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Abstract
We present a framework of answer set programming-based solutions for various problems related to declarative process
specifications. Specifically, the framework offers implementations for conformance checking, satisfiability checking, and two
different inconsistency measures. Since the aforementioned problems are represented in a fragment of linear temporal logic,
the framework could also prove useful for a broader range of applications beyond process specifications.
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1. Introduction
Declarative process specifications are a crucial concept
for modeling business processes. Such specifications can
be expressed by means of linear temporal logic (LTL) [1],
i.e., a specification can be formulated as a set of LTL
formulas. The intuition behind this is that a business
process is a (temporal) sequence of actions. Problems
in this area include conformance checking (does a given
sequence of actions conform to a specification?), satisfia-
bility checking (is a given specification free of conflicts?),
as well as inconsistency measurement (if a specification
contains conflicts, how severe are they?) [2, 3].

For conformance checking, existing algorithmic ap-
proaches (see [4] for an overview) are often geared to-
wards a specific modeling language, such as Declare,
which means that it might not be possible to use them for
arbitrary LTL formulas. Also, many existing approaches
(also some based on answer set programming [5, 6]) rep-
resent specifications with finite state automata. As this
transformation and related automata operations may in-
troduce a computational burden, in this work, our pre-
sented framework encodes the LTL semantics in a native
manner, such that no transformation is needed.

Regarding the analysis of inconsistency in declarative
specifications, virtually all existing approaches also rely
on the mentioned automata representation (and verify
inconsistency by checking whether the automata prod-
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uct is empty) [7]. Also, our framework is the first to
offer practical solutions for the actual measurement of
inconsistency in such specifications.

In summary, we present a framework based on answer
set programming (ASP) featuring the following qualities:

1. It combines implementations for different prob-
lems in the area of declarative process specifica-
tions, in particular conformance checking, satisfi-
ability checking, and inconsistency measurement
(w.r.t. two distinct inconsistency measures).

2. The encodings are based on LTL directly, mean-
ing no preprocessing, such as the transformation
to automata [5], is required. It is sufficient to pro-
vide a set of LTL formulas (and, for conformance
checking, a set of sequences of actions).

3. Since our implementations work directly on LTL
formulas, they can be used in other fields as well.

4. Due to the declarative nature of ASP our frame-
work delivers interpretable solutions. E.g., in the
case of inconsistency measurement, we can iden-
tify which parts of a set of formulas representing
a specification are involved in a conflict.

We present some preliminaries on LTL and ASP in
Section 2 and present an overview of our framework in
Section 3.

2. Preliminaries
In the following, we define the specific variant of LTL
our work is based on, as well as the problems we address
in our framework, and provide a basic overview of ASP.

Linear Temporal Logic on Fixed Traces Let At be
a set of propositional symbols, and 𝑡0, . . . , 𝑡𝑚 a linear

129

mailto:isabelle.kuhlmann@fernuni-hagen.de
mailto:ccorea@uni-koblenz.de
mailto:grant@cs.umd.edu
https://orcid.org/0000-0001-9636-122X
https://orcid.org/0000-0001-7503-7703
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Isabelle Kuhlmann et al. CEUR Workshop Proceedings 129–132

sequence of temporal states. In this work we consider
sequences of finite [8] and fixed length, and refer to the
corresponding fragment of LTL as linear temporal logic
on fixed traces (LTLff) [3]. Formulas are closed under the
unary operator X (next) and the binary operator U (until),
in addition to the classical operators ∧ (conjunction), ∨
(disjunction), and ¬ (negation). We also consider the aux-
iliary operators F (eventually) and G (globally), with F𝜙
being defined as ⊤U𝜙, and G𝜙 being defined as ¬F¬𝜙.

