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Abstract
Network analysis is a powerful method to characterize the complexity and dynamics of socio-economic
systems. However, traditional network analysis often ignores the higher-order dependencies that arise
from the interactions of more than two nodes. In this paper, we propose to use high-order networks, which
are generalized network structures that capture the higher-order dependencies, to study the temporal
evolution of the Dow Jones Industrial Average (DJIA) index. We construct high-order networks from the
DJIA time series using the visibility graph method, and we measure the topological complexity of the
high-order networks using various metrics. We find that the complexity of the system changes drastically
during crisis events, indicating that high-order network analysis can be used as an indicator (indicator-
precursor) of financial crashes. We also show that high-order network analysis and topology can provide
more insights into the nonlinear and nonstationary behavior of the DJIA index than traditional tools of
financial time series analysis.
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1. Introduction

The proliferation of extensive and finely-grained data, often with temporal resolution, has
unlocked unprecedented opportunities to dissect the behaviors of complex systems spanning
diverse domains such as biology, technology, finance, and economics [2, 3, 4]. These intri-
cate systems, comprising myriad interacting units, frequently exhibit emergent properties at

M3E2-MLPEED 2022: The 10th International Conference on Monitoring, Modeling & Management of Emergent Economy,
November 17-18, 2022, Virtual, Online
⋆
Extended and revised version of paper [1] presented at the 10th International Conference on Monitoring, Modeling
& Management of Emergent Economy.
Envelope-Open krivogame@gmail.com (A. O. Bielinskyi); vnsoloviev2016@gmail.com (V. N. Soloviev); gushko77@gmail.com
(S. V. Hushko); kiv.arnold20@gmail.com (A. E. Kiv); editor@nfmte.com (A. V. Matviychuk)
Orcid 0000-0002-2821-2895 (A. O. Bielinskyi); 0000-0002-4945-202X (V. N. Soloviev); 0000-0002-4833-3694
(S. V. Hushko); 0000-0002-0991-2343 (A. E. Kiv); 0000-0002-8911-5677 (A. V. Matviychuk)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR

Workshop
Proceedings

ceur-ws.org

ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

132

mailto:krivogame@gmail.com
mailto:vnsoloviev2016@gmail.com
mailto:gushko77@gmail.com
mailto:kiv.arnold20@gmail.com
mailto:editor@nfmte.com
https://orcid.org/0000-0002-2821-2895
https://orcid.org/0000-0002-4945-202X
https://orcid.org/0000-0002-4833-3694
https://orcid.org/0000-0002-0991-2343
https://orcid.org/0000-0002-8911-5677
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org


macroscopic scales due to heterogeneous interactions among their constituents [5]. Complex
networks have emerged as a formidable toolset to analyze the structures and dynamics of
such systems [5]. However, the tools conventionally employed in network analysis often focus
on interactions between pairs of nodes, a limitation at odds with the increasing availability
of empirical data illustrating group interactions within heterogeneous systems [6]. Thus, it
becomes evident that interactions within systems often extend beyond dyadic connections,
manifesting as collective actions involving groups of nodes [7, 8], exerting a notable influence
on the interacting systems’ dynamics [9, 10].

The notion of higher-order interactions finds historical roots in solid-state physics, where
multiparticle potentials and quantum mechanical calculations supplanted paired interactions.
Similarly, in thermodynamics and statistical physics, Tsallis introduced nonextensive interac-
tions [11, 12]. However, in contrast to these simpler representations of higher-order interactions,
complexity in complex systems demands more intricate mathematical structures like hyper-
graphs and simplicial complexes.

Diverse models of higher-order networks have surfaced [13], reflecting the growing im-
portance of this domain. Here, we briefly highlight key models that have garnered attention
[14, 15, 16].

