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Abstract
3D change detection plays a crucial role in a wide range of applications, including disaster management, as well as in robotics
for search, rescue, security, and surveillance purposes. Although previous works exist, most of them are limited to detecting a
few specific targets or are restricted to 2D images. Additionally, some assume prior knowledge of the object positions of
interest. This paper presents a novel change detection algorithm that combines panoptic segmentation and 𝑘-NN, enabling
the detection of changes without relying on positional information about the objects of interest. Experimental evaluations on
indoor point clouds demonstrate the algorithm’s capability to detect the removal of densely and closely placed objects, an
aspect overlooked by previous approaches due to their inherent limitations. Despite variations in settings and datasets, our
algorithm achieves a recall improvement of 0.06 for the removed class, surpassing the performance of existing related works.
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1. Introduction
Point clouds, which accurately capture the 3D geometry
of scenes, have extensive applications in scene under-
standing and robotics [1], encompassing tasks such as 3D
shape classification [2, 3], 3D object detection [4, 5, 6, 7],
and point cloud segmentation [8]. In the realm of the
metaverse, point clouds frequently serve as representa-
tions of scenes within virtual worlds.

The metaverse is built upon immersive user experi-
ences, necessitating an interaction layer that effectively
bridges the physical and virtual worlds [9]. Digital twins
[10] serve as a critical component within this layer, fa-
cilitating the transmission and synchronization of data
and information between the virtual and physical worlds.
However, the constant scanning of the entire scene to
update the digital twin is impractical due to the vast
amount of data involved. Thus, the selective updating of
the digital twin in areas where changes have occurred
becomes paramount, highlighting the essential role of
change detection.

2D change detection techniques, which primarily focus
on comparing two input images, have been proposed pri-
marily for remote sensing applications [11, 12]. However,
these approaches are constrained by the requirement of
image alignment between the two inputs. In contrast, 3D
change detection has garnered attention for its ability to
overcome this limitation. Although some research has
been conducted on 3D change detection in domains such
as disaster management [13], security patrols [14], and
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real-time robotic applications [15], the field is still in its
early stages and has limitations concerning the detection
targets.

In this study, we present a novel 3D change detection
algorithm that leverages panoptic segmentation and 𝑘-
Nearest Neighbor (𝑘-NN). The main contributions of our
work are as follows:

• The proposed algorithm surpasses the limitations
of 2D change detection techniques by effectively
detecting changes that were previously challeng-
ing to address.

• Our approach eliminates the need for prior in-
formation on the objects of interest, making it
versatile and applicable in various scenarios.

• Notably, our algorithm demonstrates its effective-
ness in indoor environments, where objects are
densely situated in close proximity. This aspect
has often been overlooked in related studies due
to the constraints of existing algorithms.

2. Related Work
3D change detection has been studied by various meth-
ods; however, these methods often suffer from limitations
in their applicability. Some approaches necessitate prior
knowledge of the object positions of interest [16], while
others are confined to detecting a limited number of tar-
gets [17, 7]. Additionally, certain techniques are only
suitable for change detection in 2D images [18]. The
process of collecting positional information can be labor-
intensive, particularly in the case of 3D data, as it involves
annotation. The range and diversity of detection targets
directly impact the algorithm’s applicability.

S. Nikoohemat et al. [17] concentrate on changes in
building geometry and propose a change detection algo-
rithm that combines 2D and 3D nearest points. However,
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their algorithm’s applicability is limited as it only consid-
ers vertical planes as potential objects of interest that may
undergo changes. M. Voelse et al. [7] introduce change
detection as a means to distinguish between static and
temporal objects when creating updated 3D models of
environments. The algorithm initiates by segmenting
point clouds using region growing, with a set distance
threshold of 10 cm. Additionally, segments with a height
below 20 cm are excluded (i.e., discarded) to mitigate
misclassifications. These defined thresholds make it chal-
lenging to apply the algorithm in environments where
objects are closely positioned, such as indoor scenarios.

