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Abstract
A viability and a rationale for implementation of digital twins with augmented reality 

interface for further development of the smart manufacturing ecosystem is discussed. 

Different aspects of the problem of design and implementation of digital twins for industrial 

applications are considered. An approach for constructing the secure-by-design augmented 

reality-enhanced interfaces for digital twins is proposed. Benefits and cautions for use of 

augmented reality-enhanced digital twins in Industry 4.0 and prospects for Industry 5.0 are 

discussed.
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1. Introduction 

Digital twins are integrated nowadays into various spheres [1, 2] due to the recent developments of 

augmented reality (AR) and virtual reality (VR) technologies [3] which enable the development of 

realistic 3D copies with rich functionality. The current technological progress allows for wide use of 

AR assets and VR environment swith various interfaces. In the spirit of Industry 5.0, enhanced 

collaboration experience can be ensured by novel human-machine interaction interfaces based on 

augmented reality applications. This approach has received some educational applications [4, 5] and 

revealed substantial benefits for the involved stakeholders. The interaction between humans and 

machines can be facilitated by IoT sensors, cameras, microphones and touch triggers in an intuitive and 

inclusive way. However, the cost of substituting real production line equipment with its realistic digital 

twin is moderate only if the digital twin and its responses are not expected to be exactly like the real 

system, therefore, there are restrictions on digital twin application to be taken into account. 

At the same time, in today's digital era, it is essential to take necessary measures and use 

appropriate technologies to ensure information security in every smart domain due to the prevalence of 

user privacy issues. Information security is critical for businesses and individuals as it prevents data 

breaches that can result in financial losses for organizations, frauds, extortion and identity thefts for 

individuals. 

Transition to a more digitized industrial value chains is to have important outcomes for sustainable 

development, increase the energy efficiency of energy-intensive industrial processes and contribute to 

achieving the climate neutrality goal, using the creative potential of human enhanced by abilities of 

AI-based information systems.  Despite the opportunities presented by digitalization and Industry 4.0 

to 5.0 transition, which includes efficient use of IoT components and energy-efficient solutions that 

reduce pollution, there remain various aspects that can be integrated into these systems in order to 

further improve process operations. Important direction for the utilization of digital twin solutions is 

to optimize manufacturing lines and technologies specifically for the energy-intensive processes, 

especially in spatially distributed manufacturing chains. Furthermore, making the utmost use of raw 
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materials and energy can aid in decreasing waste-generation, amplifying access to recycled materials, 

lowering the levels of energy consumption and greenhouse gas-emissions and leading to cost-

reductions. 

Modern production lines are multifunctional physical systems consisting of intelligent machines, 

materials, products and containing a large number of multi-level connections between various 

elements. In the process of digital design of such systems, a kind of division is often carried out - 

digital models of various kinds are arranged separately in the digital space, while physical products 

and production processes exist in the physical space. A study of the development process of such 

smart factories indicates [6] that in order to fill the gap between the area of design and the area of 

operation of smart factories, the necessary element is the improvement of the technology of digital 

twins. This concept of creating unique virtual copies of real objects is gaining more and more 

importance due to the rapid development of simulation and modeling capabilities, the development of 

sensitive sensors, their better compatibility and the development of the Internet of Things (IoT). One 

of the key assistive technology solutions mentioned in this connection is the use of intelligent systems 

with augmented reality to support engineers in the design and operation of production lines. 

2. Digital Twins in Smart Manufacturing 

According to the widely used definition by the National Institute of Standards and Technology, 

