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Abstract
The energy market is characterized by unstable price dynamics, which challenge the quantitative models
of pricing processes and result in abnormal shocks and crashes. We use recurrence quantification analysis
(RQA) to analyze and construct indicators of intermittent events in energy indices, where regular patterns
are interrupted by chaotic fluctuations, which could signal the onset of crisis events. We apply RQA to
daily data of Henry Hub natural gas spot prices, WTI spot prices, and Europe Brent spot prices. Our
empirical results show that the recurrence measures capture the distinctive features of crashes and can
be used for effective risk management strategies.
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1. Introduction

Crude oil stands as a linchpin in the stability of global economic and financial systems, ren-
dering it a strategic asset for national economic progress [2, 3]. Analyzing the multifaceted
determinants impacting crude oil prices becomes paramount for investors, governmental bodies,
and stakeholders. These price fluctuations stem from diverse sources, including fundamental
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factors such as crude oil supply and demand [4], as well as non-fundamental factors like investor
sentiment and speculations [5]. Notably, the interplay of the global economic landscape, geopo-
litical stability among oil-producing nations, and economic policy uncertainty significantly
shape crude oil prices.

Given the pivotal role of crude oil in economic advancement, the market’s volatile nature
has led to substantial economic repercussions, especially for oil-import-dependent countries.
Consequently, numerous studies have delved into the drivers of crude oil price volatility, fuelling
debates within academia regarding the mechanics of the crude oil market [6, 7, 8]. Amidst this
discourse, the intricate risks posed by crude oil price fluctuations, driven by their stochastic
and complex nature, have come to the forefront [9, 10, 11, 12].

Two key benchmarks, namely WTI and Brent contracts, typically set oil prices. These
benchmarks are favored by hedge funds and traders, resulting in considerable interest in the
WTI-Brent pricing structure encompassing futures curve shapes, benchmark price disparities,
andmarket integration levels. Financial institutions actively engage in these markets, amplifying
their influence on jet fuel, diesel, heating oil, and gasoline prices. Furthermore, the WTI-Brent
spread serves as a foundation for derivative financial products like swaps and options.

While microeconomic theory attributes crude oil prices to supply and demand dynamics, the
financialization of oil in the past decade has heightened speculative influences, complicating
price determination [13, 14].

The natural gas industry has flourished due to substantial market demand, abundant cost-
effective supply, and thriving global trade. Predicting natural gas prices holds critical importance
in trading, electric power planning, and regulatory decision-making. Henry Hub (U.S.), NBP
(U.K.), and LNG (Japan) now serve as vital international natural gas trading hubs. Among
these, Henry Hub boasts the highest liquidity, widest impact, and strongest reflection of supply-
demand dynamics. Beyond fundamental factors, natural gas prices are influenced by elements
such as extreme weather, geopolitical conflicts, and international relations [15].

Given the nonlinear and non-stationary traits of crude oil and natural gas markets under
intricate influences, enhancing the early detection accuracy of market crises remains a pivotal
research goal. This paper introduces recurrence analysis-based indicators (indicator-precursors)
for this purpose.

2. Methodology of recurrence analysis

In 1890 Poincaré introduced Poincaré recurrence theorem [16], which states that certain systems
return to their arbitrarily close, or exactly the same initial states after a sufficiently long but
finite time. Such property in the case of deterministic behavior of the system allows us to make
conclusions regarding its future development.

2.1. Time delay method

The state of the system can be described by the set of variables. Its observational state can be
expressed through a 𝑑-dimensional vector or matrix, where each of its components refers to a
single variable that represents a property of the system. After a while, the variables change,
resulting in different system states.
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Usually, not all relevant variables can be captured from our observations. Often, only a single
variable may be observed. Thakens’ theorem [17] that was mentioned in previous sections
ensures that it‘s possible to reconstruct the topological structure of the trajectory formed by
the state vectors, as the data collected for this single variable contains information about the
dynamics of the whole system.

For an approximate reconstruction of the original dynamics of the observed system, we
project the time series onto a Reconstructed Phase Space [18, 19, 20] with the commonly used
time delay method [19] which relied on the embedding dimension and time delay.

The embedding dimension is being the dimensionality of the reconstructed system (corre-
sponds to the number of relevant variables that may differ from one system to another. The
time delay parameter specifies the temporal components of the vector components.

