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Abstract  
This research targets blind people walking on braille blocks. Some non-blind pedestrians walk 

on braille blocks while they watch their smartphones on the street. Blind people may collide 

with these oncoming pedestrians. When the oncoming pedestrian does not notice the blind 

people, a collision will likely occur. We propose a new method for predicting collisions in such 

situations. We use a smartphone's camera to predict collisions. To predict the collision, we set 

two conditions. The first condition is whether the oncoming pedestrian is on the collision path. 

The second condition is whether the oncoming pedestrian notices the blind people.  
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1. Introduction 

This research targets blind people walking on 

braille blocks. Blind people rely on braille blocks 

when they go out. Some non-blind pedestrians 
walk on braille blocks while they watch their 

smartphones on the street. It is difficult for blind 

people to avoid these pedestrians and may collide 
with them. In a potential collision situation, 

oncoming non-blind pedestrians should give way. 

Braille blocks are installed to help blind people 

walk safely in Japan [1, 2]. When oncoming 
pedestrians notice blind people, they are asked to 

give their way to avoid collisions.  

We propose a new method for predicting 
collisions with oncoming pedestrians using a 

smartphone’s camera. To predict collision, we set 

two conditions. The first condition is whether the 
oncoming pedestrian is on the collision path. The 

second condition is whether the oncoming 

pedestrian notices the blind people. We foresee 

that a collision will occur when the oncoming 
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pedestrian is on the collision path and does not 
notice the blind people. 

Once the collisions can be predicted, a loud 

sound signal can warn both people. The warning 
can make spare time for blind people to protect 

themselves in case of a collision. The warning can 

also ask the oncoming pedestrian to avoid a 

collision. As the loud sound signal causes a big 
stress on all the people on the street, the collision 

prediction should be accurate, and the collision 

prediction system calls the warning at the last 
moment when the collision is inevitable. 

2. Related work 
2.1. Collision avoidance for blind 
people 

Various types of obstacle avoidance systems 

for blind people have been proposed. These 

include the systems to detect obstacles by 
attaching an ultrasonic sensor [3, 4] or LiDAR [5] 



to a white cane, which blind people use daily. The 
ultrasonic sensor can detect obstacles up to 4 

meters away, while LiDAR can measure up to 10 

meters away. 

Collision avoidance systems using a suitcase-
shaped device have been proposed [6-8]. The 

suitcase has a stereo camera, LiDAR [6, 8], and a 

laptop computer. The BBeep system [7] predicts 
collision by estimating the future location of 

oncoming pedestrians based on their walking 

trajectories. The system beeps and asks 
pedestrians to give their way to avoid a collision. 

Vibrators [6] and levers [8] are equipped on the 

suitcase handles to indicate the path for blind 

people. These tactile feedbacks enable them to 
avoid a collision on their own. These are 

promising approaches in case the equipment can 

accompany blind people. 
Collision avoidance systems using 

smartphones [9, 10] and wearable devices [11] 

have been proposed. These systems use LiDAR 
on smartphones and stereo cameras equipped to 

the chest of blind people to measure the distance 

to the object. These systems focus on obstacles 

and pedestrians at a short distance and do not 
consider oncoming pedestrians walking from a 

distance. 

2.2. Collision avoidance in 
autonomous mobile robots 

As for obstacle collision avoidance, systems 
on autonomous mobile robots have been proposed. 

Ultrasonic sensors [12, 13] and LiDAR [14, 15] 

detect obstacles. The systems are large because 

they use specific sensors to measure the distance 
of distant obstacles. It is challenging to adopt 

these methods directly for humans. 

Collision avoidance with dynamic obstacles 
[16] and moving pedestrians [17] have been 

proposed too. The robot is set to go away from the 

original planned path or make a curve to avoid 

collisions. We should not instruct blind people to 
change their paths because they may lose their 

way once they are off the braille blocks. 

2.3. Gaze estimation 

The gaze plays an important role in human 
interaction. People select collision-free paths by 

considering the gaze of other pedestrians and the 

direction they walk [18-20]. 

