
From LTL on Process Traces to Finite-State Automata
Francesco Chiariello1,2,*, Fabrizio Maria Maggi3 and Fabio Patrizi1

1DIAG - Sapienza University of Rome, Italy
2DIETI - University of Naples Federico II, Italy
3KRDB - Free University of Bozen-Bolzano, Italy

Abstract
Linear Temporal Logic on process traces (or LTL𝑝) is a logic introduced to specify and reason over the
temporal properties of (the traces generated by) business processes. So far, its relation with finite-state
automata has not been explored and researchers resorted to more expressive logics and the correspond-
ing automata construction algorithms. In this paper, we present a tool, named LTLp2DFA, to automati-
cally construct the automata associated with LTL𝑝 specifications and show how, by considering process
traces as first-class citizens, this results in simpler automata and better construction algorithms.

Keywords
DECLARE, Declarative Process Specifications, Finite-State Automata, Temporal Logics

1. Introduction

declare [1] is the most common declarative process specification language. This type of
language allows one to specify what should be done rather than how it should be done, as
is instead the case for imperative models such as Petri nets [2, 3] and BPMN [4, 5]. declare
consists of a set of templates for expressing constraints over process activities. For example, the
template 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒(𝑎, 𝑏) says that ‘whenever 𝑎 occurs, 𝑏 must occur afterward’. The constraints
are then obtained by instantiating the template variables (𝑎 and 𝑏 in the example above) with a
particular activity.

It has been shown that the semantics of declare can be grounded into Linear Temporal Logic
on finite traces (LTL𝑓 ) [6]. Variants on finite traces of well-established temporal logics have
been considered for analyzing terminating tasks, such as operational processes (see, e.g., [7, 8]).
Since process traces (also called simple finite traces in the literature) are finite, LTL𝑓 turns out to
be, as observed by De Giacomo et al. [9], a more natural choice for expressing process-trace
properties than LTL (on infinite traces) [10], originally used to formalize declare [11]. Using
LTL𝑓 allows for easily constructing Deterministic Finite Automata (DFAs) representing the
process constraints. As a consequence, there have been a number of works from the Business
Process Management (BPM) and Process Mining (PM) communities which directly use LTL𝑓 as

21st International Conference on Business Process Management, Utrecht, The Netherlands, September 11-15, 2023
*Corresponding author.
" chiariello@diag.uniroma1.it (F. Chiariello); maggi@inf.unibz.it (F. M. Maggi); patrizi@diag.uniroma1.it
(F. Patrizi)
~ https://www.francescochiariello.me/ (F. Chiariello)
� 0000-0001-7855-7480 (F. Chiariello); 0000-0002-9089-6896 (F. M. Maggi); 0000-0002-9116-251X (F. Patrizi)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:chiariello@diag.uniroma1.it
mailto:maggi@inf.unibz.it
mailto:patrizi@diag.uniroma1.it
https://www.francescochiariello.me/
https://orcid.org/0000-0001-7855-7480
https://orcid.org/0000-0002-9089-6896
https://orcid.org/0000-0002-9116-251X
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


a specification language, usually taking advantage of the automata-representation of the LTL𝑓

formulae. For example, LTL𝑓 specifications have been considered in [12] for Trace Alignment,
in [13] for Runtime Monitoring, in [14] for Vacuity Detection, and in [15] to measure the degree
of compliance of process models with event logs.

In addition to finiteness, process traces feature another notable property, which distinguishes
them from generic (finite) traces. Namely, at each time step, the former contains exactly one
activity (also referred to as the declare assumption in [9], and which we rename simplicity
assumption), while the latter may include any number of activities. This raises the question
of whether LTL𝑓 , which is powerful enough to deal with generic traces, is in fact too general
for process traces. Specifically, the problem is whether the (automata-based) machinery used
to check LTL𝑓 properties on generic traces can be simplified in the presence of process-traces
only.

Observe that while process traces can be dealt with in LTL𝑓 (see [9]), this significantly
increases the size of the LTL𝑓 formula and, in turn, the construction time of the corresponding
automaton. To overcome all these problems and make the semantics of the temporal logic match
that of declare, Fionda and Greco [16] introduced LTL on process traces (or LTL𝑝), which
natively incorporates the simplicity assumption, without yielding the growth in the size of the
formula.

Here, we show how using LTL𝑝 formulae leads to simpler automata than those obtained by
using LTL𝑓 , and provide a tool, named LTLp2DFA, to construct such automata. Besides being
simpler, automata could be obtained more efficiently, by exploiting the simplicity assumption in
the automata construction. The simplification has already been used in [17, 18, 19] to improve
the Answer Set Programming encoding [20] of various Declarative PM tasks for the analysis of
real-life logs. Also, if one wants to take advantage of Automata Learning techniques for Process
Discovery [21] of declarative models, LTL𝑝 turns out to be a better specification language than
LTL𝑓 .