2.2. Recurrence plot

Recurrence plot (RP) have been introduced to study dynamics and recurrence states of complex
systems. When we create RP, at first, from recorded time series we reconstruct phase-space
trajectory. Then, according to Eckmann et al. [21], we consider a trajectory X⃗(𝑖) on the recon-
structed trajectory. The recurrence plot is an array of dots in a 𝑁 × 𝑁 matrix, where dot is
placed at (𝑖, 𝑗) whenever X⃗(𝑗) is sufficiently close to X⃗(𝑖), and both axes are time axes which
mathematically can be expressed as

𝑅𝑖𝑗 = Θ(𝜖− ‖X⃗(𝑖) − X⃗(𝑗)‖),

for 𝑖, 𝑗 = 1, … , 𝑁,
(1)

where ‖ ‖ is a norm (representing the spatial distance between the states at times 𝑖 and 𝑗); 𝜖 is
a predefined recurrence threshold, and Θ (⋅) is the Heaviside function. As a result, the matrix
captures a total of 𝑁 2 binary similarity values.

Typically, 𝐿𝑝-norm is applied to determine the pairwise similarity between two vectors.
According to Webber and Zbilut [22], the 𝐿1-norm (Taxicab metric), the 𝐿2-norm (Euclidean
metric), and the 𝐿∞-norm (Chebyshev metric) can serve as candidates for measuring distance
between trajectories in phase space.

Also, as it can be seen from equation (1), the similarity between vectors is determined by a
threshold 𝜖. The choice of 𝜖 > 0 ensures that all vectors that lie within this radius are similar to
each other, and that dissimilarity up to a certain error is permitted [16].

The fixed radius for recurrent states is the commonly used condition, which leads to equally
sized 𝜖-neighborhoods. The shape in which neighborhoods lie is determined by the distance
metric. Applying the fixed threshold with the distance metric, we define recurrence matrices
that are symmetric along the middle diagonal. The self-similarity of the multi-dimensional
vectors reflects in the middle diagonal, which is commonly referred to as the line of identity
(LOI). In contrast, it is not guaranteed that a recurrence matrix is symmetric if the condition of
the �xed number of nearest neighbors is applied. For specific purposes (e.g., quantification of
recurrences), it can be useful to exclude the LOI from the RP, as the trivial recurrence of a state
with itself might not be of interest [23].
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The main purpose of RP is the visualization of trajectories and hidden patterns of the systems
[24, 23].

The dots within RP, representing the time evolution of the trajectories, exhibit characteristic
large-scale and small-scale patterns. Large-scale patterns of RP can be classified as

• homogeneous – autonomous and stationary systems, which consist of many recurrence
points that are homogeneously distributed (relaxation times are short);

• periodic – long, uninterrupted, and diagonally oriented structures that represent which
indicate periodic behavior. These lines are usually distributed regularly;

• drift – systems with patterns paling or darkening from the LOI to the outer corners of RP;
• disrupted – systems with drastic changes as well as extreme events in the system dynamics.

The small-scale clusters can represent a combination of isolated dots (abrupt events). Similar
evolution at different periods in time or in reverse temporal order will present diagonal lines
(deterministic structures) as well as vertical/horizontal lines to inscribe laminar states (intermit-
tency) or systems that paused at singularities. For the quantitative description of the system,
such small-scale clusters serve the base of the recurrence quantification analysis (RQA).

2.3. Recurrence quantification analysis

The graphic representation of the system suits perfectly for a qualitative description. However,
the main disadvantage of graphical representation is that it forces users to subjectively intuit and
interpret patterns and structures presented within the recurrence plot. Also, with the increasing
size of RP, they can be hardly depicted on graphical display as a whole. As a result, we need to
work with separated parts of the original plot. Analysis in such a way may create new defects,
which should distort objectivity of the observed patterns and lead to incorrect interpretations.
To overcome such limitation and spread an objective assessment among observers, in the early
1990s by Webber and Zbilut [25, 26] were introduced definitions and procedures to quantify
RP’s complexity, and later, it has been extended by Marwan et al. [27].

The first known measure of the RQA is recurrence rate, which measures the probability that
the studied process will recur (𝑅𝑅):

𝑅𝑅 = 1
𝑁 2

𝑁
∑
𝑖,𝑗=1

𝑅𝑖,𝑗. (2)

Another measure is based on frequency distribution of line structures in the RP. First, we
consider the histogram of the length of the diagonal structures in the RP

𝑃(𝑙) =
𝑁
∑
𝑖,𝑗=1

(1 − 𝑅𝑖−1,𝑗−1)

× (1 − 𝑅𝑖+𝑙,𝑗+𝑙)
𝑙−1
∏
𝑘=0

𝑅𝑖+𝑘,𝑗+𝑘.