Many studies have been proposed on 
appearance-based gaze estimation using deep 

learning [21-28]. Appearance-based gaze 

estimation requires datasets containing a variety 

of environments, subjects, and targets [21, 23, 25, 
27 28]. Zhang et al. provided a gaze image dataset 

of participants acquired while they watched a 

laptop computer in their daily life and proposed a 
gaze estimation method [21]. Sugano et al. 

estimated gaze on a public display without 

individual user calibration [22]. Recasens et al. 
estimated which objects the user looked at in the 

image [23]. Chong et al. extended it to video and 

correctly detected the gaze target even outside the 

image [24]. 
Kellnhofer et al. provided a dataset captured at 

a wide range of head postures and distances to 

achieve 3D gaze estimation [25], where the eyes 
may not be visible by cameras such as 

surveillance cameras due to occlusion. 3D gaze 

estimation [26] and target object estimation [27] 
have been proposed in situations where only the 

back of the head is visible. Bermejo et al. 

approximated the gaze by the posture of the head 

[26]. Nonaka et al. estimated the gaze by 
considering the body orientation [28]. 

3. Collision avoidance on braille 
blocks 

Braille blocks are installed in a straight line [2]. 

Once the blind people become on braille blocks, 
they follow the blocks. When oncoming 

pedestrians notice blind people, they should give 

their way to avoid collisions because the block is 

installed to support the safe walking of blind 
people. As shown in Figure 1, a collision occurs 

when an oncoming pedestrian walks on braille 

blocks without noticing the blind people. 
In our proposal, blind people wear their 

smartphones at chest height, as shown in Figure 2. 

The smartphone's camera is tilted downward from 

the horizontal. This tilt allows the camera to 
capture the walking area in front of the user. The 

setup of the smartphone in this way does not 

interfere with their walking style. 
The proposed system uses only a smartphone 

to cover the process from video acquisition to 

collision prediction. 
 



 
Figure 1: Oncoming pedestrians approaching 
blind people on braille blocks. 
 

 
(a) Side               (b) Front 

Figure 2: Smartphones on blind people. 

4. Oncoming pedestrians on the 
collision path 

4.1. Detection 

Pedestrian detection methods from various 

camera viewpoints have been proposed [29-33]. 
Pedestrians are detected for tracking [29, 30], 

counting [31], and autonomous driving systems 

[32]. Static obstacle detection methods have been 
proposed from a pedestrian’s viewpoint [34, 35]. 

We can apply such methods to static objects. In 

this research, we focus on the detection of 

oncoming pedestrians. 
A detector with high-speed detection is 

required to achieve real-time detection. We need 

a new detector that finds pedestrians on braille 
blocks. Note that the braille blocks are square. 

The system should first find braille blocks. We 

utilize YOLOv7 [36] as it can run fast. We use the 
braille block dataset [37] to train YOLOv7. We 

split 2000 images 4:1 for training and validation. 

The batch size is 16. The number of epochs is 150. 

The image size was resized from 1024 × 1024 to 
512 × 512 for training. 

Once the trained YOLOv7 find more than two 

braille blocks, the braille block region can be 
found. The region is defined by two sidelines of 

the braille blocks as the blocks form a straight line 

on the street. The left and right vertices of the 
bottom edge of the detected blocks are used to 

estimate the sidelines of the braille block region. 

The sidelines are estimated by the least-squares 

method. The region is the collision path. 
We also use YOLOv7 to detect pedestrians. 

The center of the bottom edge of the detected 

pedestrian rectangle is counted as the pedestrian's 
foot position. If the foot position is inside the 

braille block region, we detect the pedestrian as an 

oncoming pedestrian on the collision path. 
In case of finding less than two braille blocks, 

the braille block region found in the last frame is 

used to detect the oncoming pedestrian on the 

collision path. 
Figure 3 shows the detection results of 

oncoming pedestrians. The light blue bounding 

boxes indicate the braille blocks detected by the 
trained YOLOv7. Note that the bottom edge of the 

braille block rectangle is marked by blue color. 

The red crossing lines indicate the sidelines of the 
braille block region, inside of which is the 

collision path.  

Figure 3 (a) shows a situation where an 

oncoming pedestrian is on the collision path. The 
person wearing black is on the collision path and 

is detected. It is marked with a red bounding box. 

As the oncoming pedestrian approaches, we can 
detect the smartphone they hold, as indicated by 

the green bounding box by the YOLOv7. 

Figure 3 (b) shows a situation where the 

oncoming pedestrian is not on the collision path. 
The person wearing white is not on the collision 

path and is marked by the blue bounding box. 

Oncoming pedestrians appear larger in the 
image as they approach. Oncoming pedestrians at 

close locations likely hide most of the braille 

blocks. In such a case, the braille block region 
detected in the previous frame will be used. 