Multiplex Networks: Multiplex networks, multilayer networks, and networks of networks
capture interactions between various entities and have found applicability in systems with
diverse interaction types [17]. However, most interactions remain dyadic and can be represented
through traditional networks [18]. Their application in financial analysis is well-documented
[19, 20, 21, 22, 23, 24, 25, 26, 27, 20] alongside higher-order networks [28, 29, 30, 31, 32, 33, 34, 35].

Hypergraphs and Simplicial Complexes: Algebraic topology’s computational techniques,
hypergraphs, and simplicial complexes encode units and hyperlinks, allowing explicit consider-
ation of systems beyond pairwise interactions [9, 36, 7, 37].
Higher-Order Markov Models: First-order Markov models have gained traction in de-

scribing flows of information, energy, money, etc. within networks [38]. However, many flows
exhibit path-dependent behaviors, necessitating higher-order Markov chain models [16].
Higher-Order Graphical Models and Markov Random Fields: Markov random fields,

including the Ising model, extended to higher-order models, capture interactions between
multiple objects [39, 40].

Recently, Santoro et al. [36] introduced a structure to characterize instantaneously co-
fluctuating [41] signal patterns of all interaction orders. They showcased that higher-order
measures discern subtleties in space-time regimes in diverse studies: brain activity, stock option
prices, and epidemics. In this context, we explore the application of multiplex and higher-order
network techniques to model crisis states in the stock market. Section 2 introduces a graph
representation based on the visibility graph, while Section 3 presents multiplex networks’ theory,
including measures. Section 4 elaborates on higher-order networks and encoding methods,
describing measures for both classical and high-order networks. Empirical results, including a
comparative analysis of measures, are presented in Section 5. Finally, Section 6 outlines our
conclusions and future directions.
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2. Visibility graph

Visibility graph (VG), which was proposed by Lacasa et al. [42] is typically constructed from a
univariate time series. In a visibility graph, each moment in the time series maps to a node in
the network, and an edge exists between the nodes if they satisfy a “mutual visibility” condition.

“Mutual visibility” can be understood by imagining two points 𝑥𝑖 at time 𝑡𝑖 and 𝑥𝑗 at time 𝑡𝑗 as
two hills of a time series, which can be understood as a landscape, and these two points are
“mutually visible” if 𝑥𝑖 has no any obstacles in the way on 𝑥𝑗. Formally, two points are mutually
visible if, all values of 𝑥𝑘 between 𝑡𝑖 and 𝑡𝑗 satisfy:

𝑥𝑘 < 𝑥𝑖 +
𝑡𝑘 − 𝑡𝑖
𝑡𝑗 − 𝑡𝑖

[𝑥𝑗 − 𝑥𝑖] , ∀𝑘 ∶ 𝑖 < 𝑘 < 𝑗 (1)

Horizontal visibility graph (HVG) [43] is a restriction of usual visibility graph, where two
points 𝑥𝑖 and 𝑥𝑗 are connected if there can be drawn a horizontal path that does not intersect
an intermediate point 𝑥𝑘, 𝑖 < 𝑘 < 𝑗. Equivalently, node 𝑥𝑖 at time 𝑡𝑖 and node 𝑥𝑗 at time 𝑡𝑗 are
connected if the horizontal ordering criterion is fulfilled:

𝑥𝑘 < inf(𝑥𝑖, 𝑥𝑗), ∀𝑘 ∶ 𝑖 < 𝑘 < 𝑗. (2)

Figure 1 is an approximate illustration of the construction of visibility graphs.

Figure 1: Schematic illustration of the VG (red lines) and the HVG (green lines). Adapted from [44].

3. Multiplex orderness and measures of complexity

Multiplex network [45] is the representation of the system which consists of the variety of
different subnetworks with inter-network connections. For working with multiplex financial
networks, we set two tasks:

134



• convert separated time series into network that represent a layer of a multiplex network.
The procedure of conversion is presented in section 2;

• create intra-layer connection between each subnetwork.

Figure 2 represents an algorithm for creating a three-layered multiplex visibility graph.

Figure 2: Illustration of the multiplex VG formation on the example of three layers. Adapted from [46].