An LTLff-interpretation �̂� w.r.t. At is a function map-
ping each state 𝑡 and proposition 𝑎 to 1 (true) or 0 (false),
i.e., �̂�(𝑡, 𝑎) = 1 if 𝑎 is assigned 1 at 𝑡. A formula 𝜙
is satisfied by an interpretation �̂�, denoted �̂� |= 𝜙, iff
�̂�, 𝑡0 |= 𝜙. Further, �̂�, 𝑡𝑖 |= 𝜙 is inductively defined as

�̂�, 𝑡𝑖 |= 𝑎 iff �̂�(𝑡𝑖, 𝑎) = 1 for 𝑎 ∈ At

�̂�, 𝑡𝑖 |= ¬𝜙 iff �̂�, 𝑡𝑖 ̸|= 𝜙

�̂�, 𝑡𝑖 |= 𝜙1 ∧ 𝜙2 iff �̂�, 𝑡𝑖 |= 𝜙1 and �̂�, 𝑡𝑖 |= 𝜙2

�̂�, 𝑡𝑖 |= 𝜙1 ∨ 𝜙2 iff �̂�, 𝑡𝑖 |= 𝜙1 or �̂�, 𝑡𝑖 |= 𝜙2

�̂�, 𝑡𝑖 |= X𝜙 iff 𝑖 < 𝑚 and �̂�, 𝑡𝑖+1 |= 𝜙

�̂�, 𝑡𝑖 |= 𝜙1U𝜙2 iff �̂�, 𝑡𝑗 |= 𝜙2 with 𝑗 ∈ {𝑖+ 1, . . . ,𝑚}
and �̂�, 𝑡𝑘 |= 𝜙1 ∀𝑘 ∈ {𝑖, . . . , 𝑗 − 1}

w.r.t. any interpretation �̂�, and 𝑡𝑖 ∈ {𝑡0, . . . , 𝑡𝑚}. An
interpretation �̂� satisfies a set of formulas 𝒦 iff ∀𝜙 ∈
𝒦 : �̂� |= 𝜙. We also refer to a satisfiable set of formulas
as consistent, and to an unsatisfiable set of formulas as
inconsistent.

Problems Related to Declarative Process Specifica-
tions Conformance checking (CC) is the task of deciding
whether a given trace 𝑠 = ⟨𝑠0, . . . , 𝑠𝑚⟩, consisting of
a sequence of activities or actions, conforms to a given
specification 𝒦. Note that, following the literature in
business process modeling, only the atom indicated by
𝑠𝑖 (𝑖 ∈ {0, . . . ,𝑚}) is set to 1 in state 𝑡𝑖, while all other
atoms are set to 0 in 𝑡𝑖 [8]. We denote the resulting in-
terpretation as �̂�𝑠. Thus, formally, we check whether
�̂�𝑠 |= 𝒦. In addition, we allow individual formulas 𝜙 to
be vacuously satisfied if none of the atoms occurring in
𝜙 are contained in 𝑠.

As a generalization of CC, we define the problem of
satisfiability checking (SC) as the task of deciding whether
there exists a trace 𝑠 of length 𝑚, and a corresponding
interpretation �̂�𝑠, s.t. �̂�𝑠 |= 𝒦, for a given specification
𝒦. Again, only atom 𝑠𝑖 is set to true in state 𝑡𝑖, and
formulas can be vacuously satisfied.

To allow for our framework to be used beyond declar-
ative process specifications, we additionally provide im-
plementations for the “general” problems of CC and SC
in LTLff. To be precise, we lift the restriction that only
atom 𝑠𝑖 is allowed to be true in state 𝑡𝑖, and we prohibit
formulas to be vacuously satisfied. We denote the corre-
sponding problems as MC (since the “general” variant of

CC is actually closer to the definition of the problem of
model checking), and SCLTLff , respectively.

In inconsistency measurement (IM) [9], the goal is to
quantitatively assess the level of inconsistency in a given
knowledge base. Hence, we aim to map a given specifica-
tion 𝒦 to a numerical value. Although applied in various
other domains, it is a relatively new concept in the area of
declarative process specifications. In [3], the authors first
introduced two inconsistency measures for LTLff based
on paraconsistent semantics, which are implemented in
the framework.