(3)
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The percentage of recurrence points that form diagonal segments of minimal length 𝑙𝑚𝑖𝑛
parallel to the main diagonal is the measure of determinism (𝐷𝐸𝑇):

𝐷𝐸𝑇 =
𝑁
∑
𝑙=𝑙𝑚𝑖𝑛

𝑙𝑃(𝑙) /

𝑁
∑
𝑙=1

𝑙𝑃(𝑙). (4)

Systems that are characterized by long diagonal lines are presented to be periodic. From
chaotic signals, we would expect short diagonal lines, and stochastic processes would not
present any diagonal lines. Performing the RQA, typically, we rely on the lines with minimal
length, which excludes the shorter lines, which may be spurious for characterizing deterministic
processes. In our case, 𝑙𝑚𝑖𝑛 = 2 is considered. In case when 𝑙𝑚𝑖𝑛 = 1, DET and RR are identical.

Considering diagonal line segments, we can emphasize the longest one – 𝐿𝑚𝑎𝑥. This indicator
measures the maximum time that two trajectories remain close to each other and can be
interpreted as the maximum prediction time:

𝐿𝑚𝑎𝑥 = max ({𝑙𝑖 | 𝑖 = 1, … , 𝑁𝑙}) , (5)

where 𝑁𝑙 = ∑𝑙⩾𝑙𝑚𝑖𝑛 𝑃(𝑙) is the total number of diagonal lines.
Divergence (𝐷𝐼𝑉 ) is the inverse of 𝐿𝑚𝑎𝑥 characterizes the exponential divergence of the phase

space trajectory [28, 29]:

𝐷𝐼𝑉 = 1 / 𝐿𝑚𝑎𝑥. (6)

For longer diagonal lines system is more deterministic and, therefore, the measure of diver-
gence is also lower. The smaller 𝐿𝑚𝑎𝑥, the more divergent are trajectories and more chaotic
the studied system. According to Eckmann et al. [21], 𝐷𝐼𝑉 can be used to estimate the largest
positive Lyapunov exponent.

Another measure which is related to the diagonal line segments is the average diagonal line
length (𝐿𝑚𝑒𝑎𝑛):

𝐿𝑚𝑒𝑎𝑛 = ∑
𝑁
𝑙=𝑙𝑚𝑖𝑛

𝑙𝑃(𝑙) / ∑
𝑁
𝑙=𝑙𝑚𝑖𝑛

𝑃(𝑙) (7)

It can be interpreted as the mean prediction horizon of the system, and it measures average
time that two trajectories remain close to each other.

Using the classic Shannon entropy, we can measure the hidden complexity of recurrence
structures in the RP. In accordance with this study, the entropy of diagonal line histogram
(𝐷𝐿𝐸𝑛) is of the greatest interest. It can be defined as:

𝐷𝐿𝐸𝑛 = −
𝑁
∑
𝑙=𝑙𝑚𝑖𝑛

𝑝(𝑙) ln 𝑝(𝑙) (8)

and

𝑝(𝑙) = 𝑃(𝑙) /
𝑁
∑
𝑙=𝑙𝑚𝑖𝑛

𝑃(𝑙), (9)

where 𝑝(𝑙) captures the probability that a diagonal line has exactly length 𝑙, and 𝐷𝐿𝐸𝑛 reflects
the complexity of deterministic structure in the system. The more uniform is the frequency
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distribution of diagonal lines, the higher the value of𝐷𝐿𝐸𝑛. If there is predominant deterministic
behavior with a particular period 𝑙, then 𝐷𝐿𝐸𝑛 becomes lower.