T. Ku et al. [16] propose three distinct algorithms,
namely PoChaDeHH, HGI-CD, and SiamGCN, for change
detection on a street-scene dataset consisting of point
clouds. The dataset encompasses various street furniture
objects, including road signs, advertisements, statues, and
garbage bins, with the positions of each object of interest
provided, facilitating the extraction of these objects from
the point cloud. PoChaDeHH initially eliminates outliers
and noisy objects from the extracted point cloud, then
employs clustering techniques to separate the remaining
objects. The change is estimated based on the mean
distance between points in the registered point clouds.
HGI-CD utilizes statistical techniques to remove outliers,
constructs color and geometric change graphs using the
𝑘-NN algorithm, and estimates change using Siamese
graph convolutional networks (GCNs) with Fast Point
Feature Histograms (FPFH) [19] as the node features.
SiamGCN also employs GCNs with graphs constructed
through 𝑘-NN, but does not include a cleaning step for
the extracted point cloud.

As a change detection algorithm that works without
prior information of the positions of objects of interest,
K. Sakura et al. [18] propose two deep learning models,
namely CSCDNet and SSCDNet. CSCDNet, a Siamese
network based on ResNet-18 [20], estimates the proba-
bility mask of change from two input images. SSCDNet,
on the other hand, is a U-Net-based network that uti-
lizes the input images and the output of CSCDNet to
predict semantic change labels for each pixel. While the
networks can be trained with semantic labels from non-
aligned images, during inference, two aligned images
are required. If the input images are not aligned during
inference, the models would erroneously detect changes
because many pixels in the input images represent dif-
ferent objects that did not undergo change but appear
different. Similarly, W. G. C. Bandara and V. M. Patel
[11] propose ChangeFormer for 2D change detection,
which has demonstrated state-of-the-art performance on
LEVIR-CD [21] and DSIFN-CD [22]. However, it faces
the same challenge mentioned above, where the align-
ment of input images during inference is crucial to avoid
misinterpretation of changes.

3. Methods
Let 𝑃𝑡 and 𝑃𝑡′ denote a pair of already registered point
clouds captured at different times 𝑡 and 𝑡′ (where 𝑡 ≠ 𝑡′),
respectively, of the same scene. Given that an object
instance exists in 𝑃𝑡 but not in 𝑃𝑡′ , we define this scenario
as the instance being removed when 𝑡 < 𝑡′, or added when
𝑡 > 𝑡′. Therefore, the addition and removal of an object
instance can be treated equivalently by interchanging the
time values 𝑡 and 𝑡′. Accordingly, we formulate the task
of change detection as a binary classification problem,
distinguishing between no change and removed, with a
particular focus on identifying the specific object instance
that underwent the change in the point cloud 𝑃𝑡.

First, 3D point clouds of the scene are reconstructed
from captured images. Subsequently, panoptic segmenta-
tion is applied to assign an object instance label to each
pixel in the images, thereby associating them with the
corresponding points in the point clouds. In the next step,
partial point clouds containing the same object instance
are extracted from 𝑃𝑡, while their bounding volumes are
utilized to extract the corresponding point clouds from 𝑃𝑡′ .
Finally, the pair of extracted point clouds undergo classi-
fication using the 𝑘-NN algorithm, determining whether
there is no change or the instance has been removed. An
overview of the proposed change detection algorithm is
depicted in Figure 1.

The details are described in this section.

3.1. Point Cloud Reconstruction
The proposed algorithm for change detection relies on
the comparison of two point clouds. These point clouds
are reconstructed using RGB-D images captured by an
iPhone running ARKit, along with the corresponding
confidence maps and camera parameters (i.e., intrinsic
and extrinsic).

The confidencemaps, provided byARKit, are 2D arrays
with the same dimensions as the depth map. They take
three values: low, medium, and high, which indicate the
accuracy of the depth values. To optimize computational
efficiency and enhance performance, pixels with low or
medium confidence values are excluded and not utilized
in the reconstruction process.

By utilizing the camera parameters and depth map,
the position of each pixel in the 3D world coordinate
system can be uniquely computed. The RGB images are
employed to extract color information, while the instance
labels are obtained through segmentation, as discussed
in Subsection 3.2.