Smart Manufacturing systems have to be collaborative manufacturing entities able to respond in real 

time to condition and demand changes. Such communication of production system units is also a 

characteristic feature of digital twins, which are digital representations of physical elements, usually 

using IoT and sensor data to monitor operations, control physical elements and support decision-

making processes [7]. Digital twins are designed to be used across multiple stages of the product or 

the manufacturing system lifecycle [8]. For an implementation of a digital twin, model and software 

are designed [9] to operate with the information collected from physical objects. 
To acquire data, analyze and optimize energy consumption of a smart manufacturing production, 

for which material flows, data flows and particular processes are shown in Figure 1, design and 

deployment of an analytics platform is absolutely fundamental. It is crucial to put in place data 

management systems for the purpose of storing and managing energy data scenarios, consumption 

and production process parameters. By gathering data, identification of the most energy-consuming 

aspects of particular processes will be possible, which will then facilitate the integration of new digital 

technologies, distributed procedure management and data-powered optimization. The power 

consumption by equipment and processes can differ substantially due to various specific factors 

including the type of machinery, the conditions under which it operates, and the schedule of 

production. In order to determine the energy-intensive processes or equipment, it is necessary to 

gather data on energy consumption, production and efficiency, using specifically selected smart 

sensors, meters and other monitoring devices which will be linked to manufacturing machinery. 

 

 

Figure 1: Processes, flows and artifacts for smart manufacturing use-case 
 



There are various possible energy data that can be collected from smart manufacturing line 

components, namely 

 Physical material data / visual material data, 

 Process control data / machine data, 

 Environmental data, 

 Synthetic and measured operational data. 

 

Classification of these data types is proposed in Figure 2 for a generic smart manufacturing facility 

using different types of raw materials and multiple sources to meet the energy demands in compliance 

with regulations and policies of green and digital transition [10-12]. Specific choice of the meters and 

sensors depends on the peculiarities of the manufacturing process. For example, while for some 

production elements where the heating is moderate and uniform, the point measurement of 

temperature with semiconductor-based sensors is accurate enough, informative and sufficient, for the 

case when the spatial thermal distribution is essential, the thermography usage is preferred. This 

implies that the amount and velocity of the harvested data can differ even for physically equivalent 

characteristics. 

Figure 2: Data typology for industrial applications 

 

The power consumption by each individual machine in the production line is one of the crucial 

data points to gather. Modern machinery can have IoT sensors to measure their energy consumption 

in real-time and this information can be utilized to identify units and processes where the equipment 

consumes more energy than is required and to optimize energy consumption as a whole as well as to 

reduce waste heat production. With the help of digital twins, the industrial data platform can track the 

manufacturing line's energy usage even if it is distributed among several different physical sites. 



There are a few sorts of environmental data that need to be gathered. Some smart manufacturing 

processes (such as 3D printing and molding of plastic materials) call for precise temperature 

management, thus keeping track of temperature information is essential to both maintaining high-

quality output and maximizing energy efficiency. Dataflow from the temperature sensors of the 

machine's heating and cooling systems can be used to both feed a digital twin that simulates the 

thermal behavior of the machine to predict potential problems and optimize the manufacturing 

processes and maintenance as well as to trigger edge-system controls in case of overheating. 

 

Figure 3: Exemplary Smart Manufacturing unit to be monitored and controlled by Digital Twin 
 

Algorithms can improve the machine's performance to consume less energy by assessing data on 

the operating parameters and the amount of material being used. Vibration sensors on machine parts 

can make it possible to spot potential concerns before they become serious ones. Likewise, 

information regarding hydraulic system pressure will be gathered by sensors and used to modify 

energy usage as necessary. Through the machine's digital twin, information on the quantity of parts 

produced, cycle duration and downtime will be gathered and used to improve energy use. 

Another benefit from digital twin implementation in smart manufacturing is predictive 

maintenance that can be used to maximize equipment time in service. The information gathered 

through sensors regarding the machine's state, encompassing data points such as vibration and 

temperature, allows for the prediction of maintenance needs, detecting causes of unanticipated 

interruptions to operations. By utilizing data analytics to schedule maintenance tasks, the workflow 

can be optimized for better performance, decreased energy consumption, and improved efficiency. 

By implementing a specialized intelligent industrial data platform, it is possible to guarantee that 

the consistent and accurate data obtained from sensors will be utilized during subsequent analysis and 



modeling. The appropriate data governance practices must be used when gathering, retaining, and 

manipulating data related to industrial procedures. Properly accomplished data engineering 

(collecting, storing and preparing data) is an essential prerequisite for obtaining insight from the 

harvested data. Special attention is to be given to information security and the protection of privacy. 

