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Abstract  
New methods of processing cognitive neurosignals of the cerebral cortex based on the 

analysis of digital data from EEG sensors using machine learning methods, used to 

model the elements of mechanical movements of the patient's limbs, are considered in 

this article. The results of the application of this approach consist in determining the 

reverse cognitive effects on the study of movement elements (thumbs of the left and right 

hands) as signs for recognizing specific types of movement of human limbs. 
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1. Introduction 

The latest machine learning technologies based on deep neural networks in the development of 

signal processing information systems are improving the solution of problems related to the 

recognition and identification of human movements caused by cognitive influences of the nodes in the 

cortex of the brain. This is associated with a whole range of current medical applications, such as 

restoring the motor functions of people affected by various negative technological and military 

actions by creating effective means of prosthetics for this category of patients, treating patients with 

signs of a range of critical neurological disorders such as Alzheimer's and Parkinson's disease. [1]. 

Analysis of digital signals from nodes in the cortex of the brain (CC) is crucial for understanding the 

role of feedback in the cognitive control of human movements and their restoration to a normal state. 

The complexity of identifying the states of the human motor support mechanism (MSM) lies in the 

imperfection of existing diagnostic methods, their low accuracy, and the lack of mathematical and 

software tools for identifying the reverse influence of cognitive influences of CC nodes on their 

behavior. Studies of neural systems related to the analysis of patient behavior have been conducted by 

a number of researchers, such as Legrand A.-P., Vidailhet M., Wang J.-S., Luis E. D., Viviani P, and 

others [2-5]. They focused primarily on analyzing the state of MSM in patients using classical 

methods of digital processing based on Fourier transformation [2-4]. However, such methods require 

further development to ensure high-quality analysis and recognition of movements under the 

influence of cognitive signals from CC.  
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This article proposes a high-performance information technology for processing digital EEG 

signals from CC to study the state of the human MSM based on machine learning using deep neural 

networks, which allows identifying movement elements with consideration of cognitive feedback 

from CC nodes. 

2. Experiment 

The research idea was to use machine learning for analyzing cognitive feedback effects of SS 

neurosignals based on processing of encephalographic data of a patient who underwent an experiment 

[6], taking into account the approaches developed in [7,8]. The NEUROKOM computer 

electroencephalograph with a 16-channel selection of encephalograms and transmission to a personal 

computer using the appropriate protocol, which is the fifth generation of developed computer 

electroencephalography complexes, was chosen for studying the brain's electroencephalography 

(EEG) signals (Fig. 1).  

The helmet with the installed hardware and software platform of the manufacturer was used for 

conditioning EEG signals and post-processing on a PC. The data was stored in both raw text and 

visualized representations at each point in time.  

To obtain input data, the encephalograph was connected to the patient, which allowed measuring 

the potentials of his brain activity. 

 

 

 
Figure 1. Visualization of the experiment 

 

During the experiment, the patient sat comfortably in a chair with a backrest and armrests and 

performed bending movements of the index finger of their left hand for 2 minutes, followed by the 

same movements with the index finger of their right hand. The obtained data were analyzed using 

machine learning based on deep networks, which allowed for high-precision recognition of specific 

finger movements (which finger was flexed at a given time) and the resulting cognitive feedback 

effects of the neural nodes of the central nervous system, as determined by EEG signals from 16 

sensors of the encephalograph. 



During the experiment, the patient's movements were recorded by the encephalograph at a 

sampling rat of 500 Hz, which provided sufficient data. The total number of signal measurements for 

each of the 16 sensors of the encephalograph was 6003. Various experimental conditions were also 

taken into account, such as preventing sound stimuli, which reduced the risk of obtaining erroneous 

results. The obtained data were saved and used for further analysis and modeling using machine 

learning. The sets of output data are presented in Figures 2 and 3. 

 

 
 

Figure 2: The input data set from the encephalograph for the left hand's index finger (LHF). 
 

 

 
Figure 3: Input dataset of the encephalograph for the right thumb (RHF) 

 

3. Machine Learning 

After conducting the experiment, we obtained a significant amount of data that needed to be 

processed and analyzed. For this, we used the object-oriented programming language Python and 

specialized libraries: pandas, numpy, matplotlib.pyplot, collections, sklearn [6]. Thanks to this, we 

were able to build a model that can determine with 99.98% accuracy which finger was bent at a 

particular moment in time. The machine learning process allowed us to achieve this high accuracy and 

ensure the reliability of the results obtained. 

 

3.1. Data preparing for machine learning 

We read data from two files, "eeg_0.txt" and "eeg_1.txt", using the pd.read_csv() function from 

the pandas library. These files contain electroencephalogram (EEG) data from 16 sensors for two 

different patients who performed a finger flexion movement. Each file contains 6003 rows (number of 

EEG measurements for each finger) and 17 columns (each with 6002 values), where the first column 

contains the date and time, and the other 16 columns contain the EEG signal values for each sensor 

located in defined neurozones of the patient's brain cortex (encoding Fp1, Fp2, F3, etc.) (Fig. 1, 2). 

Next, we used the iloc() function to select all rows and columns from 2 to the second-to-last for 

each table, meaning we discarded the first and last columns that do not contain EEG values. 

