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Abstract
Active learning strategies aim to minimize the number of queried samples for model training. However,
two challenges in pool-based deep active learning on imbalanced datasets are observed in experiments:
(1) the declining performance of active learning strategies due to imbalanced class distribution; (2) the
lack of sample diversity in acquisition batches due to the absence of timely model updates. This paper
proposes the AL-FaMoUS, a general solution combining fast model updates and class-balanced minibatch
selection to the active learning process. Furthermore, an implementation of the AL-FaMoUS, which
selects one single sample in each acquisition minibatch, is experimentally evaluated on four image
and three time-series imbalanced datasets. The results demonstrate that the implemented AL-FaMoUS
outperforms the other adopted AL strategies, including uncertainty sampling and BALD solely combined
with either the fast model update or the class balance selection strategy, in terms of Macro F1 score.
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1. Introduction

Active learning (AL) describes a machine learning paradigm to select the most informative and
representative samples for annotation. It aims to optimize the performance of the model while
reducing the overhead of annotating by querying as few samples as possible with high quality.
In the general AL setup, there is a large unlabeled dataset 𝒟𝑢 and a total annotation budget 𝐵,
which indicates the number of samples to be annotated. Assuming the AL algorithm queries the
oracle for labels of 𝑏 samples at each cycle, a complete active learning process is done within
⌊𝐵/𝑏⌋ cycles. Each cycle can be briefly described as follows: (1) calculating the utility scores 𝑢
of the unlabeled samples using a specific acquisition function; (2) ranking the utility scores
and selecting the top 𝑏 samples to annotate; (3) adding the 𝑏 labeled samples to the labeled
dataset 𝒟𝑙, based on which the model is retrained; (4) utilizing the retrained model for the next
cycle until the budget runs out. AL selection strategies can be distinguished by the selected
acquisition function.
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Figure 1: Comparison between the batch-based AL process (in blue) and the proposed AL-FaMoUS
process (in yellow). The former only ranks the utility scores and queries the 𝑏 samples at once in each
cycle, and the latter queries the 𝑏mini samples 𝑚 times until the pool 𝒟⊕ used to store the mini-batch
samples is full. After each query, the model is fast updated based on the extended pool 𝒟⊕ and then
used to recalculate the utility scores of the remaining unlabeled samples. The class-balanced selection
strategy ranks the updated utility scores and estimates the class distribution to query the next mini-
batch of samples.

After reviewing related research, we find two main challenges that may emerge as AL is
applied to real-world scenarios. The first is the declining performance of AL strategies on
imbalanced datasets. AL is generally studied on close to uniform datasets where a similar
amount of samples per class is available [1]. Most existing AL algorithms focus on ranking the
utility of samples across all classes, which proves effective in balanced class scenarios. However,
in the presence of imbalanced classes, not only the contribution of single samples differs but also
the proportion of each class is various [2]. Imbalance in 𝒟𝑙 and 𝒟𝑢 poses drawbacks regarding
model training and sample selection, respectively. In the former, during the optimization
process, each training set highly likely contains a higher proportion of major-class samples
selected from imbalanced 𝒟𝑙, leading to a tendency for the optimization to reduce the loss of
the model in terms of major-class samples [3, 4]. In the latter, the model tends to disregard
minor-class samples due to their lack of representation [5], resulting in a preference for selecting
major-class samples from 𝒟𝑢 in query [6]. This worsens the imbalance in 𝒟𝑙. The existing
literature has proposed various methods to solve the imbalanced problem [7, 8, 9, 10, 11, 12],
whose core idea is to query more labels of informative minor-class samples to keep the labeled
data balanced. These methods are successfully applied to the batch-based selection in the deep
active learning (DAL) scenario, that is, 𝑏 is much greater than 1. But the batch selection in DAL
leads to the next challenge, i.e., a lack of sample diversity within a batch.
Traditional active learning approaches [13, 14, 15], characterized by simpler models and

smaller datasets, commonly employ a single-sample-based selection strategy (𝑏 = 1). However,
in DAL context, with the complexity of deep neural networks (DNNs) and the scale of datasets
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increasing significantly, the computational cost of retraining the model from an initialization
state at each AL cycle becomes substantial. As a result, samples are typically selected in batches
for annotation to reduce the number of model retraining iterations [16]. However, it can
postpone the retraining of models [17]. An out-of-date model that only learned limited learning
patterns can hardly distinguish various novel patterns and thus may select the top 𝑏 samples
containing the same learning pattern at one cycle. In [17] and our experiments in section 4, it
was observed that the samples tend to be homogeneous in the same acquisition batch due to the
absence of timely model updates. This problem is called a loss of sample diversity in this paper.