3.2. Panoptic Segmentation
To perform panoptic segmentation on the RGB images,
we employ Detectron2 [23], a pre-trained deep learn-
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Figure 1: Overview of the change detection algorithm. KEY – 𝑛change: threshold for the number of points to predict immediately
removed.

Figure 2: Instance labels obtained from panoptic segmen-
tation. chair_1 (resp. chair_2) of the left image is the same
instance as chair_4 (resp. chair_3) in the right image.

ing model that assigns an instance label to each pixel.
The instance label takes the form of object_id (e.g., key-
board_10)), where object is a character string indicating
the type of object represented by the pixel, and id denotes
the instance’s unique identifier.

It is important to note that the uniqueness of instance
labels extends not only within each image but also across
all images used for point cloud reconstruction. Conse-
quently, different instance labels in two separate images
may correspond to the same underlying object (as il-
lustrated in Figure 2). Conversely, distinct instance la-
bels within a single image necessarily represent different
objects. At this stage, we establish an unpaired set, 𝑆,
comprising pairs of instance labels that must represent
distinct instances.

By projecting pixels with instance labels onto the 3D
space, each point within the reconstructed point cloud is
assigned an instance label. Consequently, the point cloud
is represented as a 7-dimensional vector, comprising the
3D position, RGB color, and instance label.

To consolidate different instance labels corresponding
to the same object, we employ a 𝑘-NN-based algorithm.
Initially, for each point, we compute the 𝑘merge nearest
points and their corresponding distances. Subsequently,
instance labels are merged using the algorithm depicted

in Figure 3. This algorithm verifies whether a point 𝑝1
and its neighboring point 𝑝2 possess the same object label
and if their distance falls below the predefined thresh-
old 𝑑merge. Moreover, it examines the set 𝑆 to determine
if 𝑝1 and 𝑝2 should be considered as the same instance.
It is important to note that the condition (𝑝1, 𝑝2) ∉ 𝑆
alone is insufficient; 𝑝1 may share the same instance
label with other points 𝑝𝑜, where (𝑝𝑜, 𝑝2) ∈ 𝑆, and like-
wise for (𝑝1, 𝑝𝑜′), where 𝑝𝑜′ represents a point within the
group sharing the instance label with 𝑝2. If all three con-
ditions are satisfied, the instance labels are merged. The
Union-Find data structure is employed in the algorithm
to manage and merge instance labels.

3.3. Point Cloud Extraction
Following the reconstruction and panoptic segmenta-
tion steps, the point cloud 𝑃𝑡 is partitioned into partial
point clouds based on their instance labels. This division
ensures that each resulting partial point cloud contains
precisely one instance label, and no other partial point
clouds share the same label. However, due to imperfec-
tions in the panoptic segmentation performed by Detec-
tron2, erroneous instance labels may occasionally arise.
These incorrectly labeled partial point clouds often con-
sist of only a few points, as they do not correspond to
any actual instances in the scene. To address this issue,
we introduce a threshold 𝑛discard and discard any partial
point clouds containing fewer than 𝑛discard points.

Let 𝑃𝑡(𝑖) denote the partial point cloud associated with
the instance label 𝑖 obtained from 𝑃𝑡. In contrast to the
extraction of partial point clouds from 𝑃𝑡 the extraction
of corresponding partial point clouds from 𝑃𝑡′ is based on
the bounding volume of 𝑃𝑡(𝑖). Specifically, if 𝑃𝑡(𝑖) resides
within the range [𝑥min, 𝑥max] × [𝑦min, 𝑦max] × [𝑧min, 𝑧max],
then the corresponding point cloud 𝑃𝑡′(𝑖) consists of



Data: 𝑃: Point cloud, 𝐼: 𝑘merge nearest neighbors, 𝐷:
𝑘merge nearest neighbors’ distances, 𝑆: Unpair
set, 𝑑merge: Distance threshold, 𝑈𝐹: Union-Find
instance equipped with 𝑢𝑛𝑖𝑜𝑛 method that
merges instance labels and 𝑚𝑒𝑚𝑏𝑒𝑟𝑠method that
returns the group members of the given point.

Result: Instance labels of the same instance are
merged into one single label.