As it was mentioned, the RP structure consists of vertical (horizontal lines). For themMarwan
and Webber [30] proposed additional recurrence measures. The first of them is the laminarity
(𝐿𝐴𝑀) Analogously to the equation (4), which measures the percentage of diagonal lines with
minimal length 𝑙𝑚𝑖𝑛 in the RP, we can calculate the fraction of recurrence points forming vertical
structures of minimal length 𝑣𝑚𝑖𝑛:

𝐿𝐴𝑀 =
𝑁
∑

𝑣=𝑣𝑚𝑖𝑛
𝑣𝑃(𝑣) /

𝑁
∑
𝑣=1

𝑣𝑃(𝑣) (10)

with

𝑃(𝑣) =
𝑁
∑
𝑖,𝑗=1

(1 − 𝑅𝑖,𝑗−1)

× (1 − 𝑅𝑖,𝑗+𝑣)
𝑣−1
∏
𝑘=0

𝑅𝑖,𝑗+𝑘

(11)

as the histogram of lengths of vertical lines.
Since it measures the overall amount of vertical lines, it characterizes the percentage of

laminar states within the system. If 𝐿𝐴𝑀 increases, then there are more vertical or diagonal
structures than isolated recurrent points.

Similarly to 𝐿𝑚𝑎𝑥, we can define the measure which will indicate the maximum time that a
system holds an unchangeable pattern – the maximal vertical lines length (𝑉𝑚𝑎𝑥):

𝑉𝑚𝑎𝑥 = max ({𝑣𝑖 | 𝑖 = 1, … , 𝑁𝑣}) , (12)

where 𝑁𝑣 = ∑𝑣⩾𝑣𝑚𝑖𝑛 𝑃(𝑣) is the total number of vertical lines.
Vertical line divergence (𝑉𝐷𝐼𝑉) is the analogous to (6), which can be related to the rate of

divergence from laminar state:

𝑉𝐷𝐼𝑉 = 1 / 𝑉𝑚𝑎𝑥. (13)

Consequently, we can define the average time that two trajectories remain at a specific state –
trapping time (𝑇𝑇):

𝑇𝑇 = ∑
𝑁
𝑣=𝑣𝑚𝑖𝑛

𝑣𝑃(𝑣) / ∑
𝑁
𝑣=𝑣𝑚𝑖𝑛

𝑃(𝑣). (14)

For high 𝑇𝑇 values we would expect the system to consist of more laminar states, whereas low
𝑇𝑇 values would indicate abrupt changes in the system’s dynamics.

The variability of laminar states with different duration time can be measured in the same
way as for diagonal lines – using Shannon entropy. The complexity of vertical lines can be
measures according to the following equation:

𝑉𝐿𝐸𝑛 = −
𝑁
∑

𝑣=𝑣𝑚𝑖𝑛
𝑝(𝑣) ln 𝑝(𝑣) (15)
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with

𝑝(𝑣) = 𝑃(𝑣) /
𝑁
∑

𝑣=𝑣𝑚𝑖𝑛
𝑃(𝑣) (16)

indicating the probability of a vertical line to have length 𝑣 ⩾ 𝑣𝑚𝑖𝑛.
In the same manner, we can quantify the variation (complexity) of abrupt changes during the

studied periods in the energy markets. Regarding equation (7), we can quantify the average
time of divergence when two trajectories in the phase-space remain out of recurrence threshold
𝜖. This measure can be called as average white vertical line length (𝑊𝑉𝐿𝑚𝑒𝑎𝑛):

𝑊𝑉𝐿𝑚𝑒𝑎𝑛 =
𝑁
∑

𝑤=𝑤𝑚𝑖𝑛

𝑤𝑃(𝑤) /
𝑁
∑

𝑤=𝑤𝑚𝑖𝑛

𝑃(𝑤), (17)

where 𝑃(𝑤) is the frequency of white vertical lines in the RP. This measure can be interpreted
as the mean horizon of unpredictability of the system.

This kind of complexity is associated with the white vertical lines in the RP and can be
quantified in the following way:

𝑊𝑉𝐿𝐸𝑛 = −
𝑁
∑

𝑤=𝑤𝑚𝑖𝑛

𝑝(𝑤) ln 𝑝(𝑤) (18)

with

𝑝(𝑤) = 𝑃(𝑤) /
𝑁
∑

𝑤=𝑤𝑚𝑖𝑛

𝑃(𝑤) (19)

indicating the probability of a white vertical line to have length 𝑤 ⩾ 𝑤𝑚𝑖𝑛.
The further measure is based on the ration between 𝐷𝐸𝑇 and 𝑅𝑅, and known as ratio

(𝐷𝐸𝑇/𝑅𝑅):

𝐷𝐸𝑇/𝑅𝑅 = 𝑁 2 ∑
𝑙=𝑙𝑚𝑖𝑛

𝑃(𝑙) / (
𝑁
∑
𝑙=1

𝑙𝑃(𝑙))
2

(20)