This involves guaranteeing that data remains confidential, unaltered, and accessible, while also 

preventing unauthorized access, manipulation, and theft of data. 

For an exemplary model of the smart manufacturing processes and units, specified by Figures 2 

and 3, it is necessary to develop a model that represents the current state of the live production line 

through links to live data streams from the manufacturing floor and enterprise management or digital 

twin platform streams and provide options for decision-making based on mathematical models that 

allow characterizing both the resource consumption and process peculiarities. To identify the most 

effective and viable solution, several energy management scenarios can be simulated using the digital 

twin. A virtual copy of the smart manufacturing facility can enable real-time monitoring and analysis 

of the facility's performance and energy usage to optimize the process, resulting in a life cycle that is 

more sustainable. 

3. Process optimization for Smart Manufacturing 

Based on the data obtained from a set of embedded sensors and external data generators, a 

reference matrix would be developed consisting of the set of minimum parameters needed to 

mathematically describe each process and its dependencies, limits and boundary conditions. Target 

function built on this dataset may serve as a tool for optimization of the process and effectively the 

entire system. Optimization schema shown in Figure 4 illustrates the general approach which may 

help resolve the optimization problem in an efficient way. In the right panel, the business-oriented 

schematization is given. Inputs x and outputs y are the quantified characteristics of the material and 

information flows which the manufacturing system receives from the external entities and sends to the 

same or different external entities, respectively. Optimal control signal u* is the solution of the 

optimization problem to fulfill the goals set by particular smart manufacturing use case. This optimal 

u* is to be obtained following the procedure described in this section (the examples for particular use-

cases will be presented elsewhere), to improve the initial control signal u based merely on the model 

description of the process and standard procedures. The distinctive feature of the proposed approach 

is the model refinement being the integral part of the optimization problem solving. 

 

Figure 4: Optimization schema for digital twin-enabled smart manufacturing. Left panel: model 
representation. Right panel: inputs-outputs-controls representation 

 

Solving the general optimization problem is quite complicated as it comprises functional relations 

of different types for numerous variables of various nature. However, the equations describing a 

particular process contain only variables of i
th
 subsystem and this feature allows a decomposition (see 



Figure 5) and construction of the optimization recipe as a superposition of partial solutions for 

separate subsystems (for the detailed discussion on this approach applicability see [13, 14]). This 

approach also significantly reduces requirements for processing power used by the optimization 

engine. At the same time, if different partial optimization problems are self-contained, which may be 

the case of the distributed manufacturing system, the optimal solution for k
th
 subsystem may be 

incoherent with KPIs of the entire system, therefore no decision making may be done and no 

correcting actions may be taken before the full optimization solution is found for the entire system. 

 

Figure 5: Optimization schema for digital twin-enabled smart manufacturing. Left panel: model 
representation. Right panel: inputs-outputs-controls representation 

 

Taking into account the measured process state vector �⃗� = (𝑥1 𝑥2 ⋯ 𝑥𝑛), control vector 

�⃗⃗� = (𝑢1 𝑢2 ⋯ 𝑢𝑛) and disturbances, the model choice is performed and the chosen model is 

refined. The initial control signal u is chosen on basis of the following considerations. First, the 

dimensionality of the state vector on the each particular subsystem does not exceed the dimensionality 

of the control vector for this subsystem. Moreover, particular 𝑢𝑛 is constructed according to hardware 

specification for the n
th
 smart manufacturing system component, for example, as binary code or 

analog signal. For a complex system, in which every compact manufacturing process (i
th
 subsystem) 

is characterized by its own control vector �⃗⃗�𝑖, input vector �⃗�𝑖, output vector �⃗�𝑖 and transformation 

matrix 𝑐𝑖𝑗, we consider the problem 

𝑚𝑎𝑥 ∑ 𝐹𝑖(𝑥𝑖⃗⃗⃗⃗ , 𝑢𝑖⃗⃗⃗⃗ )