1 for 𝑝1 ∈ 𝑃 do
2 𝑖1 ← 𝑝1.𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒_𝑙𝑎𝑏𝑒𝑙;
3 𝑜1 ← 𝑝1.𝑜𝑏𝑗𝑒𝑐𝑡_𝑙𝑎𝑏𝑒𝑙;
4 for 𝑝2 ∈ 𝐼 [𝑝1] do
5 𝑖2 ← 𝑝2.𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒_𝑙𝑎𝑏𝑒𝑙;
6 𝑜2 ← 𝑖2.𝑜𝑏𝑗𝑒𝑐𝑡_𝑙𝑎𝑏𝑒𝑙;
7 if 𝑜1 ≠ 𝑜2 then continue;
8 if 𝐷[𝑝1][𝑝2] > 𝑑merge then continue;
9 𝑚𝑒𝑟𝑔𝑒𝑎𝑏𝑙𝑒 ← 𝑇 𝑟𝑢𝑒;

10 for 𝑚1 ∈ 𝑈𝐹 .𝑚𝑒𝑚𝑏𝑒𝑟𝑠(𝑖1) do
11 if (𝑚1, 𝑖2) ∈ 𝑆 then
12 𝑚𝑒𝑟𝑔𝑒𝑎𝑏𝑙𝑒 ← 𝐹𝑎𝑙𝑠𝑒;
13 break
14 end
15 end
16 for 𝑚2 ∈ 𝑈𝐹 .𝑚𝑒𝑚𝑏𝑒𝑟𝑠(𝑖2) do
17 if (𝑖1, 𝑚2) ∈ 𝑆 then
18 𝑚𝑒𝑟𝑔𝑒𝑎𝑏𝑙𝑒 ← 𝐹𝑎𝑙𝑠𝑒;
19 break
20 end
21 end
22 if 𝑚𝑒𝑟𝑔𝑒𝑎𝑏𝑙𝑒 then
23 𝑈𝐹 .𝑢𝑛𝑖𝑜𝑛(𝑖1, 𝑖2);
24 end
25 end
26 end

Figure 3: Algorithm to merge instance labels.

points from 𝑃𝑡′ that also fall within the same range
[𝑥min, 𝑥max]×[𝑦min, 𝑦max]×[𝑧min, 𝑧max]. It is important to
note that 𝑃𝑡′(𝑖) may contain multiple instance labels, un-
like 𝑃𝑡(𝑖)which only has a single instance label associated
with it.

3.4. Change Detection
Our proposed algorithm focuses on detecting changes
between two point clouds, 𝑃𝑡(𝑖) and 𝑃𝑡′(𝑖). Initially, the
algorithm counts the number of points in 𝑃𝑡′(𝑖), denoted
as 𝑚, and promptly identifies the change as removed if 𝑚
is less than a predefined threshold 𝑛change. This decision
is based on the observation that instances are less likely
to be represented by a small number of points, indicating
the absence of the instance in 𝑃𝑡′(𝑖).

In cases where 𝑚 is not less than 𝑛change, the algorithm
proceeds with the change classification process, as out-
lined in Figure 4. This process involves counting the

Data: 𝑃1, 𝑃2: Point clouds to compare, 𝐼: 𝑘change nearest
neighbors, 𝐷: 𝑘change nearest neighbors’
distances, 𝑟change: Ratio threshold.

Result: Detection result: no change or removed.
1 𝑛_𝑚𝑎𝑡𝑐ℎ𝑒𝑠 ← 0;
2 for 𝑝1 ∈ 𝑃1 do
3 𝑜1 ← 𝑝1.𝑜𝑏𝑗𝑒𝑐𝑡_𝑙𝑎𝑏𝑒𝑙;
4 for 𝑝2 ∈ 𝐼 [𝑝𝑖] do
5 𝑜2 ← 𝑝2.𝑜𝑏𝑗𝑒𝑐𝑡_𝑙𝑎𝑏𝑒𝑙;
6 if 𝑜1 = 𝑜2 then
7 𝑛_𝑚𝑎𝑡𝑐ℎ𝑒𝑠 ← 𝑛_𝑚𝑎𝑡𝑐ℎ𝑒𝑠 + 1
8 end
9 end

10 if 𝑛_𝑚𝑎𝑡𝑐ℎ𝑒𝑠/(𝑘 ∗ 𝑃1.𝑙𝑒𝑛𝑔𝑡ℎ) < 𝑟change then
11 return removed
12 else
13 return no change
14 end

Figure 4: Change detection algorithm.

