
Optimization Methods for Determining Coefficients of 
Mathematical Model of Electroretinosignal for Detection of 
Neurotoxicity Risks 
 

Pavlo Tymkiv
a
, Aleksandra Kłos-Witkowska

b
 and Igor Andrushchak

c
  

 
a Ternopil Ivan Puluj National Technical University, Ruska str.56, Ternopil, 46001, Ukraine 
b University of Bielsko-Biala, Willowa St. 2, Bielsko-Biala, 43-300, Poland 
c Lutsk National Technical University,Lvivska Str., Lutsk, 43018, Ukraine 

 

  

Abstract  
The methods of optimization for coefficient determination in the mathematical model of 

electroretinal signal were analyzed for the task of detecting neurotoxicity risks (identification 

of neurotoxicants, evaluation of their type, quantitative characteristics, duration of exposure, 

etc.). A comparison of the computation time was performed for the coefficient determination 

algorithm using brute force search, Hooke-Jeeves method, and gradient descent based on a 

simulated electroretinal signal. The coefficient search algorithm was implemented in the 

Matlab programming environment.  
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1. Introduction 

The history of electroretinography dates back to the late 19th century with the work of physiologist 

and Nobel laureate Alfred F. Fuchs. He used electrical signals to study the physiology of animal eyes. 

However, the first person to apply electroretinography to study the human retina was French 

ophthalmologist Jules Gonin in the 1920s. He used a simple electrode construction based on Foster's 

discovery. 

Electroretinography (ERG) is a method for investigating the electrical activity of the retinal tissue 

of the eye, which allows for the evaluation of the functional state of various components of the retina, 

including photoreceptors (cones and rods) and bipolar cells. 

Fig. 1. is shown: the electrooculogram (EOG) represents the electrical response from the outer 

retina (photoreceptor–RPE complex); electroretinogram (ERG) measures the electrical response from 

the photoreceptor and inner retina; the visual evoked potential (VEP) represents the response from 

ganglion cells to the occipital cortex; NFL nerve fibre layer, GCL ganglion cell layer, IPL inner 

plexiform layer, INL inner nuclear layer, OPL outer plexiform layer, ONL outer nuclear layer, RPE 

retinal pigment epithelium, PR photoreceptor. 

This technique holds significant importance in ophthalmology for the diagnosis and monitoring of 

diseases such as retinal degeneration, glaucoma, and diabetic retinopathy. It is also used in studying 

the functional state of the human body in the early stages of neurotoxicity. 

In the second half of the 20th century, electroretinography (ERG) underwent significant 

development, leading to improvements in research methods and understanding of retinal functions. 

The emergence of computer technology enabled the recording and analysis of ERG using digital 

methods, making data processing easier and facilitating more accurate interpretation of research 

results. The use of photo stimulators based on xenon lamps and LEDs allowed for control over the 
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intensity and wavelength of light during retinal stimulation, improving the quality and standardization 

of ERG studies. The use of electrodes with reduced contact area increased the accuracy and sensitivity 

of the electroretinography method, along with subsequent filtering of the useful electroretinosignal, 

measurement of thresholds, amplitudes, and durations of signal components, providing more detailed 

information about the functional state of the retina. 

 
Figure 1: Electrophysiology and the layers of the retina [1]  
 

The improvement of standard ERG protocols, which have become widely accessible, has allowed 

for the standardization of procedures and the comparison of results between different methods and 

approaches to obtaining electroretinosignal (ERS). 

Since the year 2000, electroretinography (ERG) has undergone significant development and 

enhancement: 

1. More efficient electrodes with reduced contact area and improved design have emerged, 

providing more stable and accurate results in experimental ERG recordings. 

2. The use of high-speed analog-to-digital converters (ADCs) has enabled higher signal 

sampling rates, improving the quality of information obtained from ERG. 

3. ERG is employed to study various aspects of retinal functioning, including phototransduction, 

signal transmission, and response to low-intensity light, in the investigation and diagnosis of 

neurotoxicity and eye disorders. 

4. The development of standardized ERG protocols has facilitated result comparability among 

different laboratories and researchers. International organizations such as the International Society 

for Clinical Electrophysiology of Vision (ISCEV) contribute to the development and updating of 

standards and recommendations for conducting ERG studies. 

