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Abstract
Smart contracts, deployed on blockchains, can automate decision logic found in legal contracts, orga-
nizational rules, or guidelines such as clinical practice guidelines. High-level decision logic tends to
be encoded by domain experts or knowledge engineers, using high-level domain formalisms such as
Symboleo (legal contracts) or PROforma (clinical), or general-purpose rule-based formalisms such as
Notation3 (N3) or SWRL. This initial work studies the translation of high-level decision logic related to
clinical decision support, encoded by a Knowledge Graph (KG) with N3 rules and a domain ontology, into
an imperative programming language. Currently, targets include Solidity for the Ethereum blockchain,
and JavaScript for Hyperledger Fabric and Web-based deployments. Although many limitations must
currently be placed on input KG, we believe this is a first step towards making clinical decision support
logic within KG executable on blockchain and other platforms in order to improve healthcare delivery.
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1. Introduction

Blockchain technology is a secure, transparent, and decentralized solution. It is trustless in that
the validation of transactions, such as financial transactions and execution of smart contracts,
does not require placing trust in a single centralized provider. All transactions are further
recorded into an immutable and tamper-proof ledger, allowing for trustworthy audits.

Smart contracts are blockchain programs for securely and transparently automating decision
logic. Clients issue transactions with input data to execute smart contracts, with the assurance
that (a) smart contract execution will not be not tampered with, since all transactions, including
contract execution, are validated by a proven consensus mechanism; and (b) all transactions will
be kept in an immutable log for auditing. A classic example includes legal contracts that automate
decision logic pertaining to legal and financial interactions between parties [1]. Recently,
researchers have been studying the deployment of clinical decision logic on blockchain [2]. At
the same time, blockchain technology introduces latency that is unrelated to the decision logic,
but rather the availability of nodes, consensus mechanism (e.g., proof-of-work or -stake), and
other blockchain properties, such as the use of interactive zero knowledge proofs in preserving
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privacy. Hence, a use case should meet certain requirements to make it worthwhile to deploy
on blockchain. We discuss these requirements, and our chosen clinical use case, in Section 2.

Decision logic found in legal contracts or clinical guidelines is typically encoded by domain ex-
perts or knowledge engineers, using a domain-specific, declarative formalism. Such formalisms
include Symboleo (legal contracts) [3], PROforma [4] or GLEAN [5] (clinical guidelines), or
more general-purpose rule-based formalisms. Manually coding smart contracts that implement
the high-level decision logic, using an imperative blockchain language (e.g., Solidity), requires
technical expertise that is typically beyond the purview of these stakeholders. Indeed, represent-
ing decision logic using imperative programming languages is far more involved: it requires
determining the ordering of imperative commands, the impact of triggers on the internal state,
and propagating state changes accordingly [6]. An alternative involves embedding a third-party
engine within the smart contract to execute the particular formalism. For instance, Symboleo,
PROForma, and GLEAN implementations are based on Finite State Machine (FSM) execution
semantics: Rasti et al. [7] manually implemented the Symboleo formalism with its FSM in terms
of base classes within smart contracts. These works are useful to support decision logic as per
the particular domain, such as legal contracts. However, to support general-purpose decision
logic, as found in Knowledge Graphs (KG), we found it unfeasible to deploy (rule-based) reason-
ers within smart contracts—we discuss this in Section 4. A third option involves the automated
translation of high-level decision logic directly into the imperative blockchain programming
language, obviating the need for third-party engines or manual coding.

This initial work studies a code generation approach that translates high-level decision logic,
encoded by a Knowledge Graph (KG) with N3 rules [8] and a domain ontology, into imperative
programming code. Currently, many restrictions must be placed on the input KG; however, we
show that sufficient expressivity is offered to implement our running example. Our graph-based
approach recursively traverses a KG to generate intermediate (bridge) abstractions in terms of
Abstract Data Types (ADT) and imperative application logic. These bridge abstractions serve
as the glue between (a) KG, which describes decision logic in a high-level declarative way
(what); and (b) imperative programming languages, which list a series of commands to execute
the decision logic (how). From these bridge abstractions, executable programs such as smart
contracts can be generated in a target imperative language (currently, Solidity and JavaScript).

