
BPMN2Constraints: Breaking Down BPMN
Diagrams into Declarative Process Query Constraints
Arvid Bergman1,2, Adrian Rebmann1,3 and Timotheus Kampik1,2,*

1SAP Signavio, Berlin, Germany
2Umeå University, Umeå, Sweden
3University of Mannheim, Mannheim, Germany

Abstract
This paper presents BPMN2Constraints, a tool that compiles BPMN diagrams into sets of declarative con-
straints that can then, for example, be used for conformance checking. Notably, BPMN2Constraints does
not rely on Petri net replay for generating the constraints; by generating constraints directly from a con-
trol flow graph extracted from the BPMN model, the tool avoids indirection. BPMN2Constraints can
generate constraints in several languages: DECLARE, finite-trace linear temporal logic, and SIGNAL, a
proprietary process querying language.

Keywords
Business process management, Declarative constraints, Conformance checking, Process querying

1. Introduction

As process mining is increasingly adopted in the context of enterprise information systems,
facilitating the generation of meaningful queries on process data in a business user-friendly
manner becomes an important practice challenge. One way to facilitate querying is the extraction
of conformance constraints from business process models such as Business Process Model and
Notation (BPMN) diagrams, which often exist in organizational contexts in which process
mining can be applied, for example in the form of reference models. However, these models
have typically not been created for the explicit purpose of mining and their complete, imperative
specification may be too rigid for meaningful process querying, e.g., in the case of conformance
checking. Traditional imperative process models typically characterize only the most common
process execution variants. This means that traces that are – from a business domain perspective
– unproblematic, but diverge from a model’s rigid control flow, may be incorrectly assessed
as non-compliant. Hence, in many scenarios, it makes more sense to view models as sets of
declarative constraints, only some of which should be activated. Here, traditional approaches
to checking process conformance against BPMN models by characterizing the models as Petri
nets and re-playing the traces that have been extracted from an enterprise system [1] fall short.

Proceedings of the Demonstration & Resources Track, Best BPM Dissertation Award, and Doctoral Consortium at BPM
2023 co-located with the 21st International Conference on Business Process Management, BPM 2023, Utrecht, The Nether-
lands, September 11-15, 2023
*Corresponding author.
" arvid.bergman@sap.com (A. Bergman); adrian.rebmann@sap.com (A. Rebmann); timotheus.kampik@sap.com
(T. Kampik)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1

mailto:arvid.bergman@sap.com
mailto:adrian.rebmann@sap.com
mailto:timotheus.kampik@sap.com
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Arvid Bergman et al. CEUR Workshop Proceedings 1–5

Instead, it is preferable to extract declarative constraints from the models. These constraints
can then be filtered to exclude the ones that do not carry any relevant business meaning. Also,
constraints of several models can be aggregated, e.g., to identify the most prevalent constraints
across several business process landscapes or collections of best practice models. An additional
advantage of compiling declarative constraint sets without an additional Petri net replay step,
but directly from imperative process models, is that at least some industry-scale process querying
languages use regular expression-based matching as the central abstraction for reasoning about
control flow, which is closer to declarative temporal reasoning. Considering the prevalence
of declarative approaches in large-scale industry applications outside of the process domain,
e.g., in distributed systems [2], this allows for the application of well-established reasoning
approaches that engineers are familiar with.

To achieve our goal of moving from business-level imperative process models directly to declar-
ative conformance checking constraints, this demonstration paper presents BPMN2Constraints,
a software library that compiles the control flow of BPMN models to constraints in several
declarative languages: finite-trace linear temporal logic (𝐿𝑇𝐿𝑓 ), DECLARE [3] (which pro-
vides somewhat user-friendly abstractions on top of 𝐿𝑇𝐿𝑓 ), and SIGNAL [4], which is a
proprietary process querying language used in industry. The tool is available as a Python
module. The source code alongside usage instructions and a (video) tutorial are available at
https://github.com/signavio/bpmn2constraints. To highlight BPMN2Constraints’s robustness
(as well as robustness limitations), the tool is applied to thousands of openly available process
models, as well as to a collection of thousands of proprietary best practice process models.

2. Mapping BPMN to Declarative Process Query Constraints

In order to illustrate how BPMN2Constraints compiles BPMN-like process models to declarative
constraints, let us introduce a simple (happy path) example BPMN model (Figure 1). The process
starts when a credit is requested (𝑐𝑟). Subsequently, the request is reviewed (𝑟𝑟). If standard
terms are applicable to the request, the terms are calculated (𝑐𝑡); else, special terms are prepared
(𝑝𝑠𝑡) and then, the contract is prepared (𝑝𝑐). In parallel to either 𝑐𝑡 or 𝑝𝑠𝑡 and 𝑝𝑠𝑡, the risk of
fulfilling the request is assessed (𝑎𝑟). Finally the quote is sent (𝑠𝑞), triggering the end event 𝑞𝑠.