In modern electroretinography (ERG), new methods and additional investigations are emerging, 

allowing for more comprehensive information about the functional state of the retina. These include 

multifocal ERG (mfERG), the combination of ERG with optical coherence tomography (OCT) for 

complementing retinal structure analysis with functional assessment, and the integration of ERG with 

genetic studies and mutation analysis to understand the relationship between genetic anomalies, 

retinal structure, and functional status [2-4]. 

 

 

 



2. Study of optimization methods for determining the coefficients of the 
mathematical model of ERS 

However, electoretinographic research (especially at low light intensities) is accompanied by a 

number of challenges. Informative parameters of the ERS can be significantly corrupted, complicating 

its analysis. The presence of artifacts (eye movements or blinking) can distort the signal and lead to 

inaccurate results. Processing a large volume of data collected from the ERS can be complex and 

require the use of advanced algorithms and machine learning methods for effective analysis. The ERS 

can vary considerably between individuals, making comparison and interpretation of results 

challenging. Interpreting the ERS can be difficult, especially in the case of complex pathological 

conditions or changes occurring at different levels of the retina and early stages of neurotoxicity. 

To build an expert system for the analysis of the ERS (Figure 2), similar to data processing in IoT for 

smart city systems [5], big data processing in medicine [6] or in complex technical systems of various 

purposes [7], taking into account the aforementioned problems, it is necessary to employ an 

appropriate mathematical model and further methods for processing the experimentally obtained 

ERG. Previous works have justified a mathematical model of ERG as a damped oscillatory process 

using a function that is a solution to a linear second-order differential equation with constant 

coefficients (with the function representing the model of retinal light stimulation) [8]. 

 

 

 
Figure 2. Schematic diagram of ERG system with intelligence properties [9] 

 

To determine the parameters of the mathematical model (coefficients of the difference equation), a 

method of direct exhaustive search (brute force) was used, which guarantees a predefined accuracy 

and convergence but is computationally intensive. The significant processing time of the ERG by the 

expert system hinders its application for remote, automated, real-time monitoring of human body 

conditions (particularly in different toxicities). 

An improved method of parametric identification of the mathematical model based on the Hooke-

Jeeves method exists, which combines exploratory search with cyclic variable change and pattern 

search [10]. The Hooke-Jeeves method is a simple and efficient optimization method, especially in 

cases where the function lacks an analytical derivative or is non-differentiable. It is typically 

employed for local optimization, finding the optimal solution within a constrained parameter space. 

Although the Hooke-Jeeves method is effective for local optimization, it has some drawbacks: 

a) Dependency on the initial point - if the initial point is chosen incorrectly, the algorithm may 

converge to a local optimum and fail to achieve global optimality.  



b) High number of iterations - the algorithm may require a considerable number of iterations to 

reach the desired solution, particularly in complex parameter spaces.  

c) Sensitivity to noise - even small amounts of noise can lead to significant search deviations 

and affect the discovery of the optimal solution. 

Given the aforementioned drawbacks, several optimization methods are considered more effective 

than the Hooke-Jeeves method. These include the Nelder-Mead method, the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) method, the Conjugate Gradient method, and others [11]. 

The Nelder-Mead method is one of the most widely used derivative-free optimization methods. It 

employs an iterative process in which a set of points, called a simplex, is modified at each iteration to 

find the minimum or maximum of a function. The main idea of the Nelder-Mead method is to 

gradually expand or contract the simplex in the direction of optimization based on function 

comparisons at different points.  

 
 

Figure 3. Flowchart of Nelder-Mead simplex algorithm [Parameter Estimation of Nonlinear [12] 
 

Simplex is a polyhedron composed of vertices that correspond to points in the parameter space." 

"The Nelder-Mead method has several disadvantages to consider when applying it: slow convergence 

speed (it can be quite slow to converge to the global minimum or maximum, especially for complex 

functions or in high-dimensional parameter space. This is due to its local simplex transformation 

strategies), tendency to get stuck in local minima or maxima (especially when the function has many 

local extrema or when the simplex enters an area where the function has poor shape), sensitivity to the 

initial approximation (incorrect placement of the simplex can lead to convergence to an incorrect 

solution), and others." "The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is an iterative 

algorithm for unconstrained nonlinear function minimization. It combines ideas from quasi-Newton 

methods and conjugate gradient methods, making it efficient and widely used in optimization 

problems." "The main idea of the BFGS method is to approximate the quasi-Newton Hessian matrix, 

which estimates the second derivatives of the function. The initial Hessian matrix can be chosen 

arbitrarily, but typically an identity matrix or a diagonal matrix is used. During the iterative process, 

the Hessian matrix is updated at each step based on changes in the gradients. 