Two bullet points of this paper can be summarized. First, to address the above challenges, we
propose a Active Learning Process with Fast Model Updates and a Class-Balanced Minibatch
Selection strategy, referred to as AL-FaMoUS, as illustrated in Fig. 1. Compared to the batch-
based AL process, which ranks the unlabeled samples only by the utility scores, the AL-FaMoUS
exploits specific class-balanced selection strategies to additionally evaluate the importance of
these samples from the perspectives of class distributions. In AL-FaMoUS, the budget per each
cycle 𝑏 is further divided into 𝑚mini-batches, i.e., AL-FaMoUS selects 𝑏mini =⌊𝑏/𝑚⌋ samples from
𝐷𝑢 for annotation at each time and then adds them to a pool 𝒟⊕

𝑖 , where 𝑖 ∈ {0, 1, … , 𝑚} and
𝒟⊕

0 = ∅. Next, the model is fast updated based on the pool 𝒟⊕
𝑖 to avoid an overestimation of

the utility scores of the samples containing a known learning pattern [17]. The class-balanced
selection strategy calculates and ranks the utility scores based on the updated model and then
queries the next 𝑏mini samples according to the estimated class distribution. When the pool size
equals the budget 𝑏, the fast update cycle ends, and the samples in the pool are transferred to
the labeled dataset. The model will then be completely retrained based on the labeled dataset.
AL-FaMoUS is a general-solution-oriented process, which does not have any restriction on
the setting of the acquisition function, the neural network’s architecture, the class selection
strategy, and the model update strategy. All configurations are completely dependent on the
users’ requirements and application conditions.
Second, to evaluate the performance ability of the proposal, a implementation of the AL-

FaMoUS combined with a Bayesian fast update strategy and a class-balance selection strategy
is experimentally evaluated on 7 imbalanced datasets. The results demonstrate the better
performance of the implemented AL-FaMoUS than other adopted AL strategies in various
applications.

2. Related Work

We can briefly categorize learning strategies on imbalanced datasets into two types: (1) increas-
ing the amount of minor-class samples and (2) weighting the major classes and minor classes.
The first type can be done with the help of oversampling [7, 8] or creating synthetic minority
class samples by generative models [12]. However, in most cases, generative models are hardly
trainable with limited minor-class samples. Other than that, the oversampling strategies trend
to artificially imitate the known learning patterns for class balance in the dataset but can lead
to a loss of sample diversity, eventually making models overfit the training samples [2]. The
second type [9, 10, 11] increases the weight of the minor-class samples in loss during training
but makes the information of major-class samples partially ignored [6].
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These learning strategies guide the idea of AL in the direction of annotating the minor-
class samples through oracle to provide a more balanced class distribution of the training data
for model training, such as in [18, 19]. However, various limitations and challenges are still
present. For example, Lin et al. proposed an active-learning-based search engine assisting
oracle in annotating highly informative samples [20]. But this work is specifically applicable
to language datasets. Lei et al. proposed a method to rank the priority of annotation for
minor-class samples, which is mainly applicable to binary classification problems [21]. Similar
research on binary classification was done by [22]. Novel acquisition functions were proposed
in [23, 2] to select samples on imbalanced datasets based on Bayesian Active Learning by
Disagreement (BALD, [24]) and uncertainty sampling, respectively. However, both works are
not straightforward to adapt to other active learning strategies. Aggarwal et al. also proposed a
novel acquisition function, which must require a pre-trained model based on an independent
dataset [1]. Additionally, none of these works argue the imbalance problem and the loss of
sample diversity existing in applications of time series analysis.