Multiplex network is the representation of a pair 𝑀 = (𝐺, 𝐶), where {𝐺𝛼 | 𝛼 ∈ 1, … ,𝑀} is a set
of graphs 𝐺𝛼 = (𝑋𝛼, 𝐸𝛼) that called layers and

𝐶 = {𝐸𝛼𝛽 ⊆ 𝑋𝛼 × 𝑋𝛽 | 𝛼 , 𝛽 ∈ 1, … ,𝑀, 𝛼 ≠ 𝛽} (3)

is a set of intra-links in layers 𝐺𝛼 and 𝐺𝛽 (𝛼 ≠ 𝛽). 𝐸𝛼 is intra-layer edge in 𝑀, and each 𝐸𝛼𝛽 is
denoted as inter-layer edge.

A set of nodes in a layer 𝐺𝛼 is denoted as 𝑋𝛼 = {𝑥𝛼1 , … , 𝑥𝛼𝑁𝛼
}, and an intra-layer adjacency

matrix as 𝐴[𝛼] = (𝑎𝛼𝑖𝑗) ∈ Re𝑁𝛼×𝑁𝛼 , where

𝛼𝛼𝑖𝑗 = {
1, (𝑥𝛼𝑖 , 𝑥

𝛼
𝑗 ) ∈ 𝐸𝛼,

0.
(4)

for 1 ≤ 𝑖 ≤ 𝑁𝛼, 1 ≤ 𝑗 ≤ 𝑁𝛽 and 1 ≤ 𝛼 ≤ 𝑀. For an inter-layer adjacency matrix, we have

𝐴[𝛼, 𝛽](𝑎𝛼𝛽𝑖𝑗 ) ∈ Re𝑁𝛼×𝑁𝛽 , where

𝛼𝛼𝛽𝑖𝑗 = {
1, (𝑥𝛼𝑖 , 𝑥

𝛽
𝑗 ) ∈ 𝐸𝛼𝛽,

0.
(5)

A multiplex network is a partial case of inter-layer networks, and it contains a fixed number of
nodes connected by different types of links. Multiplex networks are characterized by correlations
of different nature, which enable the introduction of additional multiplexes.
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For a multiplex network, the node degree 𝑘 is already a vector

𝑘𝑖 = (𝑘[1]𝑖 , … , 𝑘[𝑀]
𝑖 ), (6)

with the degree 𝑘[𝛼]𝑖 of the node 𝑖 in the layer 𝛼, namely

𝑘[𝛼]𝑖 = ∑𝑗 𝑎
[𝛼]
𝑖𝑗 , (7)

while 𝑎[𝛼]𝑖𝑗 is the element of the adjacency matrix of the layer 𝛼. Specificity of the node degree
in vector form allows describing additional quantities. One of them is the overlapping degree of
node 𝑖:

𝑜𝑖 =
𝑀
∑
𝛼=1

𝑘[𝛼]𝑖 . (8)

The next measure quantitatively describes the inter-layer information flow. For a given
pair (𝛼, 𝛽) within 𝑀 layers and the degree distributions 𝑃(𝑘[𝛼]), 𝑃(𝑘[𝛽]) of these layers, we can
defined the so-called interlayer mutual information:

𝐼𝛼,𝛽 = ∑∑𝑃(𝑘[𝛼], 𝑘[𝛽]) log
𝑃(𝑘[𝛼], 𝑘[𝛽])

𝑃(𝑘[𝛼]), 𝑃(𝑘[𝛽])
, (9)

where 𝑃(𝑘[𝛼], 𝑘[𝛽]) is the joint probability of finding a node degree 𝑘[𝛼] in a layer 𝛼 and a degree
𝑘[𝛽] in a layer 𝛽. The higher the value of 𝐼𝛼,𝛽, the more correlated (or anti-correlated) is the
degree distribution of the two layers and, consequently, the structure of a time series associated
with them. We also find the mean value of 𝐼𝛼,𝛽 for all possible pairs of layers – the scalar ⟨𝐼𝛼,𝛽⟩
that quantifies the information flow in the system.

