Generating Executable Robotic Process Automation Scripts from Unsegmented User Interface Logs (Extended Abstract)

Simone Agostinelli

1Sapienza Università di Roma, Dipartimento di Ingegneria informatica, automatica e gestionale Antonio Ruberti (DIAG), via Ariosto, 25, 00185 Rome, Italy

Abstract

Robotic Process Automation (RPA) is an automation technology that sits between the fields of Business Process Management (BPM) and Artificial Intelligence (AI) that creates software (SW) robots to partially or fully automate rule-based and repetitive tasks (or simply routines) performed by human users in their applications’ user interfaces (UIs). RPA tools are able to capture in dedicated UI logs the execution of many routines of interest. A UI log consists of user actions that are mixed in some order that reflects the particular order of their execution by the user, thus potentially belonging to different routines. When considering state-of-the-art RPA technology in the BPM domain, it becomes apparent that the current generation of RPA tools is driven by predefined rules and manual configurations made by expert users rather than intelligent techniques. Towards this direction, this thesis tries to mitigate the involvement of skilled human experts targeted at injecting intelligence into RPA practices. Specifically, the thesis presents an approach to: (i) automatically understand which user actions contribute to which routines inside a UI log (this issue is known as segmentation) and (ii) automatically generate executable RPA scripts directly from the UI logs that record the user interactions with the SW applications involved in a routine execution, thus skipping completely the (manual) modeling activity of the flowchart diagrams. Both approaches are implemented and evaluated employing both synthetic and real-world datasets.

Keywords

Robotic Process Automation, Process mining, User Interface (UI) logs, Segmentation, Automated generation of SW robots from UI Logs, SmartRPA

1. Introduction

Robotic Process Automation (RPA) is an emerging automation technology in the Business Process Management (BPM) domain [1] that creates software (SW) robots to partially or fully automate rule-based and repetitive tasks (or simply routines) performed by human users in their applications’ user interfaces (UIs) [2]. While conducting a BPM project is often considered too expensive because of its “top-down” approach, RPA relies on an approach where, rather than redesigning existing information systems (that remain unchanged), humans are replaced by SW robots in the execution of those business processes (BPs) involving routine work.

In the research literature, many case studies have shown that RPA technology can concretely
lead to improvements in efficiency for BPs involving routine work in large companies (e.g., Vodafone) [3]. Moreover, the market of RPA solutions has developed rapidly. Today includes more than 50 vendors developing tools that provide SW robots with advanced functionalities for automating office tasks of different complexity [4].

However, despite the growing attention around RPA, to achieve widespread adoption in the BPM domain, RPA needs to become “smarter” [5, 6, 7], i.e., RPA tools should employ AI solutions to adapt and learn how to handle non-standard cases by observing human resolving unexpected system behaviour (e.g., in case of system errors, etc.). In this direction, the presented work tackles three relevant research challenges in the RPA field and presents an approach to increase their automated features making them less dependent on direct human involvement.

2. Background

The traditional workflow to conduct an RPA project can be summarized as follows [8]: (1) determine which process steps are good candidates to be automated; (2) model the selected routines in the form of flowchart diagrams, which involve the specification of the actions, routing constructs, data flow, etc. that define the behaviour of a SW robot; (3) record the mouse/key events that happen on the UI of the user’s computer system; (4) develop each modeled routine by generating the SW code required to concretely enact the associated SW robot on a target computer system; (5) deploy the SW robots in their environment to perform their actions; and (6) monitor the performance of SW robots to detect bottlenecks and exceptions.

The majority of the previous steps, particularly the ones involved in the early stages of the RPA life-cycle, require the support of skilled human experts, which need to: (i) understand the anatomy of the candidate routines to automate through interviews, walk-troughs, and detailed observation of workers conducting their daily work (cf. step 1); and (ii) define manually the flowchart diagrams representing the structure of such routines (cf. step 2), which will drive the development of the SW code, often in the form of executable scripts (also called RPA scripts), allowing the concrete enactment of SW robots at run-time (cf. steps 3 and 4).

While this approach is effective to execute simple rules-based logic in situations where there is no room for interpretation, it becomes time-consuming and error-prone in presence of routines that are less predictable or require some level of human judgment. The issue is that in case where the flowchart diagram does not contain a suitable response for a specific situation, e.g., because of an inaccurate modeling activity, then the associated RPA scripts would not properly reflect the behaviour of the potential routine variant, forcing SW robots to escalate to a human supervisor at run-time, in contrast with the RPA philosophy.