Table 1
Dataset description. Each frame has an RGB image, depth
map, confidence map, and camera parameters.

Time 𝑡 𝑡′

Number of frames 1, 558 720

number of matches in object labels between each point
in 𝑃𝑡(𝑖) and its 𝑘change nearest neighbors in 𝑃𝑡′(𝑖). The
algorithm then classifies the change based on the ratio of
successful matches to the total number of comparisons.

4. Experiments

4.1. Dataset
We utilized an iPhone equipped with ARKit to capture
a dataset1 comprising RGB-D images, confidence maps,
and camera parameters within a room containing various
objects, including chairs, computers, books, cell phones,
and keyboards. The dataset consists of a collection of
frames captured at two different time instances, 𝑡 and 𝑡′.
The specific number of frames captured at each time in-
stance is presented in Table 1. It is important to highlight
that individual partial point clouds within the dataset do
not necessarily correspond to distinct object instances;
some partial point clouds may represent different parts
of the same object instance.

1Our source code is available on GitHub: https://github.com/
Tomoya-Matsubara/RGB-D-Scan-with-ARKit

https://github.com/Tomoya-Matsubara/RGB-D-Scan-with-ARKit
https://github.com/Tomoya-Matsubara/RGB-D-Scan-with-ARKit


Table 2
Parameters setting. KEY – 𝑛sample: number of pixels sampled per frame, 𝑘merge: number of nearest neighbors in the label merge,
𝑑merge: distance threshold in the label merge, 𝑛discard: minimum number of points to form a partial point cloud, 𝑛change: threshold
for the number of points to predict immediately removed, 𝑘change: number of nearest neighbors in the change detection, 𝑟change:
ratio threshold in the change detection.

Parameter 𝑛sample 𝑘merge 𝑑merge 𝑛discard 𝑛change 𝑘change 𝑟change
Value 5, 000 30 0.02 [m] 1, 000 5 30 0.1

Table 3
Object instances in the extracted point clouds.

Label Count
cell phone 1
bottle 2
cup 2

keyboard 18
laptop 18
chair 21
book 26

4.2. Implementation Details
Table 2 provides an overview of the parameter settings
employed in our implementation2. During the point
cloud reconstruction phase, we applied random sampling
and selected 𝑛sample sample pixels from each frame to
optimize processing time for subsequent operations.

Although Detectron2 offers support for various object
instances, we focused on extracting point clouds associ-
ated with specific labels, namely book, bottle, cup, chair,
keyboard, laptop, and cell phone.

4.3. Annotation
We performed manual annotation to assign labels (i.e., no
change and removed) to the extracted partial point clouds.
During the annotation process, we carefully examined
the origin of each partial point cloud in 𝑃𝑡, determining
the corresponding object instance it belonged to, and
verified the presence of the same object instance in 𝑃𝑡′ .
The presence of the object instance indicated no change,
while its absence indicated that the object instance had
been removed.

5. Results
The proposed algorithm extracted 88 partial point clouds
from the dataset. Table 3 shows the detail of the extracted
point clouds.

2Our implementation is available on GitHub: https://github.com/
Tomoya-Matsubara/point-cloud-change-detection

(a) TV before merging (b) TV after merging

(c) Chair before merging (d) Chair after merging

Figure 5: Instance labels of tv and chair before and after
merging. Each instance label has is colored uniquely. In the
left images (a) and (c), each instance (tv and chair ) has many
colors, which shows many labels are assigned to the same
instance before merging. In the right images (b) and (d), in
contrast, each of them has only a few colors, which indicates
those labels are merged correctly.

5.1. Label Merge
Figure 5 demonstrates the successful merging of instance
labels belonging to the object categories tv and chair.
It can be observed that not only the labels of planar tv
instances but also those of chair instances with more
complex shapes were effectively merged. This can be at-
tributed to the fact that the merge operation solely relied
on distance information, without making any assump-
tions about the shapes of the instances.