The main advantages of the BFGS method are: it has fast convergence, especially compared to the 

gradient descent method (it can quickly find the function minimum, especially in the case of smooth 



and nonlinear functions); it can be applied to a wide range of unconstrained optimization problems (it 

does not require formulating constraints on variables); compared to methods that require computing 

the full Hessian matrix, the BFGS method has lower computational costs (the Hessian matrix is 

updated iteratively, saving time and resources). However, the BFGS method also has its 

disadvantages: it requires computing and storing the function's Hessian matrix at each iteration (which 

can be very costly for large problems with a large number of parameters); storing the Hessian matrix 

at each iteration may require significant memory, especially for large problems; it does not guarantee 

convergence in unbounded problems (if the function is unbounded in the optimization direction, the 

method can diverge or get stuck in local minima); the choice and determination of the initial 

approximation can greatly impact the speed and quality of convergence of the BFGS method. 

Therefore, applying this method for optimizing the parameter determination algorithm of the ERS 

model makes it impractical for use in an expert system for real-time monitoring of a human body's 

condition. 

The conjugate gradient method is an efficient algorithm for minimizing quadratic functions in 

nonlinear spaces. It is commonly used for solving optimization problems, especially in the case of 

large systems of linear equations or machine learning tasks. The main idea of the conjugate gradient 

method is that each subsequent descent direction is chosen to be conjugate to all previous directions, 

allowing for faster convergence to the function minimum. 

The ordinary gradient descent method is used for minimizing a function of a single variable. The 

formula for updating the parameter in each iteration of the gradient descent method is as follows: 

θi = θi-1 - α * ∇J(θi-1) (1) 

where:  

θi-1 – the previous value of the parameter of the objective function,  

θi – the updated value of the objective function,  

α – learning rate (step size) that determines how large the update step will be,  

∇J(θi) – the gradient of the function at the point θi-1, which is the vector of partial derivatives of the 

function with respect to each parameter at the point θi-1.  

This process is repeated until a specified accuracy or a certain number of iterations is reached. If 

we have a function with multiple parameters, the formula for updating the parameters is as follows: 

θi = θi-1 - α * ∇J(θi-1) 

……………………….. 

………………………… 

θj = θj-1 - α * ∇J(θj-1) 

(2) 

For each parameter from θi to θj.  

In the gradient descent method, it is important to set the learning rate α correctly, which 

determines the convergence speed of the algorithm. If α is large, instability or divergence may occur, 

while if α is too small, the algorithm may work slowly. Additionally, various variations of the 

gradient descent method can be used, such as stochastic gradient descent (SGD), mini-batch gradient 

descent (mini-batch GD), and others. Each of these variations has its own characteristics and ways of 

updating parameters. The main drawbacks of the conjugate gradient method are as follows: the 

conjugate gradient method is particularly efficient for minimizing quadratic functions, but its 

efficiency may decrease for general nonlinear functions (complex functions may exhibit slow 

convergence or stagnation); the effectiveness of the conjugate gradient method can depend on the 

initial approximation (if the initial point is chosen far from the minimum, the algorithm may converge 

slowly or not converge at all); if the problem has constraints, additional methods need to be used to 

incorporate these constraints. 

Considering the advantages of the conjugate gradient method, we will apply it for optimizing the 

parameter identification of the mathematical model of the ERC. To do this, we will perform modeling 

of a test ERC in the MATLAB environment and find the optimal values of the model coefficients, 

b1_opt and b2_opt. The determination of these optimal coefficients will be evaluated based on the 

closeness of the modeled ERS kŝ to the known ERS ks  using a criterion value: 
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To compare and evaluate the prototype method and the improved method, we determine the 

time of selection of coefficients by the brutal force method and Hook-Jeeves method [10] and 

conjugate gradient method at different numbers of search points (Table 1). 

