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Abstract  
The article discusses a method of computer modeling of the rhythm of an electrocardiosignal 

based on a mathematical model in the form of a vector of stationary-correlated random 

sequences. This computer modeling method allows for the formation of implementations of 

the vector rhythm of the cardio signal (components of the vector of stationary-correlated 

random sequences) for different types of electrocardiosignals, both in the norm and with 

various types of rhythm pathologies. Based on the obtained statistical information in the form 

of estimates of correlation functions of vector components, modeling of the rhythm of 

electrocardiosignals was carried out. The accuracy of the computer modeling by the proposed 

method was studied. 
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1. Introduction 

Automated diagnostic systems allow studying the state of the human cardiovascular system, and the 

effectiveness of such systems largely depends on their components, including hardware and software 

tools. It is known that the process of automated diagnosis based on such systems involves processing 

the electrocardiosignal (ECG) signal in two stages. At the first stage, diagnostic information is obtained 

based on the analysis of the morphological features of the patient's ECG. This involves analyzing the 

shape and amplitude of diagnostic zones of the ECG. At the second stage, information is obtained based 

on the analysis of rhythm characteristics, i.e., the temporal relationships between the durations of 

diagnostic zones (segments) of the ECG. The development of technical tools based on models and 

methods that allow processing and modeling the ECG rhythm is of great interest because this 

information allows assessing the adaptive-regulatory capabilities of the cardiovascular system, as well 

as the psycho-emotional state of the patient. To develop new models and methods in medicine, in 

addition to well-known databases of biological signals such as https://physionet.org/, more and more 

tools are being used to create new databases of modeled signal realizations [1]. Additionally, knowledge 

bases are being formed, for example, based on the application of ontologies, knowledge bases in 

medicine, including for traditional medicine. In the vast majority of cases, databases are used to test 

created methods and verify new mathematical models, so creating them is an important task. 
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2. Analysis of recent research 

There are many developed automated diagnostic systems for processing electrocardiosignals (ECGs) 

that analyze the rhythm of the signal. Known systems use artificial intelligence and machine learning 

algorithms [2,3]. In such systems, the ECG is processed and a diagnostic conclusion is formed based 

on the training of neural network algorithms. Stochastic mathematical models have found wide 

application in some systems [4,5]. Mathematical models that allow for variability and rhythmic 

variability are presented in works [6,7], and these approaches to building mathematical models are 

possible through the use of a vector of cyclic rhythmically related random processes. New diagnostic 

features are proposed based on these new mathematical models and methods of rhythm processing [14]. 

Mathematical models in the form of cyclostationary signals for processing ECGs are considered in 

works [8-13]. ECG modeling is presented in works [14-16]. 

The existence of a significant number of mathematical models [18-26] and methods for processing 

ECGs [37-43] emphasizes the importance of evaluating diagnostic characteristics of morphological 

nature. However, rhythm analysis methods have been less widely applied, since not all mathematical 

models take into account the stochasticity and variability of the rhythm. This is due to the insufficient 

level of development of mathematical models and methods of rhythm analysis, which would allow for 

the consideration of both the stochastic nature of the signal, as manifested in the morphological and 

rhythmic features of the ECG [31-36]. Part of computer realisation of models is presented in works [25, 

26, 36, 37, 43-45] 

 

3. Mathematical model of the rhythm of the electrocardio signal 

In [7], a rhythmocardio signal with increased resolution is substantiated and described using a vector 

of stationary and stationary-related random sequences 
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The structure of probabilistic characteristics of a high-resolution electrocardiosignal, which follow 

from the invariance properties of the corresponding probability characteristics of stationary and 

stationary-related random sequences, has been studied in works [7, 14]. These characteristics 

complement the known probabilistic characteristics of the electrocardiosignal based on known models 

[37-45]. 

To implement the task of modeling the ECG rhythm based on a justified mathematical model in the 

form of a vector of stationary-related random sequences, we consider a five-component vector 
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model of which is a vector 
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sequences obtained based on ECG processing, which is shown in Figure 1a. The method described in 

[14] is used to generate vector component realizations. Figure 1b shows a fragment of the discrete 

rhythm function obtained using the methods described in [14]. The dashed line represents the 

continuous rhythm function, which is an estimate of the discrete rhythm function and characterizes the 

rhythm of the investigated ECG. Only a few vector components, are presented in Figures 2 and 3, 

including the first component of the ),(1 mT   is a random stationary sequence that describes a tooth P  

(diagnostic zone) in electrocardiosignal for all its 90 registered cycles. Implementation schedule )(1 mT   

of this component is presented in Figure 2, a. Figure 2b shows the third component ),(3 mT   of this 

vector, which is a random stationary sequence describing the duration of the diagnostic zones QRS  of 

the complex in the electrocardiosignal. Figure 3 shows the fourth component, which in turn describes 

),(4 mT   - tooth T  in the electrocardiosignal. 
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a)                                                                      b)

Figure 1: Graphs of fragments of the investigated ECG realization and discrete rhythm function for
six cycles in the ECG: a) fragment of the ECG realization (II-lead, normal ECG); b) fragment of the
discrete rhythm function for six cycles of the ECG (the continuous rhythm function is indicated by a
dashed line)

 

m  

smT ),(1  

0 10 20 30 40 50 60 70 80 90 

0.07 

0.08 

0.09 

0.10 

0.11 

0.12 

 

 

m  

smT ),(3  

0 10 20 30 40 50 60 70 80 90 

0.08 

0.09 

0.10 

0.11 

0.12 

 
a)                                                                      b)

Figure 2: Fragments of the implementation of the first and third components of the vector: a)
implementation T1 (m)  of the first component of the vector T1( ,m) , which describes durations P -

waves in electrocardiosignals; b) implementationT3 (m) of the third component of the vector T3 ( ,m)

, which describes durations of QRS - of the complex in the electrocardiosignal
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Figure 3: Implementation fragment T4 (m) of the fourth component of the vector T4 ( ,m) , which
describes the duration T - teeth in the electrocardiosignal



For data components of the vector of stationary-related random sequences, estimates of correlation 

functions were determined according to the formula: 
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Where the 90M - is the number of counts corresponding to the registered cycles of the investigated 

EKS implementation, 1M - is the element number in the sequence (correlation depth), y - the number of 

the correlation function for the corresponding component of the vector 5,1y  (for this example 

 4,3,1y ). 