Model updating research investigates how to update trained models continually to adapt to
novelties emerging in data streams. Continual learning is a method that enables deep neural
networks to learn tasks sequentially while alleviating the forgetting problem, such as [25, 26,
27, 28]. However, these methods are updating strategies for deep neural networks based on a
large training dataset, which indicates a high dependency on data collection and computation
overhead. As one of the implementations of the AL-FaMoUS, we optimized an original batch-
based class balancing selection strategy [6] and adopted a fast Bayesian update method [17]
based on last-layer Laplace approximations (last-layer LA [29]) via Spectral Normalized Neural
Gaussian Process (SNGP [30]). It updates the approximate weight distribution of the last layer
instead of retraining the whole neural network.

3. AL-FaMoUS

This section introduces one of the implementations of AL-FaMoUS, where 𝑏mini is set to one, i.e.,
the model queries a single sample for the orcale at each time by considering the class balance.
After each query, the model will be updated quickly using the fast Bayesian update method.
The simplified method is referred to as single-sample-based AL-FaMoUS in this paper and is
formalized in Algorithm 1.
Let there be an unlabeled dataset 𝒟𝑢 with 𝑁 samples of 𝐾 categories and a labeled dataset

𝒟𝑙. Using Bayes’ theorem, we can estimate a posterior distribution 𝑝 (𝜔|𝒟𝑙) over weights 𝜔
of a Bayesian neural network (BNN) with the given labeled dataset 𝒟𝑙. At the beginning of
each AL cycle, a sample pool 𝒟⊕ is created to store the newly annotated sample. We define
𝒟⊕

𝑖 = 𝒟⊕
𝑖−1 ∪ {(𝑥𝑖, 𝑦𝑖)}, 𝑖 = 1, 2, … , 𝑏, where𝒟⊕

0 is an empty set. The unlabeled sample 𝑥𝑖 ∈ 𝒟𝑢 is
queried by considering both the ranked utility score and the estimated class distribution, and 𝑦𝑖
refers to the corresponding label given by the oracle. The model is fast updated based on the
𝒟⊕

𝑖 after each query, as proposed in subsection 3.2. At the end of each AL cycle, the 𝑏 samples
in the pool 𝒟⊕ are transferred to 𝒟𝑙. The initial size of 𝒟𝑙 is denoted as 𝑏0. At the cost of a low
computation overhead for multiple fast updates, the AL method can guarantee the balance and
the diversity of samples in the labeled dataset.
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Algorithm 1 Single-sample-based AL-FaMoUS

Input: Unlabeled dateset 𝒟𝑢, Budget per Cycle 𝑏, Initial labeled dataset 𝒟𝑙, Total Budget 𝐵
Init: 𝑐 = 0, 𝒟⊕ = 𝒟⊕

0 = ∅
while 𝑐 ≤ ⌊𝐵𝑏 ⌋ do

(Re)train a BNN based on 𝒟𝑙, obtain 𝑞(𝜔𝑙|𝒟𝑙) by Eq. 6
𝑐 ← 𝑐 + 1
𝒟0 = 𝒟𝑙 ∪ 𝒟⊕

0
𝑖 = 1
while 𝑖 ≤ 𝑏 do

Compute 𝑃 by 𝑝(𝑦 ∣ 𝑥,𝒟𝑖−1) for 𝑥 ∈ 𝒟𝑢
Compute 𝛼(𝑐) from Eq. 1
Calculate utility scores 𝑢 for 𝑥 ∈ 𝒟𝑢 ⧵ 𝒟⊕

𝑖−1
Solve Eq. 3 to obtain 𝑧 where ‖𝑧‖1 = 1
Obtain label 𝑦𝑖 for 𝑥𝑖, where 𝑧𝑖 = 1
𝒟⊕