𝑁

𝑖=1

 
(1) 

at conditions  

𝑥𝑖⃗⃗⃗⃗ = ∑ 𝑐𝑖𝑗
𝑁
𝑗=1 𝑦𝑗⃗⃗⃗⃗ , 𝑦𝑗⃗⃗⃗⃗ = 𝑓𝑖

⃗⃗⃗(𝑥𝑖⃗⃗⃗⃗ , 𝑢𝑖⃗⃗⃗⃗ ),𝑖 = 1,2 ⋯ 𝑁. (2) 

Lagrange polynomial for the above problem formulation is  

𝑅(�⃗�, �⃗�, �⃗⃗�, 𝜆, 𝜇) = ∑ (𝐹𝑖(�⃗�𝑖 , �⃗⃗�𝑖) + 𝜇𝑖⃗⃗⃗⃗
𝑇

(∑ 𝑐𝑖𝑗
𝑁
𝑗=1 𝑦𝐽⃗⃗⃗⃗ − 𝑥𝑖⃗⃗⃗⃗ ) + 𝜆𝑖

⃗⃗⃗⃗
𝑇

(𝑓𝑖
⃗⃗⃗(𝑥𝑖⃗⃗⃗⃗ , 𝑢𝑖⃗⃗⃗⃗ ) − 𝑦𝑗⃗⃗⃗⃗ ))𝑁

𝑖=1 . 
(3) 

Solution correction is performed on a higher level of the optimization, which corresponds to the 

overall system management. Coordination of the solutions obtained for separate subsystems is to 

operate the output vectors �⃗�𝑖.Therefore, in the first stage the calculation of output vectors �⃗�1, �⃗�2, … 

�⃗�𝑁  is to be done. In the second stage, the system of equations 

𝜕𝑅

𝜕𝑥𝑖⃗⃗ ⃗⃗
=

𝜕𝐹𝑖

𝜕𝑥𝑖⃗⃗ ⃗⃗
− 𝜇𝑖⃗⃗⃗⃗ + 𝜆𝑖

⃗⃗⃗⃗ (
𝜕𝑓𝑖⃗⃗⃗ ⃗

𝜕𝑥𝑖⃗⃗ ⃗⃗
)

𝑇

= 0, 
(4) 

𝜕𝑅

𝜕𝑢𝑖⃗⃗⃗⃗⃗
=

𝜕𝐹𝑖

𝜕𝑢𝑖⃗⃗⃗⃗⃗
+ 𝜆𝑖

⃗⃗⃗⃗ (
𝜕𝑓𝑖⃗⃗⃗ ⃗

𝜕𝑢𝑖⃗⃗⃗⃗⃗
)

𝑇

= 0, 
(5) 

𝜕𝑅

𝜕𝜆𝑖
⃗⃗ ⃗⃗

= 𝑓𝑖
⃗⃗⃗ − 𝑦𝑖⃗⃗⃗ ⃗ = 0, (6) 

𝜕𝑅

𝜕𝜇𝑖⃗⃗⃗⃗
= ∑ 𝑐𝑖𝑗

𝑁

𝑗=1

𝑦𝑖⃗⃗⃗ ⃗ − 𝑥𝑖⃗⃗⃗⃗ = 0 
(7) 

is to be solved and values �⃗�𝑖, �⃗⃗�𝑖, 𝜆𝑖, 𝜇𝑖 are to be determined. In the next stage the outputs vectors �⃗�𝑖 

are corrected with use of the condition 



𝜕𝑅

𝜕𝑦𝑖⃗⃗⃗ ⃗
= ∑ 𝑐𝑖𝑗

𝑁

𝑗=1

𝜇𝑖 − 𝜆𝑖
⃗⃗⃗⃗ = 0 

(8) 

and the system of equation (4)-(7) is solved with the corrected parameters iteratively. The condition 

for interruption of the iterative procedure may be chosen as  

∑ 𝑐𝑖𝑗
𝑁
𝑗=1 𝜇𝑖 − 𝜆𝑖

⃗⃗⃗⃗ ≤ 𝜀. (9) 

When the acceptable solution is obtained with the desired tolerance, the procedure, which is well-

suited for on-line optimization, is interrupted and the controls are enforced. Worth noting, the 

described correction procedure improves the intermediate solution for a defined target function, which 

itself may be a subject for correction. Even if the best solution is not reached in certain iteration, the 

current suboptimal solution is an improvement over the initial control signal u. 