The results of the obtained statistical estimates of the correlation functions are shown in Figures 4, 

5. 
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a)                                                                      b)

Figure 4: Fragments of realizations of estimates of the correlation functions of the first and third
components of the vector: a) realization of the estimation of the correlation function of the components 

T1 (m) the  first  component of  the vector   T1( ,m) , which describes durations P - teeth in the
electrocardiosignal; b) realization of correlation function estimation T3 (m)  of the third component of
the vector ),(3 mT   , which describes durations QRS - of the complex in the electrocardiosignal;
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Figure 5: A fragment of the implementation of the evaluation of the correlation function T4 (m)  the
fourth component of the vector ),(4 mT   , which describes durations of the T - teeth in the
electrocardiosignal

Based on the computer modeling method presented in [17], modeling experiments were conducted,

the results of which are the simulated realizations of vector components presented in Figures 6 and 7. 

During computer modeling, the obtained estimates of correlation functions presented in Figures 4 and 

5 were taken into account. 
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a)                                                                      b)

Figure 6: Fragments of the simulated implementation of the first and third components of the vector:
a) implementation of the T1 (m)  of the first component of the vector    T1( ,m) , which describes
durations of P - teeth in the electrocardiosignal; b) implementation T3 (m)  of the third component of
the vector ),(3 mT   , which describes durations of QRS - of the complex in the electrocardiosignal
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Figure 7: A fragment of the simulated implementation of T4 (m) the fourth component of the vector

),(4 mT   , which describes durations of T - teeth in the electrocardiosignal
Let's perform a statistical evaluation of the modeled components of the vector and obtain their

statistical estimates of correlation functions. The results of the statistical processing are presented in 

Figures 8 and 9.
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a)                                                                      b)

Figure 8: Fragments of estimations of correlation functions of implementations of simulated first and
third components of the vector: a) implementation ofT1 (m)  the first component of the vector T1 ( ,m),

which describes durations of P - teeth in the electrocardiosignal; b) implementation of T3 (m)  of the
third  component  of  the  vector ),(3 mT   , which describes durations of QRS-complex in the
electrocardiosignal;
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 Figure 9: A fragment of the evaluation of  the  correlation function of the   modeled  implementation
T4 (m)  the fourth component of the vector T4 ( ,m) ,  which   describes   durations T - teeth  in  the 

electrocardiosignal



We will investigate the accuracy of the developed method of computer simulation modeling [17],

and estimate the errors of computer modeling. To do this, we will determine the absolute and relative 

errors of the obtained statistical estimates of correlation functions for the modeled components of the 

vector of stationary-correlated random sequences.

The absolute and relative errors of modeling were determined as follows:
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The results of the obtained absolute and relative errors of rhythm modeling are presented in Figure 10. 
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e)                                                                      f)

Figure 10: Absolute and relative errors of computer modeling: a) absolute error of the first
component of vector ),(1 mT  in computer modeling; b) relative error of computer modeling for

estimates of the third component of vector ),(1 mT   ; c) absolute error of the third component of vector
),(3 mT    in computer modeling; d) relative error of computer modeling for estimates of the third

component of vector ),(3 mT  ; e) absolute error of the fourth component of vector T4 (,m)  in
computer modeling; f) relative error of computer modeling for estimates of the fourth component of
vector T4 ( ,m) . 

 



4. Discussion of obtained results 

The obtained results suggest that for modeling the rhythm of an electrocardiosignal based on a model 

in the form of a vector of stationary-related random sequences, the maximum relative error of modeling 

statistical estimates of vector components does not exceed 17% for the studied realizations, indicating 

sufficient accuracy of computer modeling. In [6, 14], a structured diagram of a diagnostic complex is 

presented (Figure 11). We will show that this diagnostic complex includes an additional block for 

computer modeling of a vector cardiac signal (stationary-related random sequences) based on the 

obtained statistical estimates. 
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Figure 11: Structural diagram of the modernized diagnostic complex

5. Conclusions

Based on a mathematical model of vector cardiac rhythm signals, a method for computer 

modeling of the heart rhythm electrocardiosignal (ECG) was developed in the form of a vector 

of stationary-linked random sequences. Statistical processing methods were applied to the 

components of the vector cardiac rhythm signal based on the mathematical model in the form 

of a vector of stationary-linked random sequences. During the computer modeling of 

realizations of the vector cardiac rhythm signal components, obtained statistical estimates of 

the real ECG were used. An assessment of the accuracy of computer modeling of vector cardiac 

rhythm signal components was carried out, and it was established that the relative error of 

computer modeling does not exceed 17%.

In further studies, it is planned to process ECGs with various types of rhythm pathologies 

such as tachycardia, bradycardia, arrhythmia, and others, while establishing those marker 

elements of correlation function estimates of the vector components that are sensitive to heart 

rhythm disorders.
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