In the same manner, we can define another measure which is based on the ratio between
𝐿𝐴𝑀 and 𝐷𝐸𝑇:

𝐿𝐴𝑀/𝐷𝐸𝑇 =
𝑁
∑

𝑣=𝑣𝑚𝑖𝑛
𝑣𝑃(𝑣) ⋅

𝑁
∑
𝑙=1

𝑙𝑃(𝑙)

/
𝑁
∑
𝑣=1

𝑣𝑃(𝑣) ⋅
𝑁
∑
𝑙=𝑙𝑚𝑖𝑛

𝑙𝑃(𝑙).
(21)

This measures can be used to uncover hidden transitions in the dynamics of the system [25].

3. Results and analysis

Regarding previous studies, we present additional analysis on co-movement between 3 energy-
related indices and construct indicators or indicators-precursors based on the using recurrence
analysis.
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The presented work uses daily data of Henry Hub natural gas spot prices (US$/MMBTU)
ranged from 7 February 1997 to 18 October 2022; Cushing, OK WTI spot prices FOB (US$/BBL)
ranged from 20 May 1987 to 17 October 2022; Europe Brent spot prices FOB (US$/BBL) ranged
from 20 May 1987 to 17 October 2022 [31, 32].

In figure 1 are presented:

• the dynamics of the initial time series;
• standardized returns, where returns can be calculated as 𝐺(𝑡) = [𝑥(𝑡 + Δ𝑡) − 𝑥(𝑡)]/𝑥(𝑡)
and their standardized version as 𝑔(𝑡) = [𝐺(𝑡) − ⟨𝐺⟩]/𝜎;

• probability density function of the standardized returns.

We can see that most periods in energy markets are defined by events that exceed ±3𝜎. Both
WTI and Brent returns are characterized by much more extensive crashes. Previous studies
pointed out that such events are located in fat-tails of the probability distribution. Such crashes
are the main source of high complexity and non-linearity in the studied systems.

Most of our results are based on the sliding window approach. The idea here is to take a sub-
window of a predefined length 𝑤. For that sub-window, we perform recurrence quantification
analysis, get necessary indicators that are appended to the array. Then, the window is shifted
by a predefined time step ℎ, and the procedure is repeated until the time series is completely
exhausted.

We have performed RQA under sliding window procedure for standardized returns and
standardized initial time series [33, 34, 35, 36, 37, 38]. We have found that standardized initial
time series better expresses internal complexity and recurrent properties of the energy market
indices.

RQA was performed for the following parameters:

• embedding dimension 𝑑𝐸 = 1;
• time delay 𝜏 = 1;
• recurrence threshold 𝜖 = 0.3;
• 𝐿2-norm as a candidate for measuring distance between trajectories in phase space;
• minimum diagonal line length 𝑙𝑚𝑖𝑛=2;
• minimum vertical line length 𝑣𝑚𝑖𝑛 = 2;
• minimum white vertical line length 𝑤𝑚𝑖𝑛 = 2;
• sliding window length 𝑤 = 500 days;
• sliding window time step ℎ = 1 day.

Worth to mention that the experiments were performed for sliding window lengths of 250
days and 500 days. We have chosen the second option since it represents a more reliable and
smoother dynamics of all the presented indicators. All described measures result into highly
volatile variation with the sliding window of 250 days that difficult to interpret.

In figure 2 are presented RPs for the studied series.
Recurrence plots in figure 2 represent that the studied energy markets are highly inhomoge-

neous. As it was expected, nonlinear structure of WTI and Brent is presented to be very similar,
comparing to Henry Hub. Recurrence structure of all indices varies across time. They do not
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(a)

(b)

(c)

Figure 1: Initial time series (a), standardized returns (b), and pdf of standardized returns of WTI spot
prices (WTI), Europe Brent spot prices (Brent), and Henry Hub natural gas spot prices (Henry Hub).
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(a) (b)

(c)

Figure 2: Recurrence plots calculated for WTI (a), Brent (b), and Henry Hub (c) standardized time series.

follow a certain pattern, presented to be non-periodic, and there are differences in the patterns
that concern the frequency of their appearance, shape, and size. It should be noticed that for the
oil markets first 4000 days are presented to be highly recurrent, while the remaining days seem
to be more volatile, which is indicated by high proportion of white regions. The recurrence
structure of Henry Hub index is presented to be more uniformly distributed. The variations
of recurrence patterns should be more noticeable during crashes. Recurrence quantitative
indicators should give a more accurate representation of the complex, chaotic structure of the
studied markets.