Although some instances still retained multiple labels,
the overall number of instance labels was significantly re-
duced by approximately 40% (from 4, 534 to 2, 729). After
discarding partial point clouds with a point count below
the threshold 𝑛discard, the remaining labels were further
reduced to a final count of 88.

5.2. Change Detection
The result of the change detection is shown in Figure
6. As the false negative (bottom left corner of the ma-
trix) indicates, the proposed algorithm detected changes
perfectly.

https://github.com/Tomoya-Matsubara/point-cloud-change-detection
https://github.com/Tomoya-Matsubara/point-cloud-change-detection
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Figure 6: Confusion matrix in the change detection. Label 0
and 1 represent no change and removed, respectively.

However, there were 17 cases of false positives, where
the algorithm incorrectly predicted that an object in-
stance was removed when it was actually present. This
can be attributed to the limited number of partial point
clouds in 𝑃𝑡′ . Figure 7 provides a visual representation
of the change detection results, with 𝑃𝑡 and 𝑃𝑡′ captured
from the same angle. False positive cases are highlighted
in green, particularly noticeable in the central chair in
Figure 7 (a). Upon closer examination of the same chair
in Figure 7 (b) and (c), it becomes evident that 𝑃𝑡 contains
a substantial number of points accurately representing
the chair’s shape. Conversely, 𝑃𝑡′ only consists of a few
points, failing to capture the chair adequately. Conse-
quently, due to the algorithm’s tendency to predict re-
moval in cases with limited point coverage, these false
positives were triggered.

Since there is no false negative, as explained above, no
red-colored point can be seen in Figure 7 (a).

Figure 8 provides a visualization from a different an-
gle, showcasing objects on a table, such as a laptop and
a smartphone. These objects are typically ignored as
change detection targets in previous works due to their
close proximity to each other, often just a few centimeters
apart. However, in the proposed algorithm, we success-
fully detected the removal of such objects by leveraging
pixel-level object segmentation rather than relying solely
on distance-based criteria. This approach allowed us to
accurately identify and classify the removal of objects,
even in challenging scenarios where objects are spatially
close to each other.

5.3. Comparison with 2D Change
Detection

Figure 9 presents the change detection results obtained
using the pre-trained ChangeFormer [11] model. This
figure showcases the same scene as shown in Figure 8,
with a focus on the successful detection of the laptop re-
moval. Notably, Figure 9 (a) and (b) exhibit misalignment

(a) Change detection result

(b) 𝑃𝑡: Point cloud at 𝑡 (c) 𝑃𝑡′ : Point cloud at 𝑡′

Figure 7: Visualization of the change detection result (a) and
the original point clouds 𝑃𝑡 (b) and 𝑃𝑡′ (c), all captured from the
same angle. COLOR – magenta: true negative, green: false
positive, red: false negative, cyan: true positive.

(a) Change detection result of densely close objects

(b) 𝑃𝑡: Point cloud at 𝑡 (c) 𝑃𝑡′ : Point cloud at 𝑡′

Figure 8: Visualization of the change detection result (a) and
the original point clouds 𝑃𝑡 (b) and 𝑃𝑡′ (c), all captured from
the same angle, different from Figure 7. COLOR – magenta:
true negative, cyan: true positive.

because they were recorded by humans, as opposed to
robots whose movements can be pre-defined and con-
trolled.

In Figure 9 (c), the ChangeFormer model trained on
DSIFN-CD detects changes in the top left corner, although
no actual changes occurred in that region. Additionally,
while the pixels at the center seemingly detect the re-



(a) Image from 𝑡 (b) Image from 𝑡′ (c) ChangeFormer (DSIFN) (d) ChangeFormer (LEVIR)

(e) Point Cloud captured at 𝑡 (f) Point Cloud captured at 𝑡′ (g) ChangeFormer (DSIFN) (h) ChangeFormer (LEVIR)

Figure 9: 2D change detection by ChangeFormer [11]. (a) and (b) are recorded images at 𝑡 and 𝑡′ around the same scene, and
(c) and (d) are the detection result. (e) and (f) are point clouds of the same scene at 𝑡 and 𝑡′ captured from the same angle, and
(g) and (h) are the detection result. In both cases, ChangeFormer trained on LEVIR-CD does not detect any changes.

moval of the laptop, their size is significantly smaller
compared to the actual change. On the other hand, Figure
9 (e) and (f) depict manually captured images achieved by
aligning two point clouds. In this particular case, Figure
9 (g) successfully detects the removal.