Answer Set Programming Answer set program-
ming (ASP) [10] is a declarative programming paradigm,
where the objective is to represent a given problem
in a logical format (an extended logic program) s.t.
the models of this representation (the answer sets)
express solutions of the initial problem. An ex-
tended logic program is comprised of rules of the form
“𝑟 = 𝑎0:- 𝑎1, . . . , 𝑎𝑛, not𝑎𝑛+1, . . . , not𝑎𝑚.” with
𝑎𝑖 (0 ≤ 𝑖 ≤ 𝑛 ≤ 𝑚) being atoms, and “not” indi-
cating default negation [11]. An atom is a predicate
𝑝(𝑣1, . . . , 𝑣𝑘) with 𝑘 ≥ 0, with each 𝑣1, . . . , 𝑣𝑘 being
either a constant or a variable1. Further, “:-” can be in-
terpreted as “if”, a “,” as “and”, and a “.” marks the end
of a rule. If an atom/rule/program does not contain any
variables, it is referred to as ground.

An ASP rule 𝑟 (as illustrated above) is comprised of
a head 𝐻(𝑟) = 𝑎0 and a body 𝐵(𝑟) = {𝑎1, . . . , 𝑎𝑛,
not𝑎𝑛+1, . . . , not𝑎𝑚}. If 𝐻(𝑟) is empty, 𝑟 is called a
constraint, and if 𝐵(𝑟) = ∅, 𝑟 is called a fact. We further
divide the elements of 𝐵(𝑟) into 𝐵+(𝑟) = {𝑎1, . . . , 𝑎𝑛}
and 𝐵−(𝑟) = {𝑎𝑛+1, . . . , 𝑎𝑚}. A set 𝑋 of ground
atoms is a model of a ground logic program 𝑃 if for
all 𝑟 ∈ 𝑃 , 𝐻(𝑟) ∈ 𝑋 whenever 𝐵−(𝑟) ∩ 𝑋 = ∅ and
𝐵+(𝑟) ⊆ 𝑋 . The reduct [13] of a program 𝑃 w.r.t. 𝑋
is defined as 𝑃𝑋 = {𝐻(𝑟):- 𝐵+(𝑟) | 𝐵−(𝑟) ∩𝑋 =
∅, 𝑟 ∈ 𝑃}. If 𝑋 is a subset-minimal model of 𝑃𝑋 , then
𝑋 is called an answer set of 𝑃 .

3. Framework
The framework2 we present combines ASP-based im-
plementations of all problems defined in the preceding
section (namely, CC, MC, SC, SCLTLff , and IM w.r.t. the
two measures defined in [3]). The implementations are
done in C++, and the ASP solver we use is Clingo [12].
Note that the implementations for CC and SC have been
introduced in a recent work by the authors [14], and

1Following the Clingo [12] syntax, we denote constants by strings
starting with a lowercase letter, and variables by strings starting
with an uppercase letter. Anonymous variables (which do not recur
within a rule) are denoted by “_”.

2https://github.com/aig-hagen/ASP_for_LTL
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the implementations for the two inconsistency measures
have been proposed in a work that is currently under
review [15].

Since due to page limitations, we cannot explain the
ASP encodings for each problem in detail, we take CC
as an example to demonstrate our overall approach. Our
framework takes as input for CC (i) a file containing a
specification 𝒦 (i.e., a set of LTL formulas), and (ii) a file
containing a set of traces 𝑆. For each trace 𝑠 ∈ 𝑆, we
encode CC in ASP, and if an answer set can be derived,
the given problem instance (𝒦, 𝑠) is satisfiable, otherwise
it is unsatisfiable.