𝑖 = 𝒟⊕
𝑖−1 ∪ {(𝑥𝑖, 𝑦𝑖)}

Fast Bayesian update by Eq. 7 to obtain updated distribution of 𝜔𝑙.
𝑖 ← 𝑖 + 1

end while
𝒟𝑙 ← 𝒟𝑙 ∪ 𝒟⊕

𝑏 , 𝒟𝑢 ← 𝒟𝑢 ⧵ 𝒟⊕
𝑏 , 𝒟⊕ = ∅

end while

3.1. Class Balance Selection

We define a matrix 𝑃 with 𝑁 rows and 𝐾 columns. The component 𝑝𝑛,𝑘 represents the model’s
softmax probabilistic output with respect to the unlabeled sample 𝑥𝑛 ∈ 𝒟𝑢 belonging to the
category 𝑘. Besides, we estimate a vector 𝛼 (𝑐) at an AL cycle 𝑐, which describes the difference in
the number of samples with respect to each category between the labeled dataset’s distribution
(imbalanced) and the desired distribution (balanced), formatted as follows:

𝛼(𝑐) = [𝛼 𝑐1, 𝛼 𝑐2, … , 𝛼 𝑐𝐾]
T, (1)

𝛼 𝑐𝑘 refers to the number of samples belonging to category 𝑘 that should be annotated at the AL
cycle 𝑐, and can be estimated by

𝛼 𝑐𝑘 = max (
𝑏0 + (𝑐 − 1)𝑏 + |𝒟⊕|

𝐾
− 𝑛𝑘, 0) . (2)

|𝒟⊕| denotes the number of samples that have been annotated and stored in the pool, 𝑐 =
1, 2, … , ⌊𝐵/𝑏⌋ denotes the index of the current cycle, and 𝑛𝑘 is the number of samples belonging
to category 𝑘 that were annotated in the previous cycles.
Next, we define a vector 𝑧, where each binary variable 𝑧𝑛 ∈ {0, 1} indicates whether the

corresponding sample 𝑥𝑛 is selected for annotation or not. ‖𝑧‖1 equals to one in the setup of
single-sample-based AL selection strategy, where ‖ ⋅ ‖1 refers to the L1-Norm. By maximizing
the 𝑧T𝑢, i.e., the summed utility scores of the selected samples, the optimal selection results can
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be obtained. Furthermore, in order to guarantee the class balance, we add a regularization term
‖𝛼(𝑐) − 𝑃T𝑧‖1 to the optimization goal. This regularization is defined as the distance between the
desired and the estimated class distribution at AL cycle 𝑐 [6]. The former refers to the required
samples for each class at AL cycle 𝑐, while the latter refers to the distribution of selected samples
in 𝒟𝑢 with the pseudo labels that are given according to the softmax probability matrix. In this
way, the overall optimization function is written as:

𝑧∗ = argmin
𝑧

{−𝑧T𝑢 + 𝜆‖𝛼(𝑐) − 𝑃T𝑧‖1} , (3)

where 𝜆 is the regularization parameter that controls the contribution of class balance in
selection.

3.2. Fast Bayesian Update

The posterior distribution of the BNN based on all labeled data can be expressed as 𝑝(𝜔|𝒟𝑙 ∪𝒟⊕
𝑖 )

with 𝑖 = 0, 1, … , 𝑏. For the sake of brevity, we use the abbreviation 𝒟𝑖 = 𝒟𝑙 ∪ 𝒟⊕
𝑖 here. As

explained above, the 𝑝(𝜔|𝒟0) refers to the initial BNN available at the beginning of each AL
cycle, namely 𝒟0 = 𝒟𝑙 because 𝒟⊕

0 is an empty set. With the given posterior distribution, the
predictive distribution for an unlabeled sample 𝑥𝑖 can be specified via marginalization:

𝑝(𝑦𝑖 ∣ 𝑥𝑖, 𝒟𝑖) = 𝔼
𝜔∣𝒟𝑖

[𝑝(𝑦𝑖 ∣ 𝑥𝑖, 𝜔)] = ∫𝑝(𝑦𝑖 ∣ 𝑥𝑖, 𝜔)𝑝(𝜔 ∣ 𝒟𝑖) d𝜔. (4)