It is worth noting that these results are not surprising,
considering that ChangeFormer was not specifically de-
signed or trained to detect changes in unaligned images.
However, in metaverse applications, it is expected that
both robots and humans contribute to data collection
(e.g., image capture) for immediate updates to the virtual
world. Consequently, captured images are not always
perfectly aligned, and cases resembling Figure 9 (e) and
(f) are less likely to arise, especially when the detection
target instance is not pre-determined. From this perspec-
tive, our proposed algorithm demonstrates its ability to
detect changes in object instances, even when captured
from different angles or under misalignment conditions.

5.4. Comparison with Related Work of 3D
Change Detection

For reference, we conducted a comparison of our change
detection results with the performance of PoChaDeHH,
HGI-CD, and SiamGCN [16] algorithms on their street
scene dataset, as presented in Table 4. It should be noted
that direct comparison between our algorithm and the
reference algorithms is challenging due to the following
reasons:

Table 4
Comparison of class-wise recall with T. Ku et al.’s work [16].
In binary classification, class-wise recall for label 0 is the usual
recall, and that for label 1 is specificity. The scores of the T.
Ku et al.’s work are cited from [16].

Method no change removed added
Ours 0.64 1.00 -

PoChaDeHH 0.77 0.48 0.67
HGI-CD 0.81 0.28 0.20
SiamGCN 0.66 0.86 0.94

• Classification Differences: The reference algo-
rithms are designed for five-class classification,
including categories such as no change, removed,
added, change, and color change. In contrast, our
algorithm focuses on detecting the removal of
object instances.

• Dataset Variation: The reference algorithms uti-
lize a different dataset consisting of street scenes,
which may introduce variations in terms of scene
composition, object types, and background ele-
ments.

• Known Object Positions: The positions of the
objects of interest are provided in the reference
algorithms, whereas our algorithm operates with-
out this prior knowledge.

Despite these differences, our algorithm demonstrates
superior performance in terms of recall for the removed



class compared to the reference algorithms. Even when
considering the added class as equivalent to the removed
class, our algorithm still exhibits a slight performance
advantage of 0.06. However, the recall for the no change
class is comparatively lower than that of PoChaDeHH
and HGI-CD; according to [16], these algorithms tend to
predict no change, but this specialization comes at the
expense of generalization performance for other classes.
Conversely, SiamGCN, which showcases the best gener-
alization performance among the reference algorithms,
exhibits a recall rate similar to ours.

6. Conclusion
In this study, we have presented a change detection al-
gorithm that relies on panoptic segmentation and 𝑘-NN,
operating without the need for positional information
about the object of interest.

Our label merge algorithm effectively combines dif-
ferent instance labels that may correspond to the same
object instance, resulting in a reduced number of labels.
We have demonstrated its success in merging labels for
instances with complex shapes, such as chairs.

Through experiments conducted on an indoor point
cloud dataset, our change detection algorithm has proven
its ability to detect the removal of closely situated objects.
Unlike 2D change detection techniques, our algorithm
surpasses the limitations of capturing changes from a sin-
gle angle and showcases its capability to detect changes
in objects captured from different angles. Furthermore,
our algorithm has been compared with a state-of-the-
art algorithm, revealing its competitive performance in
terms of recall, particularly for the removed class.

In future research, we propose exploring techniques to
assess the quality of input images. Blurred images caused
by camera shake can adversely impact the segmentation
performance, and addressing this issue would enhance
the overall accuracy of our algorithm. Additionally, as
multiple frames may capture the same scene with mini-
mal differences, removing duplicates could be considered
to reduce the number of frames for processing, ultimately
improving computational efficiency.
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