Figure 3 represents recurrence measures of determinism (𝐷𝐸𝑇) and laminarity (𝐿𝐴𝑀).
In figure 3 we see that 𝐷𝐸𝑇 and 𝐿𝐴𝑀 increase during crisis events of all markets. We

may conclude that those critical states are characterized by high degree of laminarity and
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(a)

(b)

(c)

Figure 3: Recurrence measures of determinism (𝐷𝐸𝑇) and laminarity (𝐿𝐴𝑀) calculated for WTI (a),
Europe Brent (b), and Henry Hub (c) indices.
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determinism. Crashes are presented to be highly complex and deterministic. Their degree of
predictability becomes higher, and corresponding recurrence measures seem to be indicators or
even indicators-precursors of such changes.

Figure 4 represents recurrence measures of ratios 𝐷𝐸𝑇/𝑅𝑅 and 𝐿𝐴𝑀/𝐷𝐸𝑇.
From figure 4 we can see that both measures decrease during crisis events of energy indices.

For ratio 𝐷𝐸𝑇/𝑅𝑅 we may say that the overall percentage of recurrence points in RP becomes
higher than the percentage of only diagonal structures in RP. For ratio 𝐿𝐴𝑀/𝐷𝐸𝑇 we see
precisely the same behavior during crashes, i.e., it starts to decline during crisis or even in
advance. Thus, it can be seen that the overall determinism of the system during crashes is much
higher than the degree of laminarity.

Figure 5 shows recurrence measures of diagonal (𝐷𝐼𝑉) and vertical line (𝑉𝐷𝐼𝑉) divergences.
Figure 5 demonstrates that the divergence of deterministic and laminar structure of energy-

related markets becomes lower during critical states. Since both measures are inverse quantities
to maximum diagonal and vertical line length (𝐿𝑚𝑎𝑥 and 𝑉𝑚𝑎𝑥), such behavior has to be obvious.
Previous measures have made it clear to us that the crisis phenomena of energy indices are
characterized by a high degree of determinism and laminarity. In this case, the lengths of
diagonal and vertical lines should also increase, which indicate an increase in the horizon of
predictability and immutability.

Figure 6 represents recurrence measures of recurrence rate (𝑅𝑅), average diagonal line length
(𝐿𝑚𝑒𝑎𝑛), and trapping time (𝑇𝑇).

In figure 6 we see that recurrence rate increases during crisis phenomena. This means that
the total number of trajectories in the phase space that are close enough to each other becomes
larger on the eve of a crisis or at the moment of its onset. Thus, the probability of recurrence
state increases during crash. Regarding previous measures, 𝑅𝑅 and 𝐿𝑚𝑒𝑎𝑛, we see that the
average degree of predictability during crisis increases. The same can be seen for trapping
time: average degree of changeability increases during crashes. Based on this indicator, we may
conclude that the system is ‘trapped’ in a state of crisis.

Figure 7 presents recurrence measures of average white vertical line length (𝑊𝑉𝐿𝑚𝑒𝑎𝑛), and
diagonal, vertical and white vertical line entropies (𝐷𝐿𝐸𝑛, 𝑉𝐿𝐸𝑛, and 𝑊𝑉𝐿𝐸𝑛).

From figure 7 we can see that all the presented quantitative measures of recurrence begin
to increase during crises, indicating a special state of the market at these points in time. The
average white vertical line length shows that crisis events are characterized not only by the
determinism of the dynamics of market movement, but also by the dissimilarity of these events
to many previous ones, since the length of the white vertical lines is becoming an increasing
trend. It can also be said that the market represents a much more deterministic structure than a
laminar one. Also, the degree of volatility of these events can knock the market dynamics out
of the limits of the epsilon value.

The diagonal line entropy also shows an increasing trend. Since the Shannon entropy is
maximal with a uniform distribution, it can be concluded that the collapse events of energy
indices are characterized by different horizons of predictability. That is, in the pre-crisis
dynamics there is no black diagonal line of the same length, which is the dominant one. During
a crisis, horizons of determinism appear, which gain even more weight if compared with the
rest.