2. Use Case

The National Institute of Standards and Technology (NIST) offers a flowchart that determines
the suitability of blockchain technology for a particular use case [9]. These requirements include
the need for a shared dataset, with multiple entities contributing data; the need for an immutable
and tamper-proof log of all transactions; and trust issues over who runs the dataset or smart
contracts (i.e., need for a trustless setting)1. In line with these requirements, we present a
public health use case, in particular, a diabetes risk screening policy, where regional healthcare
organizations forward patient data to a region-wide platform to determine diabetes risk. To
establish diabetes prevention and treatment programs, healthcare organizations receive funding
based on these diabetes risk screenings, which consider modifiable risk factors (e.g., weight)

1The need for privacy-sensitive identifiers can be met using anonimization techniques.



combined with non-modifiable factors (e.g., ethnicity). Diabetes prevention and treatment
programs include incentives for patients to keep their BMI below 26, walking 150 minutes or
more per week, or perform an equivalent exercise depending on their medical condition [10].

By using blockchain as a platform to deploy this screening policy, we gain the following
benefits: (a) avoiding trust issues (trustless property): healthcare organizations may benefit
from falsification or perceive falsification by others, but blockchain ensures that smart contract
execution will not be tampered with; (b) trustworthy audit capabilities (immutable transaction
ledger): audits of the diabetes screening event log, i.e., part of the ledger that keeps events emitted
by the smart contract, will accurately reflect screening outcomes; audits of the transactions
executing the smart contract will reflect all input patient data2 provided by the organizations.

Our running example recommends diabetes screening based on risk factors including Body
Mass Index (BMI) and ethnicity, taken from the American Diabetes Association’s 2022 Standards
of Medical Care in Diabetes (Table 2.3 in [11]). We selected this straightforward use case as
it meets the current restrictions of our code generation approach; it further involves easy-to-
understand decision logic that does not require domain expertise.
Example Case: Diabetes Screening. Testing should be considered in adults with overweight

or obesity (BMI ≥ 25 kg/m2 or ≥ 23 kg/m2 in Asian Americans) who have one or more of the
following risk factors:
- High-risk race/ethnicity (e.g., African American, Latino, Native American, Asian American, Pacific
Islander) [..]”

3. Graph-Based Code Generation from Knowledge Graphs

3.1. Intermediary Programming Abstractions

Intermediary abstractions are used to capture core data structures and imperative application
logic. The high-level declarative decision logic found within KG will be translated into these
ADT and application logic abstractions via a translation process described in Section 3.3.

Figure 1 shows the bridge abstractions used for Abstract Data Types (ADT).

Figure 1: Abstract Data Type: Bridge Abstractions

A ModelADT instance represents a concrete ADT (e.g., Patient in Code 1) corresponding

2In this use case, the data is assumed to be non-personally-identifiable information.



to an ontology type, and consists of a set of ModelProperty fields (e.g., has_ethnicity).
ModelConstants represent concrete instances and sub-types of the ontology type (e.g.,
Asian_American, Overweight). A separate type property will characterize an ADT instance using
one of these constants (type property). The ADTModel keeps the set of generated ModelADTs.

For statically typed languages (e.g., Solidity), a ModelProperty keeps a ModelType that
either represents an XSD datatype3 or an object type in the form of another ModelADT. Each of
these ModelElements keeps as unique name a term URI found in the rule or ontology , and a
human-readable label, if any.

Figure 2 shows the bridge abstractions used for imperative application logic.

Figure 2: Application Logic: Statement and Operand Bridge Abstractions

The application logic is structured as a set of IfThen instances keeping an “if” Condition
and a “then” Block that acts as a container of Statements. A Condition can be a Comparison
between operands, or a set of conditions as a conjunction (AND) or disjunction4 (OR). An
Assignment assigns an operand (e.g., literal) to another operand (e.g., variable). An Operand
can be a Literal (e.g., string or number), Variable, or a PropertyPath. A PropertyPath starts from an
operand (typically a variable) and keeps a sequence of ModelProperties to navigate through
nested ModelADTs—examples are shown in Code 2, such as patient.hasPatientProfile.hasEthnicity.
Finally, a CreateADT instance represents the invocation of a ModelADT constructor, possibly
with a set of parameters represented as Assignments.