4. AR-enhanced Digital Twins 

Augmented Reality is a technology that can bring significant change in the growth of an 

organization. When combined with Artificial Intelligence (AI) and the Internet of Things, AR opens 

new possibilities in product manufacturing, maintenance, support, and more. In Smart Manufacturing, 

AR can allow production managers to view production KPIs and have an intra-factory overview of 

workstations and production lines in real-time for monitoring, identifying, analyzing, diagnosing and 

resolving problems and flaws. AR can also be experienced via wearable smart glasses, or a mobile 

phone or tablet with a camera. The device may use computer-generated virtual objects to assist users 

in performing complex tasks and getting real-time insights for informed decision-making. 

As a relatively new and rapidly developing information technology, AR is a powerful tool to 

facilitate the interaction and, to some extent, the merging of physical and virtual space objects, 

providing a variety of production services through the widespread adoption of digital twins. AR also 

provides much better effect of immersion in the industrial environment and a more natural way of 

interaction for the subjects of the production process. Let us point out that the objects of physical 

space and the applied level of extended reality technology can be quite organically linked through 

virtual space. However, one of the bottlenecks and problems faced by the technology of digital twins 

in production is the proper implementation of the full range of interaction between the physical space 

and the virtual twin [15]. That is why augmented reality plays a special role at the current stage of 

supporting the practical implementation of industrial processes. The combination of AR and digital 

twins can improve the performance of industrial systems in different areas and at different stages of 

their life cycle, including design, manufacturing, distribution, installation, active operational use, 

service and end-of-life. Depending on the goals of the industrial process, one can focus [16] on 

different levels of overlap and mutual influence between the real object and its counterpart. The 

concept of a passive virtual twin refers to the transfer of physical data into the virtual space for the 

purpose of observation, i.e. the implementation of basic functions of status monitoring and alerting 

based on sensor data. Compared to a traditional web-oriented digital twin, this process can be 

significantly improved due to the specifics of AR devices. Unlike the virtual twin, its hybrid 

subspecies focuses on virtual and physical analysis and feedback, which includes the processing of 

contextual information. After collecting data from the physical space, real-time data analysis must be 

performed, and this process includes modeling, prediction, diagnosis and optimization, as well as 

feedback from the analysis results from the virtual world to the physical world. AR support 

significantly enriches on-site data analysis by adding object detection, scene capture and processing of 

cyber-physical interaction (for example, with the help of the Microsoft HoloLens 2 AR headset, the 

workspace itself will be perceived much more fully). And finally, the cognitive twin has the most 

powerful high-level toolkit, as it allows you to combine human intelligence and machine computing. 

There is an opportunity to dynamically solve more complex and unpredictable situations with the help 

of advanced computing capabilities, to organize a creative process (design, interaction with robotised 

processes, machine learning, etc.). 

For example, in work [17] it is noted that the modeling of the assembly of multi-element products 

is considered one of the key technologies in the process of designing and manufacturing complex 

systems. Note that AR-based digital assembly technology is used to implement the overlay of an 



additional information layer, perception of the assembly scene, navigation of assembly operations, 

joint design of the assembly process, etc. A digital assembly model based on a digital twin should 

realistically simulate the assembly behavior of physical objects in a real environment. Through the 

interaction between the virtual assembly objects and the real assembly environment, the quality  of the 

assembly design is effectively improved. 

The approach of digital twins has proven itself efficient for interaction with individual elements of 

production lines. For example, implementing [18] such a system on a CNC milling machine with 

remote process control, where control delay and virtual processing accuracy are monitored, can be 

applied as an important part of smart manufacturing, having a high potential for application on 

various industrial machines and smart systems. Augmented reality approaches are actively used to 

optimize control of robotic systems [19, 20] in industrial production. 