The vertical line entropy increases similarly to 𝐷𝐿𝐸𝑛. We may assume that similarly to
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(c)

Figure 4: Recurrence measures (𝐷𝐸𝑇/𝑅𝑅) and (𝐿𝐴𝑀/𝐷𝐸𝑇) calculated for WTI (a), Europe Brent (b),
and Henry Hub (c) indices.
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(c)

Figure 5: Recurrence measures of diagonal line divergence (𝐷𝐼𝑉) and vertical line divergence (𝑉𝐷𝐼𝑉)
calculated for WTI (a), Europe Brent (b), and Henry Hub (c) indices.
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(c)

Figure 6: Recurrence measures of recurrence rate (𝑅𝑅), average diagonal line length (𝐿𝑚𝑒𝑎𝑛), and trapping
time (𝑇𝑇) calculated for WTI (a), Europe Brent (b), and Henry Hub (c) indices.
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Figure 7: Recurrence measures of average white vertical line length (𝑊𝑉𝐿𝑚𝑒𝑎𝑛), diagonal line entropy
(𝐷𝐿𝐸𝑛), vertical line entropy (𝑉𝐿𝐸𝑛), and white vertical line entropy (𝑊𝑉𝐿𝐸𝑛) calculated for WTI (a),
Europe Brent (b), and Henry Hub (c) indices.
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diagonal lines laminar states have different horizons of invariability during crash events, and
these horizons of invariability have greater tendency to uniform distribution.

The white vertical line entropy increases similarly to other entropies. This dynamics is
consistent with the 𝑊𝑉𝐿𝑚𝑒𝑎𝑛 measure.

4. Conclusions

This study has delved into the intricate, nonlinear, and nonstationary dynamics of the oil and
gas markets through the lens of recurrence analysis. Leveraging daily data spanning from 7
February 1997 to 18 October 2022 for Henry Hub natural gas spot prices, from 20 May 1987 to
17 October 2022 for WTI spot prices, and corresponding data for Europe Brent spot prices, we
draw several significant conclusions from our empirical findings.

Firstly, our analysis of recurrence plots reveals the inherent inhomogeneity within the studied
markets. Notably, the nonlinear structures of WTI and Brent exhibit remarkable similarities
when contrasted with Henry Hub. Furthermore, recurrence patterns for all indices exhibit
temporal variations, demonstrating differences in the frequency, shape, and size of black- and
white-dot patterns across time.

From quantitative measures of complexity, the following insights emerge:

1. Characteristics of Crash Events: Crashes in energy-related indices exhibit a pro-
nounced degree of both laminarity and determinism, indicating a high level of complexity
and determinism during these events.

2. Determinism vs. Laminarity: The percentage of recurrence points surpasses that of
only diagonal structures during crises. While the overall degree of determinism outweighs
laminarity, a higher percentage of diagonal lines during crises highlights their significance.

3. Divergence During Critical States: The divergence between deterministic and laminar
structures diminishes during critical states, indicating increased repeatability in the
dynamics of the studied systems. This suggests that phase-space trajectories converge
during financial crises.

4. Recurrence Measures during Crises: Measures like recurrence rate, mean diagonal
line length, and trapping time increase during crisis periods. This implies a larger number
of closely situated trajectories in phase space, raising the probability of recurrence states
and predictability. Greater presence of vertical lines signifies the system being ’trapped’
in a crisis state.

5. Entropy-based Measures: Entropy-based measures, especially white vertical line mea-
sures, reveal intricate nonlinear patterns in energy-related indices that encompass deter-
minism, laminarity, and dissimilarities reflected in white lines.

The approach applied to WTI, Brent, and Henry Hub indices underscores the energy market’s
nature as an open, chaotic, nonlinear system intricately intertwined with diverse technical
and fundamental factors. While recurrence plots and recurrence quantification analysis of-
fer promising outcomes for crisis prediction and early-warning indicator construction, their
practical application in trading strategies and autonomous trading bots necessitates further
refinement.
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Furthermore, for accurate crisis forecasting, the integration of proposed indicators (indicators-
precursors) with specific forecasting models is imperative [11, 39, 15, 12, 40, 41, 42]. This
convergence seems particularly promising at the intersection of artificial intelligence and fuzzy
logic methods [43, 44, 45, 46, 47, 48, 49].

Simultaneously, we aim to explore cross-recurrences between energy indices and diverse
technical and fundamental indicators utilizing cross- and joint-recurrence quantification analysis
[50, 51, 52]. This avenue holds potential for further unraveling the intricate relationships within
energy markets.
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