3.2. Declarative Logic As Graph-Based Existential Rules

N3 is a semantic rule language that can be used to capture complex decision logic [8], supporting
quoted graphs of statements, a range of built-ins, and (scoped) negation as failure. Rule 1 encodes
our running example (diabetes screening) using N3 rules, with terms from the Diabetes Mellitus
Treatment Ontology (DMTO) [12], an OWL 2 ontology for modeling type 2 diabetes treatment
plans. DMTO extends the Diabetes Diagnosis Ontology (DDO) [13] with treatments and

3See https://www.w3.org/TR/xmlschema-2
4A very limited type of disjunction is supported based on the list:in builtin.

https://www.w3.org/TR/xmlschema-2


integrates the Drug Target Ontology (DTO) [14]. In the code below, we replace alphanumeric
identifiers (e.g., DMTO_0000021) with their human-readable labels for legibility.

Rules 1: Rules encoding the Example Case
1 # rule determining overweight based on Ethnicity and BMI
2 { ?patient rdf:type DMTO:Patient ;
3 DMTO:has_patient_profile ?profile .
4 ?profile DDO:has_ethnicity DTO:Asian_American .
5 ?profile DDO:has_physical_examination ?exam .
6 ?exam rdf:type DDO:BMI ;
7 DDO:has_quantitative_value ?value .
8 ?value math:notLessThan 23 .
9 } => { ?profile DDO:has_demographic [

10 rdf:type DTO:Overweight
11 ] } ;
12 cg:functionParam ?patient .
13
14 # very similar rule for non-Asian American Ethnicity [..]
15
16 # rule determining at-risk Ethnicity for hypertension
17 { ?patient rdf:type DMTO:Patient ;
18 DMTO:has_patient_profile ?profile .
19 ?profile DDO:has_ethnicity ?ethnicity .
20 ?ethnicity list:in ( DTO:Latino DTO:African DTO:Native_American

DTO:Asian_American DTO:Pacific_Islander )
21 } => { ?profile DDO:has_ethnicity DTO:High_Risk_Ethnicity
22 } ;
23 cg:functionParam ?patient .
24
25 # rule determining the screening test for individuals at risk for hypertension
26 { ?patient rdf:type DMTO:Patient ;
27 DMTO:has_patient_profile ?profile .
28 ?profile DDO:has_demographic ?demo .
29 ?demo rdf:type DTO:Overweight .
30 ?profile DDO:has_ethnicity DTO:High_Risk_Ethnicity .
31 } => { ?profile DMTO:recommend_test [
32 rdf:type DMTO:diabetes_screening
33 ]
34 } ;
35 cg:functionParam ?patient ;
36 cg:event :RecommendDiabetesScreening .

Variables are indicated as ?x, and quoted graphs are indicated between braces “{ }”. A rule is
expressed in terms of a statement with a quoted graph (rule body) as subject; the log:implies
term (shorthand⇒) as predicate; and another quoted graph (rule head) as object. Given a rule {
body }⇒ { head }, statements in head will be inferred in case statements in body evaluate to
true. For existential rules (i.e., including a blank node in the rule head, indicated by “[ ]”), under
existential instantiation, a new node will be created5. Since N3 rules are triple statements, the
rule body (i.e., subject quoted graph) can be further described using extra triples to guide the
translation process (e.g., lines 35-36): the cg:functionParam predicate indicates that ?patient will
be passed as input data in the transaction executing the smart contract; cg:loadParam variables
(not shown) will be loaded from memory or storage; and cg:event indicates the event to be
emitted (RecommendDiabetesScreening) by the smart contract when all conditions are met.

5This is also in line with N3 semantics, where variables are first grounded to ensure referential opacity [15]



Figure 3: Extracted DAG from Rule

Figure 3 shows the Directed Acyclical Graph (DAG) corresponding to the first rule in Listing 1
(lines 2-13). Our graph-based approach will leverage this DAG to generate intermediary bridge
abstractions (Section 3.3). We point out that our approach currently places multiple restrictions
on N3 rules: (1) N3 rules should be structured as DAG, each originating from an input parameter
(the DAG from Figure 3 originates from ?patient); (2) all predicates should be concrete, and
concrete objects are expected to be leaf nodes; (3) multiple rules should form a sequential chain
that ultimately leads to desired inference(s): in our example, if prior rules yielded inferences on
overweight status and high-risk ethnicity, the last rule (lines 30-41) will yield a final inference
with the screening recommendation. Further, we currently support only a small number of N3
math builtins (sum, product, quotient, exponent).