Braille blocks may not be installed in a straight 

line. Based on the guideline [2], braille blocks are 

rarely curved in Japan. Therefore, we assume the 
sidelines of the braille block region can be 

approximated almost as straight lines. 

 

Collision prediction system

implemented on a smartphone

Collision prediction system
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(a) A situation where an oncoming pedestrian is 

on the collision path. 
 

 
(b) A situation where an oncoming pedestrian is 

not on the collision path. 
Figure 3: Detection of oncoming pedestrians. 
 

4.2. Distance estimation 

We need to estimate the distance to oncoming 

pedestrians to predict a collision with oncoming 
pedestrians. Methods for estimating the distance 

to an obstacle using a camera have been proposed 

[38-40]. Detected facial features [38] and 
rectangle size [39, 40] are used. Chen et al. used 

the camera’s focal length, angle of view, and 
information on its orientation relative to the 

ground [34]. Combined with the assumption that 

the road surface is horizontal, the distance to the 

obstacle can be estimated. 
In this research, we use the method [34] and 

recognize an oncoming pedestrian as an obstacle. 

We estimate the distance from the blind people to 
the position where the oncoming pedestrian 

stands, as shown in Figure 4. 

4.3. Future position estimation 

Blind people walk on braille blocks installed in 
a straight line. If oncoming pedestrians also walk 

on braille blocks, they walk straight toward blind 

people. We must decide whether the oncoming 
pedestrian walks straight toward the blind people. 

We estimate the future position of the oncoming 

pedestrian. The distance of the collision with the 

oncoming pedestrian is about 60 cm, which is 
within the reach of a white cane. Therefore, the 

distance and future position estimations must be 

accurate enough to meet this requirement. 
 

 
Figure 4: Foot position of oncoming pedestrians 
for distance estimation. 
 

Some research proposed a method for 

estimating the trajectory of pedestrians from an 

egocentric video [41, 42]. Yagi et al. estimate the 
position of a pedestrian's waist using the 

pedestrian's skeletal information and the camera's 

pose information [41]. Qiu et al. estimate the 
future position by referring to the property of a 

rectangle instead of a point [42]. This method can 

be combined with the distance estimation method 
[34] to estimate the walking trajectory. 

 

 

 

Foot position of

an oncoming pedestrian



5. The decision of whether oncoming 
pedestrians notice blind people 

Suppose the oncoming pedestrian is on the 

collision path. In that situation, the remaining 

problem is to decide whether the oncoming 

pedestrian notices the blind people and intends to 
avoid the collision. Our proposed system 

estimates the gaze direction of the oncoming 

pedestrians. It checks whether the gaze direction 
is toward the location of the blind people. 

Lee et al. have proposed a system to decide 

whether an oncoming pedestrian is looking at 
blind people [38]. Their system is trained by the 

annotations of the pedestrian's face images. The 

direction of gaze has been estimated as a 3D 

vector [25, 26, 28, 43]. As shown in Figure 5, 
Zhang et al. achieve gaze estimation even when 

the resolution of the cropped face image is low 

[43].  
We plan to adapt the method [43] to gaze 

estimation of the oncoming pedestrians to decide 

whether they notice blind people. Gaze estimation 

should start at the moment when the oncoming 
pedestrian is detected, up to the time when the 

collision occurs. 

 

 
Figure 5: Results of gaze estimation from face 
images (Figure 8 in [43]). 

6. Collision prediction with oncoming 
pedestrians 

To predict collision, we set two conditions. 

The first condition is whether the oncoming 
pedestrian is on the collision path. The second 

condition is whether the oncoming pedestrian 

notices the blind people. Even when the oncoming 
pedestrian keeps the collision path, the system 

does not make a warning once it detects the 

oncoming pedestrian gaze the blind people just at 
a frame. The system calls the warning of collision 

if the oncoming pedestrian comes within the 

hazardous distance of the blind people without 

even a glance at the blind people in their front. 

7. Conclusion 

We proposed a new method for predicting 

collisions with oncoming pedestrians using a 

smartphone’s camera. To predict collision, we set 
two conditions. The first condition is whether the 

oncoming pedestrian is on the collision path. The 

second condition is whether the oncoming 
pedestrian notices the blind people. We developed 

a system for the first condition and showed the 

snapshots of the results. 

We plan to incorporate the procedure of the 
second condition into our system. Implementing 

the total system on a smartphone will help blind 

people to avoid collisions with oncoming 
pedestrians. 

Part of this research is supported by JSPS 

Kaken 22K19803. 
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