Figure 6: Components of the information system for the AR development 
 

Augmented reality-enhanced digital twins will facilitate human-computer interaction and make it 

more natural and personalized within Industry 5.0 practices. As metrics to be included into the 

information layer of the digital twin for the human operator to make timely informed decisions, the 

characteristics of manufacturing processes performance as well as critical physical parameters, 

predictions of events, risks estimates are the most relevant candidates.  

The workflow for developing AR tools has already been tested in educational use-cases [2, 4]. We 

propose the sequence of steps represented in Figure 6 for the design and implementation of AR tools 

for smart manufacturing. The initial step is to be the model development based on the system 

specification and appropriate regulations. AR design for the smart manufacturing system comprises 

the 3D modeling of the components and the produced items as well as embedding of the information 

layer for better informing of the authorized personnel and/or the decision maker. For the smart 

manufacturing line in operation, the digitized industrial platform performs tasks of the collecting and 

pre-processing of the relevant information, identified according to the methodology discussed in 

Section 2 and transmits the data to the custom-built data infrastructure. In the data infrastructure, 

parameters of the model developed in Section 3 are assigned the data points from the real production 

line for the subsequent optimization and control signals generation. For AR assets, the visual markers 

tracking allows the user to receive the insight into the process flow, visualized through the human-

computer interface and promptly interfere with correcting actions transmitted via web-based services 

to the industrial platform. Current state and system changes cause re-processing of AR layers and 

reflect both the parameters evolution and optimization results. This way, the Industrial Digital Twin 

(IDT) allows for real-time optimization and informed decision-making by human operators for 

improved process efficiency. As one can see, in addition to the digital twin services and databases, 



external users, 3
rd

 party services and physical devices can be involved which raises the issues of 

information security and privacy, to be addressed within secure-by-design ideology, with 

vulnerability and threat analysis based on detailed identification and characterization of the relevant 

data flows. 

5. Information Security Concerns in Digital Twin Development 

It is important to properly design and develop a security layer for the Industrial Digital Twin in 

cloud/edge environments. Addressing various aspects of information security and cybersecurity 

threats is required for assuring protection of the IDT and IoT devices from malicious attacks. 

Information, collected by the digital twins and processed by the industrial data platform, represents 

the valuable business asset and therefore is to be the subject of a thorough analysis in order to be 

appropriately secured. To address security concerns during the IDT development, deployment and 

use, the following aspects have to be considered. 

Since the IDT itself and as being a part of Cyber Physical Systems operates with sensitive data and 

privacy data, the best security practice compliant with industrial standards and regulations should be 

followed by default. Secure-by-design principle for developing IDT implies security requirements to 

be identified, which is one of the most important stages of the system development life cycle that 

allow the engineers to develop a quality, cost effective and secure system. Among approaches to 

identify security requirements within information and cyber security domains there is threat modeling 

that allows to identify security needs, locate threats and vulnerabilities, score their impact and 

severity, and prioritize solutions. It can be applied to a broad range of systems, including software, 

networks, distributed systems, IoT and industrial processes. To identify and describe potential threats 

and vulnerabilities to the IDT and to individual’s personal data, the STRIDE [21] and LINDUNN [22] 

threat modeling methodologies can be leveraged. Based on the IDT architecture, its applications and 

technologies analyzed in [23] we developed the general data flow diagram and the threat model 

shown in Figure 7. 

 
 

Figure 7: Digital Twin architecture data flow diagram 

 

The potential threats to the IDT and the data being processed within the Smart Manufacturing 

facility have been analyzed. The corresponding threat descriptions and mitigation actions have been 

systematized in Table 1. The proposed countermeasures will help engineers and security specialists to 

reduce the time and costs while designing or upgrading the IDT platform and its components.  