 
Table 1 
Comparison of calculation time of algorithm of direct full directed search and search on the basis of 
Hooke-Jeeves search strategy 
 

Number of 
points, N 

Processing time 
method brutal force 
search algorithm, s 

Processing time Hook-
Jeeves method  

search algorithm, s 

Processing time 
conjugate gradient 

method  
search algorithm, s 

100 0.6698 0.7666 0.6899 
200 1.6306 1.3215 1.1497 
300 3.7987 1.7511 1.6859 
400 6.7140 2.0514 1.9898 
500 10.5308 2.7493 2.5215 
600 15.7425 3.1958 2.8965 
700 22.2913 3.6477 3.2456 
800 29.5568 4.4972 3.5986 
900 37.9793 5.0008 3.9658 

1000 48.1306 5.8352 4.5486 
2000 245.9232 10.4593 7.3874 
3000 658.2834 16.9708 12.7803 
4000 1365.1457 23.1177 16.9372 
5000 3702.8461 30.1974 20.1698 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The dependence of the search time of the coefficients by the brutal force method, Hook-
Jeeves method and conjugate gradient method (semi-logarithmic scale) 

 

As seen from the provided data, the brute-force algorithm is a straightforward and exhaustive 

method of searching for an optimal solution by systematically evaluating all possible combinations of 



variables within a given range. It involves discretizing the search space into a grid of points and 

evaluating the objective function at each point. The algorithm requires a large number of objective 

function evaluations, resulting in longer processing times. As the number of points increases, the 

processing time significantly grows due to the exponential increase in the number of combinations to 

evaluate. 

The Hooke-Jeeves method, also known as the pattern search method, is an iterative optimization 

algorithm that explores the search space by moving from one point to another based on a pattern or 

direction. The method dynamically adjusts the step sizes and directions based on the improvement in 

the objective function value. The processing time of the Hooke-Jeeves method is usually faster 

compared to the brute-force algorithm since it focuses on exploring promising regions of the search 

space rather than evaluating all possible combinations. However, the method still requires a 

considerable number of iterations for convergence. 

The conjugate gradient method is an iterative optimization algorithm commonly used for solving 

unconstrained optimization problems. It combines the advantages of the gradient-based approach and 

the search in conjugate directions. The method updates the search direction iteratively based on the 

gradient and conjugate direction, allowing efficient navigation in the search space. To determine the 

optimal step size along the search direction, it is necessary to compute the gradient of the objective 

function and perform a line search. Compared to the brute-force algorithm and the Hooke-Jeeves 

method, the conjugate gradient method typically converges faster and requires fewer iterations to 

reach an optimal solution. As a result, this method can provide faster processing times for 

optimization problems with a large number of points. 

In summary, the brute-force algorithm exhaustively evaluates all combinations, leading to longer 

processing times. The Hooke-Jeeves method focuses on exploring promising regions and has faster 

processing times. The conjugate gradient method combines the gradient-based approach and search in 

conjugate directions for efficient convergence, resulting in faster processing times compared to other 

methods. 

3. Conclusion 

The brutal-force method is the simplest but most time-consuming approach. It requires 

enumerating all possible combinations of parameters to find the optimal values. Therefore, depending 

on the number of parameters and the desired accuracy, the brute-force method can be very slow and 

impractical for large optimization problems. The Hooke-Jeeves method can be effective in cases 

where the function has a smooth surface and continuous gradients. However, for complex functions 

with multiple local minima, the Hooke-Jeeves method may get stuck in suboptimal solutions or 

require many iterations to find the global minimum. In the case of searching for optimal values of the 

coefficients in the ERS model, the Hooke-Jeeves method requires significantly less execution time. 

The advantage of using the gradient descent method is that it quickly converges to a local minimum, 

so the algorithm's processing time is even shorter than that of the Hooke-Jeeves optimization 

algorithm. Overall, the choice of method depends on the characteristics of the problem and the 

requirements for speed and accuracy in synthesizing an expert system for diagnosing the human 

body's condition based on the obtained ERS. The conjugate gradient method is found to be more 

efficient than the brute force search and Hooke-Jeeves method in terms of computation time. The 

study contributes to the development of an expert system for real-time monitoring of a human body's 

condition based on ERS analysis. 
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