The multiplex degree entropy is another multiplex measure which quantitatively describes
the distribution of a node degree 𝑖 between different layers. It can be defined as

𝑆𝑖 = −
𝑀
∑
𝛼=1

𝑘[𝛼]𝑖
𝑜𝑖

log
𝑘[𝛼]𝑖
𝑜𝑖

. (10)

Entropy is close to zero if 𝑖th node degree is within one special layer of a multiplex network,
and it has the maximum value when 𝑖th node degree is uniformly distributed between different
layers.

4. High-order extension of temporal networks

4.1. Time-respecting paths

Financial networks are strongly influenced by the ordering and timing of links. In their context
of their temporality, we must consider time-respecting paths, an extension of the concept of
paths in static network topologies which additionally respects the timing and ordering of time-
stamped links [47, 48, 49]. For a source node 𝑣 and a target node 𝑤, a time-respecting path can
be presented by any sequence of time-stamped links

(𝑣0, 𝑣1; 𝑡1), (𝑣1, 𝑣2; 𝑡2), ..., (𝑣𝑙−1, 𝑣𝑙; 𝑡𝑙), (11)
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where 𝑣0 = 𝑣, 𝑣𝑙 = 𝑤 and 𝑡1 < 𝑡2 < ... < 𝑡𝑙. Time ordering of temporal financial networks is
important since it implies causality, i.e. a node 𝑖 is able to influence node 𝑗 relying on two
time-stamped links (𝑖, 𝑘) and (𝑘, 𝑗) only if edge (𝑖, 𝑘) has occurred before edge (𝑘, 𝑗).

Apart the restriction on networks to have the correct ordering, it is common to impose
a maximum time difference between consecutive edges [50], i.e. there is a maximum time
difference 𝛿 and, example, two time-stamped edges (𝑖, 𝑘; 𝑡) and (𝑘, 𝑗; 𝑡′) that contribute to a
time-respecting path if 0 ≤ 𝑡′ − 𝑡 ≤ 𝛿. If 𝛿 = 1, we are usually interested in paths with short
time scales. For 𝛿 = ∞, we impose no restrictions on time-range and consider a path definition
where links can be weeks or years apart.

4.2. High-order networks

The key idea behind this abstraction is that the commonly used time-aggregated network is the
simplest possible time-aggregated representation, whose weighted links capture the frequencies
of time-stamped links. Considering that each time-stamped link is a time-respecting path of
length one, it is easy to generalize this abstraction to higher-order time-aggregate networks in
which weighted links capture the frequencies of longer time-respecting paths.

There are several variants for encoding high-order interactions [10]. The first concept of
high-order links represent hyperlink, which can contain any number of nodes. Hypergraph
is the generalized notion of network which is composed of nodeset 𝑉 and hyper-edges 𝐸 that
specify which nodes from 𝑉 participate in which way.

Simplex is another mathematical abstraction to accomplish high-order interaction. Formally,
a 𝑘-simplex 𝜎 is a set of 𝑘 + 1 fully interacting nodes 𝜎 = [𝑣0, 𝑣1, ..., 𝑣𝑘]. Essentially, a node is
0-simplex, a link is 1-simplex, a triangle is 2-simplex, a tetrahedron is 3-simplex, etc. Since
a standard graph is a collection of edges, simplicial complexes are collections of simplices
𝐾 = {𝜎0, 𝜎1, ..., 𝜎𝑛}.