3.3. Converting KG into Imperative Programming Code

In the first step, to structure the input data and subsequent application logic, we instantiate a
set of ModelADTs based on the KG. In contrast to other work such as RDFReactor [16], which
generates ADTs (Java classes) for an entire OWL ontology, our process is guided by the “needs”
of the N3 rules, to increase readability and reduce the resulting program size 6. Below, we show
the pseudocode for several of the ModelADT abstractions for our running example (Code 1).

To generate these ADT instances, our approach recursively traverses the extracted rule
graph(s) (e.g., Figure 3) starting from their input parameter (e.g., patient). For any graph node,
the domain ontology is consulted to establish its type, as indicated by property domains/ranges
or its given type. E.g., node ?profile has object type PatientProfile, as that is the range of the
has_patient_profile property. For each distinct ontology type, a new ModelADT will be instan-
tiated; in our case, Patient, PatientProfile, PhysicalExamination, Ethnicity, and Demographic
(latter two not shown). Subsequently, for each node’s outgoing edges 7 within the rule, a new
ModelProperty is added to its ModelADT. E.g., for PatientProfile, properties hasPhysicalExam-

6E.g., smart contracts have max. size of 24Kb on the Ethereum blockchain.
7Not including rdf:type or an N3 builtin.



Code 1: ADT Pseudocode For Example Case

1 ADT 𝑃𝑎𝑡𝑖𝑒𝑛𝑡 :
2 hasPatientProfile: PatientProfile
3 ADT 𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑃𝑟𝑜𝑓𝑖𝑙𝑒 :
4 hasPhysicalExamination [0..*]: PhysicalExamination
5 hasEthnicity [0..1]: Ethnicity
6 hasDemographic [0..*]: Demographic

7 ADT 𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛 :
8 type [0..1]
9 hasQuantitativeValue [0..1]: double

10 constant BMI

ination, hasEthnicity, and hasDemographic are added. The cardinality of the ModelProperty
is based on the OWL maximum cardinality constraint [17] and functional property type of
the edge. The property’s ModelType is based on edge’s target node, i.e., either its associated
ModelADT or XSD datatype (in case of a datatype value). E.g., the hasPatientProfile property
has ModelType PatientProfile, whereas hasQuantitativeValue has ModelType xsd:double. URI
terms, and types indicated with rdf:type edges, are added as ModelConstants: e.g., the URI
AsianAmerican and type BMI will be added as constants to the Ethnicity (not shown) and
PhysicalExamination ADTs, respectively. The ModelADT can then be characterized using any
of these constants, using the special ‘type’ ModelProperty (as illustrated in Code 2).

Secondly, we generate a set of Statements that represent the declarative decision logic as
imperative application logic, referencing the ModelADT elements instantiated above. Code 2
shows the pseudocode of the Statement instances for our first rule.

Code 2: Imperative Logic Pseudocode For Example Case 1

1 if patient.hasPatientProfile.hasEthnicity.type == Ethnicity.AsianAmerican
2 and patient.hasPatientProfile.hasPhysicalExamination.type ==
3 PhysicalExamination.BMI
4 and patient.hasPatientProfile.hasPhysicalExamination.hasQuantitativeValue
5 ≥ 23 then
6 v1← create PatientDemographic(type:
7 PatientDemographic.Overweight)
8 patient.hasPatientProfile.hasDemographic ∪← v1

Similar to before, our approach recursively traverses the rule graph(s). Each rule graph is
expected to be structured as a set of “property paths”, i.e., sequences of variables connected
by concrete predicates, ending at a concrete URI or literal term. These are represented using
PropertyPath. E.g., the property path starting at ?patient and ending at AsianAmerican will be
represented using patient.hasPatientProfile.hasEthnicity (line 1), utilizing the ModelProperties
constructed before. In case the concrete term is a URI, we further append the ‘type’ property



to the property path. In case the final edge (e.g., hasEthnicity) was found in the rule body,
meaning it is part of the condition, we will instantiate a Comparison. The comparison’s two
Operands will include (1) the property path and (2) the concrete term, albeit a ModelConstant
(AsianAmerican) or Literal for a datatype value (e.g., 23). In case a comparator was given,
such as math:notLessThan, this will be used as comparator (lines 4-5); otherwise, an equality
comparison is used (lines 1-3). If the final edge was found in the rule head (e.g., hasDemographic),
we will instead instantiate an Assignment. Here, if the target node is a blank node, a new
constructor invocation (CreateADT) of the node’s ModelADT is instantiated. E.g., on line 6-7,
this leads to the creation of a new PatientDemographic object. Additional support is provided for
variable unification and operations (e.g., math operations), which involves mapping variables
to their associated property paths or operations. For brevity, we do not include this part here.
Per rule, all Conditions and Assignments from the rule body and head are inserted into an
IfThen. Finally, all resulting if-then constructs are inserted into a single function that accepts
the cg:functionParam (i.e., ?patient) as input (not shown).