Figure 1: A toy example process: credit quote creation.

Given the BPMN model, we can observe the following constraints, for example: i) 𝑟𝑟 pre-
cedes 𝑎𝑟 (DECLARE: 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑖𝑜𝑛(𝑟𝑟, 𝑎𝑟)); ii) Assuming transitivity, 𝑟𝑟 precedes 𝑠𝑞 as well
(𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑖𝑜𝑛(𝑟𝑟, 𝑠𝑞)); iii) Either 𝑐𝑡 and 𝑝𝑠𝑡 occur, but not both (𝐸𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒𝐶ℎ𝑜𝑖𝑐𝑒(𝑐𝑡, 𝑝𝑠𝑡));

2

https://github.com/signavio/bpmn2constraints


Arvid Bergman et al. CEUR Workshop Proceedings 1–5

BPMN Description DECLARE SIGNAL

Starts with 𝑎 𝐼𝑛𝑖𝑡(𝑎) ^a

Ends with 𝑎 𝐸𝑛𝑑(𝑎) a$

𝑎 leads to 𝑏 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑖𝑜𝑛(𝑎, 𝑏)
(^NOT(a|b)*(a~>b)

*NOT(a|b)*$)

𝑏 OR 𝑐 𝐶ℎ𝑜𝑖𝑐𝑒(𝑏, 𝑐) (b | c )

𝑏 AND 𝑐 𝐶𝑜𝐸𝑥𝑖𝑠𝑡𝑒𝑛𝑐𝑒(𝑏, 𝑐)

(^NOT('b'|'c')

(('b'ANY'c'ANY*)|

('c'ANY*'b'ANY*))

NOT('b'|'c')$)

𝑏 XOR 𝑐 𝐸𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒𝐶ℎ𝑜𝑖𝑐𝑒(𝑏, 𝑐)

(^(((NOT('c')*)

('b'NOT('c')*)*) |

((NOT('b')*)

('c'NOT('b')*)*))$)

Loop 𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑖𝑜𝑛(𝑏, 𝑐)

(^NOT('b'|'c')*

('b'NOT('b'|'c')*

'c'NOT('b'|'c')*)*

NOT('b'|'c')* $)

Table 1
Basic BPMN constructs & exemplary corresponding DECLARE and SIGNAL statements.

iv) 𝑎𝑟 and 𝑝𝑐 occur together, but are not constrained regarding their temporal order
(𝐶𝑜𝐸𝑥𝑖𝑠𝑡𝑒𝑛𝑐𝑒(𝑎𝑟, 𝑝𝑐)).

To generate the constraints, we parse the BPMN diagram, extract activity relations based
on the control flow and instantiate the constraints based on templates that follow DECLARE
semantics. Note that we exclude negative constraint templates as well as existence templates
to improve readability of the output. Implicitly, there is an 𝐴𝑏𝑠𝑒𝑛𝑐𝑒(𝑎, 1)) constraint for each
𝑎 /∈ 𝐴, where 𝐴 is the set of the task labels that occur in the model at hand, which means
that we exclude any tasks that are not part of the model1. We treat events and tasks/collapsed
sub-processes equally as propositional variables and handle sequence flows, OR, XOR, AND,
and event-based gateways for operator generation (interpreting event-based gateways as XORs).
All other element types are ignored.

1The full list of DECLARE templates we use as a basis can be found in our repository.

3



Arvid Bergman et al. CEUR Workshop Proceedings 1–5

Table 1 provides an overview of some common “patterns” that occur in BPMN diagrams and
how the compiler maps them to DECLARE statements and SIGNAL queries. It is important to
note that this is not a one-to-one mapping from these BPMN constructs to constraints, because
when constructs are nested within other constructs, the behavior allowed by the overall model
naturally changes, which in turn needs to be reflected by the declarative constraints.

3. Evaluation on Large Process Model Collections

In order to assess the robustness of BPMN2Constraints and demonstrate its maturity, we
compiled thousands of BPMN models from two large process model collections into DECLARE
and SIGNAL constraints and analyzed the results with respect to the following properties.
Ability to parse and compile. We check whether the parsing/compilation procedure fails and
whether all control flow-relevant elements (events, activities, sequence flows) can be parsed
and appear in the output.
Output similarity relative to a Petri net replay-based approach. We compare the
DECLARE constraints BPMN2Constraints generates with the output of a Petri net replay-
based constraints, measuring: i) precision: how many of the constraints generated by
BPMN2Constraints are also generated by the Petri net replay-based tool? ii) recall: how
many of the constraints generated by a Petri net replay-based tool are also generated by
BPMN2Constraints? Here, it is crucial to note that the constraints generated by the Petri net
replay-based tool are not a proper ground truth. In particular, the imperfect definition of BPMN
execution semantics does not allow for an unambiguous transformation into Petri nets; the
complexity of the standard causes challenges even for mundane tasks such as model interoper-
ability, which is continuously improved by a dedicated working group2. Still, the results can
shed light on the extent to which the two approaches are aligned, thus indicating potential
directions for future work.