Figure 3 demonstrates examples of simplices and hyperlinks of orders 1, 2, and 3.
For a temporal network 𝐺𝑇 = (𝑉 𝑇, 𝐸𝑇) we thus formally define a kth order time-aggregated

(or simply aggregate) network as a tuple 𝐺(𝑘) = (𝑉 (𝑘), 𝐸(𝑘)) where 𝑉 (𝑘) ⊆ 𝑉 𝑘 is a set of node
k-tuples and 𝐸(𝑘) ⊆ 𝑉 (𝑘) × 𝑉 (𝑘) is a set of links. For simplicity, we call each of the k-tuples
𝑣 = 𝑣1 − 𝑣2 − ... − 𝑣𝑘 (𝑣 ∈ 𝑉 (𝑘), 𝑣𝑖 ∈ 𝑉 ) a kth order node, while each link 𝑒 ∈ 𝐸(𝑘) is called a kth
order link. Between two kth order nodes 𝑣 and 𝑤 exists kth order edge (𝑣 , 𝑤) if they overlap in
exactly 𝑘 − 1 elements. Resembling so-called De Bruijn graphs [51], the basic idea behind this
construction is that each kth order link represents a possible time-respecting path of length 𝑘 in
the underlying temporal network, which connects node 𝑣1 to node 𝑤𝑘 via 𝑘 time-stamped links

(𝑣1, 𝑣2 = 𝑤1; 𝑡1), ..., (𝑣𝑘 = 𝑤𝑘−1, 𝑤𝑘; 𝑡𝑘). (12)

Importantly, and different from a first-order representation, kth order aggregate networks
allow to capture non-Markovian characteristics of temporal networks. In particular, they allow
to represent temporal networks in which the kth time-stamped link (𝑣𝑘 = 𝑤𝑘−1, 𝑤𝑘) on a time-
respecting path depends on the 𝑘 − 1 previous time-stamped links on this path. With this, we
obtain a simple static network topology that contains information both on the presence of
time-stamped links in the underlying temporal network, as well as on the ordering in which
sequences of 𝑘 of these time-stamped links occur.
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Figure 3: High-order connections in terms of simplices and hyperlinks. Adapted from [9].

4.3. Degree centrality

Network centralities are node-related measures that quantify how “central’’ a node is in a
network. There are many ways in which a node can be considered so: for example, it can be
central if it is connected to many other nodes (degree centrality), or relatively to its connectivity
to the rest of the network (path based centralities, eigenvector centrality). One of the simplest
centrality measure is the degree of a node, which counts the number of edges incident to an ith
node.

For any adjacency matrix the degree of a node 𝑖 can be defined as

𝐷𝑖 = ∑
𝑗
𝐴𝑖𝑗. (13)

High-order degree centrality counts the number of kth-order edges incident to the kth-order
node 𝑖. To get a scalar value which will serve as an indicator of high-order dynamics, we obtain
mean degree 𝐷𝑚𝑒𝑎𝑛:

𝐷𝑚𝑒𝑎𝑛 =
1
𝑁

𝑁
∑
𝑖=1

𝐷𝑖. (14)

Except this measure, we can calculate nth moment of the degree distribution, which can be
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defined as

⟨𝑘𝑛⟩ =
∞
∑
𝑘min

𝑘𝑛𝑝𝑘 ≈ ∫
∞

𝑘min

𝑘𝑛𝑝𝑘𝑑𝑘. (15)

In this study we will present the dynamics of the first moment, which is the mean weighted
degree of a network, and its high-order behavior.

4.4. Assortativity coefficient

Assortativity is a property of network nodes that characterizes the degree of connectivity
between them. Many networks demonstrate “assortative mixing” on their nodes, when high-
degree nodes tend to be connected to other high-degree nodes. Other networks demonstrate
disassortative mixing when their high-degree nodes tend to be connected to low-degree nodes.
Assortativity of a network can be defined via the Pearson correlation coefficient of the degrees
at either ends of an edge. For an observed network, we can write it as

𝑟 =
𝑀−1∑

𝑖
𝑗𝑖𝑘𝑖 − [𝑀−1∑

𝑖

1
2 (𝑗𝑖 + 𝑘𝑖)]

2

𝑀−1∑
𝑖

1
2 (𝑗

2
𝑖 + 𝑘2𝑖 ) − [𝑀−1∑

𝑖

1
2 (𝑗𝑖 + 𝑘𝑖)]

2 , (16)

where −1 ≤ 𝑟 ≤ 1; 𝑗𝑖, 𝑘𝑖 are the degrees of the nodes at the ends of the ith edge, with 𝑖 = 1, ..., 𝑀,
where 𝑀 is the number of edges of a network.