To determine which finger corresponds to each data row, we created a new column "target", where 

the LHF finger is assigned the identifier "0" for table df1, and the RHF finger is assigned the 

identifier "1" for table df2. Therefore, we can use this column as the class label for training our 

machine learning model (MLM). In this case, "target" is an identifier of one of the fingers, and has a 

value of either 0 or 1. 



Below is the dataset (table) for the LHF finger in the MLM, where the EEG values are recorded 

for each sensor, and the finger identifier is located in the "target" column (Figure 3). 

 

 

 
Figure 4: Input data set for LHF finger in MLM 
 

3.2. Visualization of electroencephalography (EEG) signals 

To visualize the data, we used the matplotlib.pyplot library and created a plot that displays the values 

of the encephalogram for both LHF and RHF fingers during a 2-minute experiment. In the graphs 

(Fig. 5, 6), one can see how the encephalogram values change over time and how they differ for 

different fingers (LHF, RHF). This visualization helps to get a general idea of the characteristics of 

the data and their distribution. 
 

 
Figure 5: Visualization of the first set of input data for the LHF MLM model. 

 



 
Figure 6: Figure 6: Visualization of the second set of MLM model for RHF 

 

3.3. Data preprocessing 

Before loading data into the model, it is necessary to prepare and clean it from unnecessary 

information. In our case, we merge the data from two sets (LHF and RHF) into one set to have more 

examples for training our neural network. After that, we standardize the data to have a mean of 0 and 

a standard deviation of 1. The result without normalization is shown in Fig. 7, and the result with 

normalization is shown in Fig. 8. This process ensures the uniformity of the data, which increases the 

convergence of the model and reduces training time. 

We use the StandardScaler class from the scikit-learn library to standardize the MLM sets. After 

standardization, we split our MLM data set into two sets in a 75:25 ratio. 75% of the data will be used 

to train our neural network, and 25% will be used to test its effectiveness. We use the train_test_split 

class from the scikit-learn library to split the data into training and testing sets. 

In addition to standardization, other operations are performed on the MLM data, such as 

normalization, clipping, or removing missing values. The use of different preprocessing methods 

affects the model results, so it is important to experiment with different approaches and choose the 

one that achieves the best results. 



 
Figure 7: Results on non-normalized data MLM 
 

 

 
Figure 8: Results on normalized data MLM 

 

3.4. Training and testing model 

After completing the process of preparing the data for analysis and processing, we proceed with 

the creation and training of the neural network. This process includes the following stages: model 

initialization, training, prediction, and evaluation of its effectiveness. 

During the training of the model, the neural network was trained using input data and 

backpropagation of error to establish appropriate weights between neurons. This process can take a 



long time, depending on the complexity of the task and the size of the data used. The code snippet 

used for training and testing is shown in Fig. 9. 

 

 
Figure 9: Python code for training and testing MLM (LHF & RHF) 

 

We obtained the following results accordingly: 

• accuracy_score = 0.999133 

• f1_score = 0.999121 

• roc_auc_score = 0.999122. 

 

"Testing and evaluating the effectiveness of the MLM (LHF & RHF) allows us to determine the 

accuracy of the model, which indicates how accurately it predicts the output data. Various metrics 

such as accuracy, f1-score, and ROC AUC can be used for this purpose. The visualization of the 

confusion matrix is presented in Figure 10. 

 

 
Figure 10: Testing on mixed data MLM (LHF & RHF). Visualization of the confusion matrix 

 



Evaluating the performance of the model enables us to identify weaknesses and improve its 

accuracy. Figure 11 shows the probability estimation results of the model ranging from 0 to 1. 

 

 

 
Figure 11: Probability estimation results of MLM (LHF & RHF) prediction. 

 

As a result of training and testing the MLM (LHF & RHF) neural network, we achieved high 

accuracy, which enabled us to prepare it for use in recognizing patient movements under 

investigation. 

 

3.5. Example of MLM for recognizing specific patient movements 

 

The trained and tested MLM was fed a set of EEG data - signals from the patient's brain cortex 

(Fig. 13). 

 

 

 
Figure 12: Input EEG data set for recognizing patient movements 

 

The output of the network indicated that the given set of input EEG signals from the brain cortex 

(Fig. 12) corresponded to the patient's RHF finger movement (Fig. 13) with an accuracy of 0.999133. 



       
                               a)                                                                  b) 

 

Figure 13: Results of MLM recognition of the patient's RHF finger movement (feature 1):  а) 

illustration of the number of feature matches (1/0): 5998 for "1", 4 for "0", b) probability values for 

features (1/0). 

 

Therefore, as a result of training and testing the MLM neural network (LHF & RHF), we achieved 

a high level of accuracy, which allowed us to prepare it for use in recognizing the investigated 

movements of patients. 

 

4. Concluіsions 

The authors propose a high-performance information technology for processing digital EEG 

signals from the central cortex (CC) to investigate the state of the human motor system based on 

machine learning using deep neural networks. This approach allows for the identification of 

movement elements with consideration of the cognitive feedback loops of the CC neural nodes as 

features for recognizing specific types of human limb movements. High-performance algorithms for 

recognizing movement elements have been developed based on this approach, which enables parallel 

computing. 
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