From the instantiated bridge abstractions, concrete programming code can be generated in
different imperative languages; currently, Solidity and JavaScript are supported.

4. Limitations of Blockchain Technology

Here, we describe noteworthy aspects on the limitations of blockchain languages, how they
informed our choice for a code generation approach, and how they complicate the process.

Idelberger et al. [6] outline an important technical challenge for logical reasoning on blockchain:
aside from computational efficiency, algorithms also have to be cheap, measured as per the eco-
nomic rules of the blockchain. Each transaction, such as smart contract execution, will require the
expenditure of the blockchain’s cryptocurrency: on Ethereum, computational work invoked by
a transaction costs ‘gas’, i.e., a certain amount of cryptocurrency, and transactions are reverted
once the ‘gas limit’8 is reached. Loops and large arrays are thus highly discouraged as they
run the risk of hitting unexpected Out-Of-Gas Exceptions (each iteration may consume a
different amount of gas). Rule-based reasoners tend to rely heavily on loops—to iterate over
newly generated triples and match them to rule bodies (forward-chaining), or trying alternative
choice points to resolve a statement (backward-chaining). In practice, we found this makes it
unfeasible to deploy rule-based reasoners directly within smart contracts.

An additional limitation of Solidity, likely informed by the need to avoid large gas costs, is that
elements can only be inserted or removed at the end of arrays, making them unsuitable for large
sets of elements. At the same time, the alternative use of mapping constructs is complicated by
the fact that a struct (ADT) cannot keep a reference to another struct that keeps a mapping.
Currently, to circumvent this nesting limitation, we recursively merge the properties of all
nested structs with mappings (e.g., PatientProfile) into the ‘root’ struct (e.g., Patient),
and update property paths from the application logic correspondingly.

8The maximum amount of currency the executor is willing to pay for a transaction.



5. Conclusions and Future Work

In 2016, Idelberger et al. [6] reported that logic-based languages have hardly been explored to
implement smart contracts—to the best of our knowledge, this has not changed much since then.
Choudhury et al. [18] automatically instantiates placeholders in manually, a-priori authored
“smart contract templates”, using values found in SWRL rules. The authors expect that the
involved criteria and ADTs will be common within particular domains, such as clinical trial
eligibility. Instead, we target the deployment of general-purpose decision logic, which may vary
greatly case-per-case. Alternatively, rule-based reasoning could simply be deployed off-chain
using oracles: in this case, the smart contract emits events (e.g., data), to which an external
(off-chain) oracle responds with a set of inferences. However, this requires an extra transaction
which requires validation (and thus cryptocurrency) and setting up a secure and scalable oracle.

Our ultimate goal involves deploying the declarative decision logic within KG on blockchain.
We described work towards a graph-based approach to generate imperative code based on
KG with N3 rules and a domain ontology. Our approach is centered on instantiating bridge
abstractions that capture the core ADTs and application logic within KG; from these abstractions,
code can be generated in different imperative languages. The code generation tool is available
online together with multiple generated smart contracts at this GitHub repository9.

As mentioned, there are many constraints on the currently supported N3 rules; a major
avenue of future work involves increasing the expressivity of our approach. Importantly, we
will explore the different types of clinical reasoning that are addressable by our approach from
a clinical practice perspective. We will perform a comprehensive evaluation of our approach on
an Ethereum testnet to (a) check consistency, by comparing recommendations from generated
smart contracts and the source KG; and (b) ascertain scalability, by measuring the execution
times of the generated smart contracts. The use of a testnet for evaluation, as a type of side-chain,
is in line with the likely deployment target of smart contracts in healthcare. The “mainnet” is
the public blockchain where public cryptocurrency and transactions take place; a side-chain
operates independently and can verify transactions at a much lower latency. A side-chain
between hospital nodes can further be made private to add an extra layer of security.
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