝛼 ̸= ∅.
(SP5) If Γ ∩ ‖𝛼‖ ≠ ∅ then Γ⊙ 𝛼 = Γ ∩ ‖𝛼‖.

3. Profiles Dynamics

3.1. Model 1. From One Profile to One
Profile

In this subsection we characterize operators ⊙𝑖 and formu-
las 𝛼 which satisfy certain sets of one or more equations of
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the form 𝑃𝑖⊙𝑖𝛼 = 𝑄𝑖 where 𝑃𝑖 and 𝑄𝑖 are, respectively,
the inicial and the final profiles of an agent.

Observation 1. Let L =≪ 𝐿1, 𝐿2, ..., 𝐿𝑛 ≫ be a tuple
of labels and let 𝑃 ∈ PL. Let ⊙ : ℒL → PL be a profile
revision operator on 𝑃 that satisfies (P1), (P2) and (P3).
It holds that 𝑃 ⊙ 𝛼 = 𝑃 if and only if ‖𝛼‖ = ∅ or
𝑃 ∈ ‖𝛼‖.

Observation 2. Let L =≪ 𝐿1, 𝐿2, ..., 𝐿𝑛 ≫ be
a tuple of labels, 𝑚 ∈ N1, and {𝑃1, . . . , 𝑃𝑚} ∪
{𝑄1, . . . , 𝑄𝑚} ⊆ PL. For each 𝑖 ∈ {1, . . . ,𝑚} let
⊙𝑖 : ℒL → PL be profile revision operators on 𝑃𝑖 that
satisfy (P1), (P2) and (P3). If for all 𝑖 ∈ {1, . . . ,𝑚}
it holds that 𝑃𝑖 ⊙𝑖 𝛼 = 𝑄𝑖 and 𝑃𝑖 ̸= 𝑄𝑖, then
{𝑄1, . . . , 𝑄𝑚} ⊆ ‖𝛼‖ ⊆ PL ∖ {𝑃1, . . . , 𝑃𝑚}.

Observation 3. Let L =≪ 𝐿1, 𝐿2, ..., 𝐿𝑛 ≫ be a tu-
ple of labels, 𝑚 ∈ N1, and {𝑃1, . . . , 𝑃𝑚} ⊆ PL. If
{𝑄1, . . . , 𝑄𝑚} ⊆ ‖𝛼‖ ⊆ PL ∖ {𝑃1, . . . , 𝑃𝑚}. Then for
all 𝑖 ∈ {1, . . . ,𝑚} there exists a PtoP profile revision
operator ⊙𝑖 on 𝑃𝑖 such that 𝑃𝑖 ⊙𝑖 𝛼 = 𝑄𝑖.

Observation 4. Let L =≪ 𝐿1, 𝐿2, ..., 𝐿𝑛 ≫ be
a tuple of labels, 𝑚 ∈ N1, and {𝑃1, . . . , 𝑃𝑚} ∪
{𝑄1, . . . , 𝑄𝑚} ⊆ PL be such that 𝑃𝑖 ̸= 𝑄𝑖 for all
𝑖 ∈ {1, . . . ,𝑚}.

For each 𝑖 ∈ {1, . . . ,𝑚} let ⊙≺𝑃𝑖
be a PtoP profile

revision operator on 𝑃𝑖. It holds that,

∀𝑖 ∈ {1, . . . ,𝑚} 𝑃𝑖 ⊙≺𝑃𝑖
𝛼 = 𝑄𝑖

iff

{𝑄1, . . . , 𝑄𝑚} ⊆ ‖𝛼‖ ⊆
𝑚⋂︀

𝑘=1

(Ω𝑘 ∪ {𝑄𝑘}).

Where Ω𝑘 = {𝑃𝑗 ∈ PL : 𝑄 ≺𝑃𝑘 𝑃𝑗}.

3.2. Model 2. From a Set of Profiles to a
Set of Profiles

In this subsection we present a study similar to the one
carried in the previous subsection, but concerning profile
revision operators on sets of profiles (rather than on single
profiles).

Observation 5. Let L =≪ 𝐿1, 𝐿2, ..., 𝐿𝑛 ≫ be a tuple
of labels and let Γ be a non-empty subset of PL. Let
⊙ : ℒL → 𝒫(PL) be a profile revision operator on Γ that
satisfies (SP1), (SP2) and (SP5). It holds that Γ⊙ 𝛼 = Γ
if and only if ‖𝛼‖ = ∅ or Γ ⊆ ‖𝛼‖.