In order to encode a given problem instance (𝒦, 𝑠) in
ASP, we begin by representing each atom 𝑎 ∈ At(𝒦) as a
fact “atom(𝑎).”. In the same manner, each formula 𝜙 ∈
𝒦 is modeled as kbElement(𝜙). Next, we represent the
“type” of each (sub-)formula; e.g., a conjunction 𝜙 =
𝜙1 ∧ 𝜙2 is represented as conjunction(𝜙,𝜙1, 𝜙2).
The remaining operators (disjunction, negation, next,
until, eventually, and globally) are modeled analogously.
If a formula 𝜙 consists of a single atom 𝑎, it is repre-
sented by formulaIsAtom(𝜙, 𝑎). To represent a trace
𝑠 in ASP, we first define |𝑠| states, where the final state
𝑚 = |𝑠| − 1 is represented as finalState(𝑚). The
states {𝑡0, . . . , 𝑡𝑚} are then modeled by adding the rule
“state(0..M) :- finalState(M).” to the encoding.
Further, we model that 𝑠𝑖 (𝑖 ∈ {0, . . . ,𝑚}) is true in
state 𝑡𝑖 by adding “true(𝑠𝑖, 𝑖).”.

An overview of our encoding of logical entailment is
given in Listing 1. Essentially, we can directly follow the
definition of each operator (see Section 2)—e.g., a formula
X𝜙 is true in 𝑡𝑖 if 𝑖 < 𝑚 and 𝜙 is true in 𝑡𝑖+1 (line
5). Moreover, lines 2–4 describe the classical operators,
lines 6–8 the remaining LTL-specific ones, and line 1 the
case if a formula is in fact an atom. Finally, we add an
integrity constraint (line 9) which ensures that no answer
set can be derived if any formula 𝜙 ∈ 𝒦 evaluates to “not
true” in state 𝑡0, i.e., every formula must be satisfied.

1 true(F,S):- formulaIsAtom(F,A), state(S), true(A,S).
2 true(F,S):- conjunction(F,G,H), state(S), true(G,S),

true(H,S).
3 true(F,S):- disjunction(F,G,H), state(S),

1{true(G,S); true(H,S)}.
4 true(F,S):- negation(F,G), state(S), not true(G,S).
5 true(F,Si):- next(F,G), state(Si), Sj=Si+1, Si<M,

finalState(M), true(G,Sj).
6 true(F,Si):- until(F,G,H), state(Si), state(Sj),

Sj>Si, Sj<=M, finalState(M), X{true(G,S):
state(S), S>=Si, S<Sj}X, X=Sj-Si, true(H,Sj).

7 true(F,Si):- globally(F,G), state(Si), X{true(G,S):
state(S), S>Si}X, finalState(M), X=M-Si.

8 true(F,Si):- eventually(F,G), state(Si), true(G,Sj),
state(Sj), Sj>Si.

9 :- not true(F,0), kbElement(F), state(0).

Listing 1: Encoding of logical entailment.

The approach described above can directly be used
to solve MC as well3—the framework simply requires a
different input format which specifies a set of atoms to be
true per state (instead of a single atom). Furthermore, the
approach can be easily modified to solve SC and SCLTLff .
Intuitively, for SCLTLff we merely need to add a rule that
“guesses” an interpretation which is then checked to be
satisfiable, and for SC we additionally need to handle
vacuous satisfiability directly within ASP.

The ASP encodings for the two inconsistency mea-
sures from [3] are a bit more intricate, since we need to
model paraconsistent semantics. E.g., it is not sufficient
to model only the “true” case w.r.t. the different opera-
tors. Instead, we use truthValue(𝜙, 𝑡𝑖, 𝜃) to explicitly
represent a truth value 𝜃 for a formula 𝜙 in 𝑡𝑖. However,
the overall approach is still the same—we directly model
logical entailment.

4. Conclusions and Future Work
We introduced a framework that provides ASP-based so-
lutions for multiple problems related to LTL, targeted at
the field of declarative process specifications. Our ap-
proach does not require any preprocessing (such as the
computation of automata), and can be used in other LTL-
related domains as well. In terms of future work, we aim
to extend our set of implementations, e.g., by consider-
ing culpability measures (which indicate a level of blame
for the inconsistency of a knowledge base w.r.t. a given
formula or atom). Also, we aim to apply our framework
to more non-monotonic settings, e.g., inconsistency mea-
surement in the presence of superiority relations between
LTL formulas.
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