This correlation function is zero for no assortative mixing. If 𝑟 = 1, then we have perfect
assortative mixing pattern. For 𝑟 = −1, we can observe perfect disassortativity.

Studying financial networks, with time-respecting paths, we can consider four type of as-
sortativity: 𝑟(𝑖𝑛, 𝑖𝑛), 𝑟(𝑖𝑛, 𝑜𝑢𝑡), 𝑟(𝑜𝑢𝑡, 𝑖𝑛), 𝑟(𝑜𝑢𝑡, 𝑜𝑢𝑡), which will correspond to tendencies to have
similar in and out degrees. We can denote one of the studied in/out pairs as (𝛼, 𝛽). Suppose, for
a given ith edge, we have got the source (i.e. tail) node of the edge and target (i.e. head) node
of the edge. We can denote them as 𝛼-degree of the source (𝑗𝛼𝑖 ) and 𝛽-degree of the target (𝑘𝛽𝑖 ).
Assortativity coefficient for degrees of a specific type can be defined as

𝑟(𝛼, 𝛽) =
∑
𝑖
(𝑗𝛼𝑖 − 𝑗𝛼) (𝑘𝛽𝑖 − 𝑘𝛽)

√
∑
𝑖
(𝑗𝛼𝑖 − 𝑗𝛼)2

√
∑
𝑖
(𝑘𝛽𝑖 − 𝑘𝛽)

2
, (17)

where 𝑗𝛼 and 𝑘𝛽 are the average 𝛼-degree of sources and 𝛽-degree of targets.

5. Empirical results

To build indicators (indicators-precursors) based on multiplex and high-order networks, the
following is done:
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• databases of 6 most influential stock market indices for the period from 02.01.2004 to
18.10.2022 were selected for multiplex analysis (see figure 4). The data were extracted
using Yahoo! Finance API based on Python programming language [52];

• the indicators described in the previous sections were calculated using the sliding window
procedure [12, 53, 54, 55, 56, 57, 58]. The essence of this procedure is that: (1) a fragment
(window) of a series of a certain length 𝑤 was selected; (2) a network measure was
calculated for it; (3) the measure values were stored in a pre-declared array; (4) the
window was shifted by a predefined time step ℎ, and the procedure was repeated until
the series was completely exhausted; (5) further, the calculated values of the network
measure were compared with the dynamics of the stock index. Subsequently, conclusions
were drawn regarding the further dynamics of the market. In our case, window length
𝑤 = 500 days and time step ℎ = 10 day. The choice of step was limited by the counting
time for high-order networks;

• multiplex and high-order indicators are compared with the Dow Jones Industrial Average
(DJIA) index.

Figure 4: The dynamics of stock market indices for studying multiplex characteristics.

In figure 5 presented the dynamics of inter-layer mutual information (𝐼) and multiplex degree
entropy (𝑆) along with the DJIA index.

From figure 5 we can see that multiplex mutual information increases before the crisis of
2008. Also, it noticeably becomes higher before COVID-19 crash. For the last months, it
demonstrates decreasing pattern, which indicates that the economies of different countries
may be experiencing different evolutions now. Nevertheless, it can be seen that, as a rule,
this indicator is characterized by growth, indicating an increase in the interconnection of the
economies of different countries. In a crisis, this indicator usually declines, demonstrating
different resistance to the collapse events of the stock markets of countries and the difference in
the actions that they take. Entropy indicator shows asymmetric behavior.
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Figure 5: The dynamics of inter-layer mutual information (𝐼) and multiplex degree entropy (𝑆) along
with the DJIA index.