Observation 6. Let L =≪ 𝐿1, 𝐿2, ..., 𝐿𝑛 ≫ be a tuple
of labels and let Γ be a non-empty subset of PL, and
Φ ⊂ Γ. Let ⊙ : ℒL → 𝒫(PL) be a profile revision
operator on Γ that satisfies (SP1), (SP2), (SP3) and (SP5).
It holds that Γ⊙ 𝛼 = Φ if and only if Γ ∩ ‖𝛼‖ = Φ and
Φ ̸= ∅.

Observation 7. Let L =≪ 𝐿1, 𝐿2, ..., 𝐿𝑛 ≫ be a tuple
of labels. Let 𝑚 ∈ N1 and for each 𝑖 ∈ {1, . . . ,𝑚} let
Γ𝑖 be a non-empty subset of PL and ⊙𝑖 : ℒL → 𝒫(PL)
be a profile revision operator on Γ𝑖 that satisfies
(SP1), (SP2) and (SP5). If, for all 𝑖 ∈ {1, . . . ,𝑚},
it holds that Γ𝑖 ⊙𝑖 𝛼 = Φ𝑖 and Φ𝑖 ̸⊆ Γ𝑖, then
𝑚⋃︀
𝑖=1

Φ𝑖 ⊆ ‖𝛼‖ ⊆ PL ∖
𝑚⋃︀
𝑖=1

Γ𝑖.

Observation 8. Let L =≪ 𝐿1, 𝐿2, ..., 𝐿𝑛 ≫ be a tuple
of labels. Let 𝑚 ∈ N1 and for all 𝑖 ∈ {1, . . . ,𝑚} let Γ𝑖

and Φ𝑖 be non-empty subsets of PL such that it holds that
either Γ𝑖 ∩ Φ𝑖 = ∅ or Φ𝑖 ⊆ Γ𝑖.

If
𝑚⋃︀
𝑖=1

Φ𝑖 ⊆ ‖𝛼‖ ⊆
𝑚⋂︀
𝑖=1

(Φ𝑖 ∪ PL ∖ Γ𝑖), then, for all

𝑖 ∈ {1, . . . ,𝑚}, there exists a SPtoSp profile revision
operator ⊙𝑖 on Γ𝑖 such that Γ𝑖 ⊙𝑖 𝛼 = Φ𝑖.

Observation 9. Let L =≪ 𝐿1, 𝐿2, ..., 𝐿𝑛 ≫ be a tuple
of labels, Γ and Φ be non-empty subsets of PL and Φ ̸=
PL.It holds that either (i) there exists a formula 𝛼 and a
SPtoSP profile revision operator ⊙ such that Γ⊙ 𝛼 = Φ,
or (ii) there exist formulas 𝛼1 and 𝛼2 and SPtoSP profile
revision operators ⊙1 and ⊙2 such that (Γ ⊙1 𝛼1) ⊙2

𝛼2 = Φ.

Observation 10. Let L =≪ 𝐿1, 𝐿2, ..., 𝐿𝑛 ≫ be a
tuple of labels. Let 𝑚 ∈ N1 and for 𝑖 ∈ {1, . . . ,𝑚} let
Γ𝑖 and Φ𝑖 be two distinct non-empty subsets of PL. For
𝑖 ∈ {1, . . . ,𝑚} let ⪯Γ𝑖 be a Γ𝑖-faithfull pre-order on Γ𝑖

such that it holds that 𝑃𝑗 ̸≺Γ𝑖 𝑃𝑘, for all 𝑃𝑗 , 𝑃𝑘 ∈ Φ𝑖.
Let ⊙⪯Γ𝑖

be an SPtoSP profile revision operator on Γ𝑖.
It holds that,

∀𝑖 ∈ {1, . . . ,𝑚} Γ𝑖 ⊙⪯Γ𝑖
𝛼 = Φ𝑖

iff
𝑚⋃︀
𝑖=1

Φ𝑖 ⊆ ‖𝛼‖ ⊆
𝑚⋂︀
𝑖=1

(Ω𝑖 ∪ Φ𝑖)

where Ω𝑖 = {𝑃𝑘 ∈ PL : 𝑃𝑛 ≺Γ𝑖 𝑃𝑘, for some 𝑃𝑛 ∈
Φ𝑖}.

4. Conclusion
User profiles are important tools in several areas of in-
formation technology. Given a profile, sometimes it is
necessary to determine a set of tasks, or pieces of training
which can transform the profile of a user into a target pro-
file. In this paper, we have characterized the solutions of
“systems of equations" (or single equations) of the form
G𝑖⊙𝑖 𝛼 = F𝑖, where G𝑖 and F𝑖 are, respectively, the initial
and final sets of profiles or single profiles of an agent and
⊙𝑖 and 𝛼 are the “unknowns" (that we wish to determine).
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