The distribution 𝑝(𝑦𝑖 ∣ 𝑥𝑖, 𝜔) denotes the probabilistic output of a neural network with weights
𝜔. Instead of retraining the BNN from randomly initialized weights, we adjust the distributional
parameters to update the posterior distribution once a new sample 𝑥𝑖 is annotated. That is, the
initial BNN’s posterior distribution 𝑝(𝜔 ∣ 𝒟𝑙) serves as a prior distribution used to estimate the
updated BNN’s posterior distribution, which can be written as follows:

𝑝(𝜔 ∣ 𝒟𝑖) =
𝑝(𝒟⊕

𝑖 ∣ 𝜔)𝑝(𝜔 ∣ 𝒟𝑙)
𝑝(𝒟⊕

𝑖 ∣ 𝒟𝑙)
∝ 𝑝(𝒟⊕

𝑖 ∣ 𝜔)𝑝(𝜔 ∣ 𝒟𝑙) ∝∏
(𝑥,𝑦)∈𝒟⊕

𝑖

𝑝(𝑦 ∣ 𝑥, 𝜔)𝑝(𝜔 ∣ 𝒟𝑙), (5)

where 𝒟⊕
𝑖 = 𝒟⊕

𝑖−1 ∪ {(𝑥𝑖, 𝑦𝑖)} and 𝒟𝑖 = 𝒟𝑙 ∪ 𝒟⊕
𝑖 . Here, 𝒟⊕

𝑖 and 𝒟𝑙 are assumed to be indepen-
dently distributed.
As a specific BNN, we employ the SNGP [30] with last-layer LA [29] as the fast Bayesian

update method [17]. SNGP is composed of last-layer LA with spectral normalization [31] and
random Fourier features (RFF) [32]. SNGP learns hidden features through spectral normalization
as the output of the penultimate layer. By applying an RFF mapping to these outputs, we obtain
a 𝐷-dimensional representation, denoted as 𝜙(𝑥) ∈ ℝ𝐷. The last-layer LA is then performed on
𝜙(𝑥) using an approximate multivariate normal distribution over the weights of the last layer
𝜔𝑙 ∈ ℝ𝐷 as follows:

𝑞(𝜔𝑙 ∣ 𝒟𝑙) = 𝒩(𝜔𝑙 ∣ 𝜇̂, 𝛴̂) ∝ 𝑞(𝜔𝑙) ∏
(𝑥,𝑦)∈𝒟𝑙

𝑝(𝑦 ∣ 𝑥, 𝜔𝑙). (6)

Here, 𝑞(𝜔𝑙) represents the prior, and 𝜇̂ ∈ ℝ𝐷 and 𝛴̂ ∈ ℝ𝐷×𝐷 denote the mean vector and variance
matrix of the approximate distribution over 𝜔𝑙, respectively.
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The last layer is fast updated based on𝒟⊕
𝑖 by adjusting the parameters 𝜇̂ and 𝛴̂ once the new

sample pair {(𝑥𝑖, 𝑦𝑖)} is annotated. We update the approximated distribution of the weight in the
last layer using the method based on the Gauss-Newton algorithm, which was proposed in [17].
The method can be expressed as follows:

𝑞(𝜔𝑙 ∣ 𝒟𝑖) ∝ 𝑞(𝜔𝑙 ∣ 𝒟𝑙)∏
(𝑥,𝑦)∈𝒟⊕

𝑖

𝑝(𝑦 ∣ 𝑥, 𝜔𝑙) ≈ 𝒩(𝜔𝑙 ∣ 𝜇̂
upd
𝑖 , 𝛴̂

upd
𝑖 ), (7)

where 𝜇̂upd𝑖 and 𝛴̂
upd
𝑖 denote the updated mean weight vector and covariance matrix, respectively.