2. LTL on Process Traces

Given a set Σ of propositional symbols, also called activities, a process trace 𝜋 is a finite non-
empty sequence of activities of Σ, i.e. 𝜋 ∈ Σ+.

An LTL𝑝 formula 𝜙 over Σ is defined by the following grammar:

𝜙 ::= 𝑎
⃒⃒
~𝜙

⃒⃒
(𝜙&𝜙)

⃒⃒
(𝜙|𝜙)

⃒⃒
(𝜙–>𝜙)

⃒⃒
X(𝜙)

⃒⃒
WX(𝜙)

⃒⃒
G(𝜙)

⃒⃒
F(𝜙)

⃒⃒
𝜙U𝜙

⃒⃒
𝜙R𝜙,

where 𝑎 ∈ Σ; X(next), WX(weak next), G(globally), F(eventually), U(until), R(release) are
the temporal operators; and ~(negation), &(conjunction), |(disjunction), –>(implication) are the
classical Boolean operators. Note that we do not require formulae to be in negation normal
form (i.e. we allow negation to be in front of any formula) and therefore some operators could
be defined in terms of the others. However, we still list them here to make the grammar match
the syntax of LTLp2DFA.

Due to space limitations, we do not report the semantics here. We just observe that it is
formally analogous to the semantics of LTL𝑓 (once process traces are considered instead of
finite traces) and we refer to [16] for further details.



The following theorem establishes a connection between formulae in LTL𝑝 and finite-state
automata.

Theorem. Given an LTL𝑝 formula 𝜙 over Σ, there exists a DFA 𝒜𝜙 = (Σ, 𝑄, 𝑞0, 𝛿, 𝐹 ) such that
𝒜𝜙 accepts exactly the process traces satisfying 𝜙.

Note that the alphabet of the automaton 𝒜𝜙 coincides with the set of activities Σ, while
working with LTL𝑓 would require an exponentially larger alphabet (the power set 2Σ). The
automaton 𝒜𝜙 can indeed be obtained following the LTLf2NFA algorithm reported in [9]
considering in the construction of the transition function only singleton interpretations, i.e.
propositional interpretations that are singletons (and determinizing the obtained automaton).

3. Overview of LTLp2DFA

The tool is written in Python and is built on top of the FLLOAT library1, simplifying the returned
automata to take into account only singleton interpretations. LTLp2DFA is available as a capsule
at https://codeocean.com/capsule/2735129/tree/v1 and can be run in the cloud. The source code
is also available at https://github.com/fracchiariello/LTLp2DFA, together with a tutorial (an
Interactive Python Notebook) and a video demonstration.

Let us consider again the template 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒(𝑎, 𝑏). It corresponds to the LTL𝑝 formula 𝜙1 =
G(𝑎–>F(𝑏)), or equivalently, 𝜙2 = G(𝑎–>X(F(𝑏))). The automaton obtained with LTLp2DFA
is the same for both formulae and is reported in Figure 1 (a). Compare this automaton with the
ones returned by FLLOAT on𝜙1 (b) and𝜙2 (c). To compactly represent the automaton, FLLOAT’s
output is a symbolic automaton where, instead of propositional interpretations, the transitions
are labeled by propositional formulae. The meaning is that when reading an interpretation, the
transition labelled with the formula satisfied by the interpretation is followed. Our tool exploits
instead the simplicity assumption and the transitions are directly labeled with activities. Note
that 𝑎 and 𝑏 are variables and the automaton is associated with the template. For a particular
constraint, 𝑎 matches the activation activity and 𝑏 the target activity. A special symbol * is
then added that matches any other activity. The same trick can be applied to improve the
simplicity assumption for LTL𝑓 . The result of adding the (improved) simplicity assumption to
𝜙1 or, equivalently, to 𝜙2 is in (d). The effect of the assumption is that a sink state is introduced
that is reached when zero, two or more activities are executed at a time. Regarding the other
transitions, the formulae are just an (involved) way of listing the corresponding activities.

4. Conclusion

We have provided a tool to convert LTL𝑝 formulae to finite-state automata. The automata
representation makes it easier to check the conformance of processes specified by such formulae
with event logs. Thus, LTLp2DFA paves the way for the practical use of LTL𝑝 as a process
specification language. We have also shown that, being the logic tailored to BPM and PM
applications, it is a better choice (in terms of simplicity and performance) than LTL𝑓 . Therefore,

1https://github.com/whitemech/flloat

https://codeocean.com/capsule/2735129/tree/v1
https://github.com/fracchiariello/LTLp2DFA


(a) (b) (c)

(d)

Figure 1: Automata for the Response template: (a) using LTL𝑝, (b) and (c) using LTL𝑓 , (d) using LTL𝑓
with simplicity assumption.

the tool enables LTL𝑝 to potentially replace LTL𝑓 (in the same way LTL𝑓 replaced LTL), for
any such application. Since LTL𝑝 is more general than declare (being able to express the same
process-trace properties as LTL𝑓 ), the tool could be easily embedded in Declare4Py [22], the
reference Python tool for declare-based PM, to support all the tasks involving automata-based
checking like, for example, process discovery, conformance checking and log generation.