For our evaluation, we used the following two process model collections.
A collection of research and educational BPMN models (SAP-SAM). The SAP Signavio
Academic Models (SAP-SAM) [5] contains around 550,0003 models that have been created by
researchers, students, and teachers for research and educational purposes. The dataset is very
large and diverse; however, most of the models it contains have not been created for real-world
process management purposes, i.e. it cannot be considered as representative of practice-oriented
process model collections. From the dataset we sampled 10,000 BPMN models.
A vendor-provided proprietary collection of reference BPMN models (VBPMN). To
mitigate the limitations of SAP-SAM, we extended the evaluation of BPMN2Constraints to the
SAP Signavio Process Explorer reference BPMN models4, a collection of around 7,000 BPMN
models that provide vendor-specific best practices.

From both collections, we excluded models with any of the following properties (heuristics to
select diagrams that are either of too low quality or out-of-scope for BPMN2Constraints): i) the
model contains five elements or less; ii) the model does not have any task, any start event, or

2See: https://www.omgwiki.org/bpmn-miwg/doku.php, accessed at 10-06-2023.
3This number excludes vendor-provided example processes, duplications of which we excluded.
4See: https://www.signavio.com/products/process-explorer/, accessed at 02-05-2023.

4

https://www.omgwiki.org/bpmn-miwg/doku.php
https://www.signavio.com/products/process-explorer/


Arvid Bergman et al. CEUR Workshop Proceedings 1–5

any end event; iii) the model fails a syntax check (executed by a commercial process modeling
tool); iv) the model has more than one BPMN pool, i.e. it models a cross-organizational process.
After filtering, 3,960 SAP-SAM models and 2,196 VBPMN models remained.

Our constraint generator managed to parse and compile 94.13% of the SAP-SAM models
and 99.9% of the VBPMN models. The total amount of constraints generated by the SAP-SAM
models where 149, 098 for the Petri net replay-based approach, and 142, 982 constraints were
generated by BPMN2Constraints. The VBPMN models generated 81, 043 constraints from
the Petri net replay-based approach and 81, 956 by our tool. The compiler achieves 64.46%
precision and 66.7% recall for the SAP-SAM models and 93.32% precision and 93.57% recall
for the VBPMN models. While the results indicate that there is still room for improvement and
deeper evaluation, let us highlight that this preliminary study is, to our knowledge unique in its
large scope. Also, we expect that many issues can be traced back to the ambiguity of the BPMN
standard and the quality of the models in the SAP-SAM dataset, which presumably contains –
despite the filtering – a substantial amount of incomplete or intuitively “wrong” models.

4. Conclusion

We have presented BPMN2Constraints, a tool for extracting control flow from BPMN-based
process models as declarative constraints. We hope that the work can make the relation between
imperative and declarative constraints more tangible. In the future, the tool can be extended,
e.g., to consider constraints beyond process control flow such as roles and responsibilities or to
support the output of additional process query languages such as the Process Query Language
(PQL) [6]. Also, a future extension of the tool could support the translation of declarative
constraints from one language to another (e.g., from SIGNAL to DECLARE and back). Beyond
tool functionality, future work could study formal aspects and limitations of breaking down
“imperative” process models into declarative constraints.

References

[1] W. M. P. van der Aalst, A. Adriansyah, B. F. van Dongen, Replaying history on process
models for conformance checking and performance analysis, WIREs Data Mining Knowl.
Discov. 2 (2012) 182–192.

[2] L. Lamport, The temporal logic of actions, ACM Trans. Program. Lang. Syst. 16 (1994)
872–923.

[3] C. Di Ciccio, M. Montali, Declarative Process Specifications: Reasoning, Discovery,
Monitoring, Springer International Publishing, Cham, 2022, pp. 108–152. doi:10.1007/
978-3-031-08848-3_4.

[4] T. Kampik, A. Lücke, J. Horstmann, M. Wheeler, D. Eickhoff, Signal – the sap signavio
analytics query language, 2023. arXiv:2304.06811.

[5] T. Kampik, C. Warmuth, D. Sola, B. Schäfer, L. Axworthy, E. Ivarsson, K. Ouda, D. Eickhoff,
Sap signavio academic models, 2022. doi:10.5281/zenodo.6964944.

[6] A. Polyvyanyy, Process query language, in: A. Polyvyanyy (Ed.), Process Querying Methods,
Springer, 2022, pp. 313–341.

5

http://dx.doi.org/10.1007/978-3-031-08848-3_4
http://dx.doi.org/10.1007/978-3-031-08848-3_4
http://arxiv.org/abs/2304.06811
http://dx.doi.org/10.5281/zenodo.6964944

	1 Introduction
	2 Mapping BPMN to Declarative Process Query Constraints
	3 Evaluation on Large Process Model Collections
	4 Conclusion