Privacy threat modeling within the IDT development is a process of identifying and assessing 

potential threats to personal information. It helps organizations involved in Smart Manufacturing as 



well as individuals to develop strategies to mitigate these threats and protect data privacy. Since the 

privacy threat modeling requires specific inputs of certain manufacturing implementations it will be 

analyzed in more detail in a separate research.  

 

Table 1 
Security threats and countermeasures for IDT platform 

Type of Security threat  Element of IDT architecture the 
threat is applicable to  

Countermeasures 

Spoofing – 
Impersonating someone 
else or claiming a false 

identity  

User 
3rd Party Systems 
Physical Systems 

Interfaces 
Digital Twin services 

Strong authentication mechanisms: 
MFA, biometric auth, certificate 

pinning, OAuth. 
Strong cryptographic protocols: PGP, 

AES, SHA-2, TLS 1.2 / 1.3, Elliptic-
curve cryptography. 

Encryption usage 
Tampering – modifying 

data in transit or at rest, 
or modifying a process 

maliciously  

Use-case Input / Output 
Integration Systems Requests / 

Response 
Device Status Data 
Control commands 

Interfaces 
Databases 

Digital Twin services 

Proper authorization mechanisms. 
Data hashing and signing. 

Secure communication protocols. 
Security Labeling 

Repudiation – denying 
taking an action or that 

an event occurred 

User 
3rd Party Systems 
Physical Systems 

Interfaces 
Digital Twin services 

Logging and audit trails. 

Information Disclosure – 
sensitive data being 
leaked while it’s in 

transit, at rest, or being 
processed 

Use-case Input / Output 
Integration Systems Requests / 

Response 
Device Status Data 
Control commands 

Interfaces 
Databases 

Digital Twin services 

Encryption usage. 
Proper authorization mechanisms. 

Strong cryptographic protocols: PGP, 
AES, SHA-2, TLS 1.2 / 1.3, Elliptic-

curve cryptography. 
Secure coding best practices. 

Denial of Service – an 
asset, service or 

network resource 
become unavailable or 
its their performance 

are reduced for 
purposive users 

Use-case Input / Output 
Integration Systems Requests / 

Response 
Device Status Data 
Control commands 

Interfaces 
Databases 

Digital Twin services 

Antimalware software / Security 
applications. 
Redundancy. 

Elevation of Privilege – 
gaining access or 

privileges that are 
unauthorized 

Digital Twin services 
Interfaces 

Proper authorization mechanisms. 
Principles of least privilege. 

Logging and audit trails. 
Access certification. 

 
Shift-left security approach adoption for the IDT development and usage will help to ensure the 

sensitive data and privacy information are protected from constantly increasing threat of cyber attacks 



on industrial systems. The solution provides the required traceability for cybersecurity and privacy 

auditing to demonstrate compliance with corresponding regulations.  

6. Conclusions 

Implementation of digital twins with augmented reality interface may become a powerful enabler 

for realization of human creative potential in smart manufacturing, which is a prerequisite for 

transition to Industry 5.0. Digital twins are especially valuable for improving manufacturing workflow 

when there are decisions which are to be made by a human operator. At the same time, collection of 

relevant information will allow continuous process optimization which may bring multiple benefits, 

including better quality of products, improved energy efficiency and efficient predictive maintenance, 

effective integration with smart city ecosystems [24, 25]. 

Different levels of digitalization [26] and stages of implementation of digital twins may be 

supported by augmented reality assets, from a virtual copy of a separate object, which can be remotely 

monitored to perform quality checks and control its behavior, to a virtual twin of the entire production 

pipeline, which not only allows the remote control in real time, but also provides an opportunity to 

apply the novel methods of big data processing for the purpose of predictive analytics and process 

optimization. In transition to principles and practices of Industry 5.0, where human creativity will 

play the central role in the production processes, novel human-oriented interfaces, such as those based 

on augmented reality technology, will be of the utmost importance. Specific examples of digital 

twins, discussed in the paper, their characteristic features and possible ways of further implementation 

of digital twins in smart manufacturing suggest the importance of adoption and proper 

implementation of secure-by-design approach for digital twins design. 
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