5. Acknowledgments

Work partly supported by ERC Advanced Grant WhiteMech (No. 834228),the EU ICT-48 2020
project TAILOR (No. 952215), the UNIBZ project CAT, the PNRR MUR project PE0000013-FAIR,
the PRIN project RIPER (No. 20203FFYLK), and the project "Borgo 4.0" POR Campania FESR
2014-2020.

References

[1] W. M. P. van der Aalst, M. Pesic, H. Schonenberg, Declarative workflows: Balancing
between flexibility and support, Comput. Sci. Res. Dev. 23 (2009) 99–113.



[2] W. M. P. van der Aalst, The application of Petri nets to workflow management, J. Circuits
Syst. Comput. 8 (1998) 21–66.

[3] W. M. van der Aalst, C. Stahl, Modeling business processes - a Petri net-oriented approach,
in: CoopIS series, 2011.

[4] S. A. White, Introduction to BPMN, Ibm Cooperation 2 (2004) 0.
[5] T. Allweyer, BPMN 2.0 : introduction to the standard for business process modeling, 2016.
[6] G. De Giacomo, M. Y. Vardi, Linear Temporal Logic and Linear Dynamic Logic on finite

traces, in: IJCAI, IJCAI/AAAI, 2013, pp. 854–860.
[7] F. Belardinelli, A. Lomuscio, A. Murano, S. Rubin, Alternating-time temporal logic on

finite traces, in: IJCAI, ijcai.org, 2018, pp. 77–83.
[8] A. Murano, M. Parente, S. Rubin, L. Sorrentino, Model-checking graded computation-tree

logic with finite path semantics, Theor. Comput. Sci. 806 (2020) 577–586.
[9] G. De Giacomo, R. De Masellis, M. Montali, Reasoning on LTL on finite traces: Insensitivity

to infiniteness, in: AAAI, AAAI Press, 2014, pp. 1027–1033.
[10] A. Pnueli, The temporal logic of programs, in: FOCS, 1977, pp. 46–57.
[11] M. Pesic, H. Schonenberg, W. M. P. van der Aalst, DECLARE: Full support for loosely-

structured processes, in: EDOC, 2007, pp. 287–300.
[12] G. De Giacomo, F. M. Maggi, A. Marrella, F. Patrizi, On the disruptive effectiveness of

automated planning for LTLf -based trace alignment, in: AAAI, AAAI Press, 2017, pp.
3555–3561.

[13] G. De Giacomo, R. De Masellis, F. M. Maggi, M. Montali, Monitoring constraints and
metaconstraints with temporal logics on finite traces, ACM Trans. Softw. Eng. Methodol.
31 (2022) 68:1–68:44.

[14] F. M. Maggi, M. Montali, C. Di Ciccio, J. Mendling, Semantical vacuity detection in
declarative process mining, in: BPM, 2016.

[15] A. Cecconi, C. Di Ciccio, A. Senderovich, Measurement of rule-based LTLf declarative
process specifications, in: ICPM, 2022, pp. 96–103.

[16] V. Fionda, G. Greco, LTL on finite and process traces: Complexity results and a practical
reasoner, J. Artif. Intell. Res. 63 (2018) 557–623.

[17] F. Chiariello, F. M. Maggi, F. Patrizi, ASP-based declarative process mining, in: AAAI,
AAAI Press, 2022, pp. 5539–5547.

[18] F. Chiariello, F. Maggi, F. Patrizi, ASP-based declarative process mining (extended abstract),
in: (ICLP), Electronic Proceedings in Theoretical Computer Science (EPTCS), 2022.

[19] F. Chiariello, F. M. Maggi, F. Patrizi, A tool for compiling declarative process mining
problems in ASP, Softw. Impacts 14 (2022) 100435.

[20] G. Brewka, T. Eiter, M. Truszczynski, Answer set programming at a glance, Commun.
ACM 54 (2011) 92–103.

[21] S. Agostinelli, F. Chiariello, F. M. Maggi, A. Marrella, F. Patrizi, Process mining meets model
learning: Discovering deterministic finite state automata from event logs for business
process analysis, Inf. Syst. 114 (2023) 102180.

[22] I. Donadello, F. Riva, F. M. Maggi, A. Shikhizada, Declare4py: A Python library for
declarative process mining, in: BPM Demos, volume 3216 of CEUR Workshop Proceedings,
2022, pp. 117–121.


	1 Introduction
	2 LTL on Process Traces
	3 Overview of LTLp2DFA
	4 Conclusion
	5 Acknowledgments