Next, we compare one of the multiplex measure, overlapping degree (𝑜), with the mean degree
of a network (𝐷𝑚𝑒𝑎𝑛). Figure 6 represents this result.

In figure 6 we can see that both 𝐷𝑚𝑒𝑎𝑛 and 𝑜 are characterized by similar dynamics. These
indicators increase near the crash, which indicates an increase in the concentration of connec-
tions for some network nodes, and further, based on the indicators during the crisis, there is a
decline in concentration both in the dynamics of the DJIA and the inter-layer connectedness
of stock indices. We may see that the multiplex approach does not significantly change the
dynamics of the concentration degree indicator in comparison with the indicator based on the
classical univariate graph.

Figure 7 demonstrates the dynamics of mean weighted degree (equation (15)) for order 1 and
2 along with the DJIA index.

In figure 7 we can see that the second-order 𝐷𝑚𝑒𝑎𝑛 is slightly different from the first-order
one. The second-order 𝐷𝑚𝑒𝑎𝑛 starts to increase a slightly earlier before the crisis of 2008. We
can see that before crisis of 2020 second-order 𝐷𝑚𝑒𝑎𝑛 declines more noticeably comparing to the
first-order one. However, this difference between the first and second order is still insignificant,
what can we say about the fact that the classical visibility graph can reflect all the information
that the series under study can represent.

Next, let us present high-order dynamics of the assortativity coefficient for the DJIA index
(see figure 8).

Figure 8 presents the assortativity coefficient for first, second, and third orders. Assortativity
declines before crashes and increases during them. We see that high-orderness does not change
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Figure 6: The dynamics of the mean degree (𝐷𝑚𝑒𝑎𝑛) and overlapping degree (𝑜) along with the DJIA
index.

radically change the dynamics of this indicator. Third-order assortativity responds better for
the crash of 2008, but worse for the COVID-19 crisis, comparing to first- and second-order
assortativity.

6. Conclusions

In this article, we have introduced methods to measure andmodel systems with causal, multiplex,
and high-order interactions. We have shown that these methods can capture the long-range
spatio-temporal correlations that characterize non-Markovian, non-stationary, non-linear sys-
tems, which are better described by the high-order paradigm. We have used hypergraphs
[59, 60, 61] and simplicial complexes [62, 63, 64] as richer types of links that allow us to go
beyond typical nodes and encode higher-order clusters and temporal dependencies.

We have presented indicators (indicators-precursors) based on classic visibility graphs, multi-
plex networks, and high-order networks. We have applied these indicators to the time series of
the Dow Jones Industrial Average (DJIA) index and a database of six stock indices from different
countries and sectors. We have used the sliding window algorithm to calculate various network
measures, such as the mean degree of a node (𝐷𝑚𝑒𝑎𝑛), the first-moment degree of a network, the
assortativity coefficient, the inter-layer mutual information (𝐼), the multiplex degree entropy
(𝑆), and the mean overlapping degree of a network (𝑜). We have found that multiplex and
high-order networks do not differ significantly from the traditional pairwise visibility model in
terms of their dynamics. This may suggest that the classical visibility graph reflects all possible
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Figure 7: The dynamics of first- and second-order mean (weighted) degree along with the DJIA index.

Figure 8: The dynamics of first-, second-, and third-order assortativity along with the DJIA index.
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short-term and long-term dependencies in the DJIA index. We have also found that all the
presented measures work similarly as indicators (indicators-precursors) of critical financial
events, increasing or decreasing before and during them. However, multiplex and high-order
network indicators still need further development and improvement for studying complex
financial time series. A possible solution may be to combine Markov chains of multiple, higher
orders into a multi-layer graphical model that captures temporal correlations in pathways at
multiple length scales simultaneously [65]. Another perspective may be to use neuro-fuzzy
forecasting and clustering methods of complex financial systems [66, 67, 68, 69, 70, 71, 72].
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