3. Approach

Three major challenges arise from the above discussion [5, 9]: (C1) the automated identification of the routine steps to robotize from a UI log (cf., the segmentation issue [10]), (C2) the automated detection of all the routine variants that require some user input to proceed with their execution, and (C3) the automated synthesis of executable RPA scripts for enacting SW robots at run-time. To address these challenges, we have developed an approach and an implemented tool, called
SmartRPA [11, 12], which is able to: (i) interpret the UI logs recording the mouse/key events that happen on the UI of the SW applications involved in many routine executions, (ii) automatically identify and understand which user actions contribute to a particular routine inside a UI log and cluster them into well-bounded routine traces, (iii) discover all the variants of the routine under observation, and (iv) automatically combine them into an executable RPA script, which can be reactively synthesized into a single SW robot.

To achieve these goals, as shown in Figure 1, starting from an unsegmented UI log previously recorded with an RPA tool, the first stage of this research is to inject into the UI log the end-delimiters of the routines under examination. An end-delimiter is a dummy action added to the UI log immediately after the user action that is known to complete a routine execution. The knowledge of such end-delimiters is crucial to make the approach works, as discussed in [13].

For tackling C1, we rely on three main steps: (i) a frequent-pattern identification technique [14] (customized on an ad-hoc basis) to automatically derive the routine segments from a UI log (i.e., routine segments describe the different behaviours of the routine(s) under analysis, in terms of repeated patterns of performed user actions), (ii) a human-in-the-loop interaction to filter out those segments not allowed (i.e., wrongly discovered from the UI log) by any real-world routine execution by means of declarative constraints [15], and (iii) a routine traces detection component that leverages trace alignment in Process Mining [16] to cluster all user actions belonging to a specific routine segment into well-bounded routine traces (i.e., a routine trace represents an execution instance of a routine within a UI log). Such traces are finally stored in a routine-based log, which captures all the user actions happening during many routine executions.

Commercial RPA tools can employ routine-based logs to synthesize executable scripts in the form of SW robots without the manual modeling of the routines (cf. steps 3 and 4). To this end, the SmartRPA approach is able to automatically synthesize executable scripts for enacting SW robots at run-time. The SW robots generated by SmartRPA are obtained to handle the intermediate user inputs that are required during the routine execution, thus enabling to emulate the most suitable routine variant for any specific combination of user inputs as observed in the UI log (C2). This makes the synthesis of SW robots performed by SmartRPA approach reactive to any user decision found during a routine execution, thus allowing the potential run-time generation of as many SW robots as the routine variants to be emulated (C3).
4. Concluding Remarks

In summary, this research tries to mitigate the involvement of skilled human experts in steps 1, 2, 3, and 4, throughout the development of the SmartRPA approach which is able to tackle C1, C2 and C3.

SmartRPA has been validated on four non-functional requirements to measure the quality of the underlying approach. Specifically, we first performed many synthetic experiments employing UI logs of increasing complexity to assess the robustness and feasibility of SmartRPA to the: (i) discovery of valid routine segments, and (ii) identification of routine variants and variation points for the reactive synthesis of SW robots. A variation point is a point in the routine execution where a user choice needs to be made between multiple possible routine variants. Then, we performed a controlled experiment involving real users exploiting our RPA use case to investigate the effectiveness of the SmartRPA approach when compared to a traditional model-based approach for the generation of SW robots. Finally, we quantify the usability of the UI provided by the tool implementing the SmartRPA approach.

The main weakness of the SmartRPA approach is correlated with the quality of information recorded in real-world UI logs. Since a UI log is fine-grained, routines executed with many different strategies may potentially affect the identification of the routine segments.

In conclusion, our approach is based on a semi-supervised assumption, since we know a-priori the end-delimiters to be associated with any user action that ends a routine execution. On the other hand, the approach is not aware of the concrete behavior of the routines of interest, which will be discovered by the approach itself. For this reason, we consider this thesis an important step toward the development of a more complete and unsupervised approach. Towards this direction, we aim at relaxing the semi-supervised assumption by employing machine learning and deep neural network techniques to automatically identify the end-delimiters.

Acknowledgments

This work has been supported by the PNRR MUR project PE0000013-FAIR, the H2020 project DataCloud (Grant number 101016835), and the Sapienza grant DISPIPE.

References


1https://github.com/bpm-diag/smartRPA