According to Eq. 4 and Eq. 7, the fast updated model can remake predictions of samples in
𝒟𝑢 via mean-field approximation [33] on the updated normal distribution:

𝑝(𝑦 ∣ 𝑥,𝒟𝑖) ≈ softmax(
𝜙(𝑥)T 𝜇̂upd𝑖

√1 + 𝜋/8 ⋅ 𝜙(𝑥)T 𝛴̂
upd
𝑖 𝜙(𝑥)

) . (8)

4. Experiment

This section evaluates the proposed single-sample-based AL-FaMoUS across four image and
three time-series datasets. For a comprehensive evaluation, we employed various models and
utilized the AL strategies of Least Confidence [14] based on uncertainty sampling (US) and BALD
as baselines. The experimental results demonstrate that the single-sample-based AL-FaMoUS
outperforms the baselines in terms of F1-score.

4.1. Experiment Setup

4.1.1. Imbalanced Datasets

The experiments were conducted on four image classification datasets (MNIST [34], LET-
TER [35], FMNIST [36], and CIFAR10 [37]) and three time-series classification datasets
(ECG5000 [38], CROP [39], and Electric Devices [40]). The original datasets are balanced,
except for ECG5000 and Electric Devices. As in [41] we randomly selected 50% of the classes in
these datasets and removed 90% of the samples belonging to these labels to make originally
balanced datasets imbalanced.

4.1.2. Strategies

We used random sampling (RS), US, and BALD as the baselines. As common active learning
strategies, the comparison among the three baselines can reflect whether US and BALD could
effectively improve the classification performance inmost datasets by selectingmore informative
samples. Furthermore, based on the acquisition functions of US and BALD, we employed and
evaluated the fast Bayesian update (FBU), batch-based class balance selection methods (CB),
i.e. ‖𝑧‖1 = 𝑏, and the proposed single-sample-based AL-FaMoUS, respectively. An example
regarding the expected behavior for different selection strategies is illustrated in Fig. 2.
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these selected samples contain a homogeneous learning pattern, the same as Baseline. The samples
selected by FBU contain diverse learning patterns but worsen the imbalance problem. AL-FaMoUS
could outperform them from both perspectives.
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Figure 3: Demonstration of different observations for various selection strategies applied to MNIST
and FMNIST. The initially labeled dataset is imbalanced. Compared with Baseline and CB, FBU and
AL-FaMoUS prefer to select the samples containing various learning patterns in a batch. After several AL
cycles, the class distribution of𝒟𝑙 is shown in 3c. Compared with Baseline and FBU, CB and AL-FaMoUS
can make 𝒟𝑙 more balanced.

4.1.3. Implementation

The setup parameters are different for each dataset. Up to 2% of the samples in each imbalanced
dataset were randomly selected to initialize the labeled dataset 𝒟𝑙. Therefore, these initial 𝒟𝑙
are also imbalanced. The examples of MNIST and FMNIST are shown in 3a. The budget 𝑏 per
AL cycle was in the range between 32 and 300.

We used ResNet-6 [42] as the backbone of SNGP for MNIST and FMNIST, and ResNet-18 for
CIFAR10. The SNGP with a fully connected network was used for LETTER. These models were
trained using the stochastic gradient descent (SGD) optimizer with a momentum of 0.9 and an
initial learning rate of 0.1. Furthermore, we used temporal convolutional network (TCN, [43])
as the backbone of SNGP for the datasets ECG, CROP, and Electric Devices. The TCNs were
trained using the Adam optimizer [44] with an initial learning rate of 0.001.
Similar to [6], we used the model trained on initial 𝒟𝑙 to set the regularization parameter 𝜆

on each dataset. Fig.4 gives an example regarding the impact of 𝜆 on the regularization term.
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As 𝜆 increases, the regularization term in Eq. 3 approaches convergence and does not decrease
further. We choose the smallest 𝜆 close to convergence from three options {0.05, 0.1, 0.5}. CB
and AL-FaMoUS used the identical and constant 𝜆 on the same dataset. See more details about
hyperparameter selection in Appendix A.

4.1.4. Evaluation Metrics

We evaluated the performance of all strategies on the test data under Macro F1 score [45] and
the class balance index (CBI). Macro F1 score highlights the performance of these strategies on
the minor classes. CBI reflects the final class balance of the algorithm’s cumulative selection
samples.𝑛𝑘 is the number of samples belonging to the category 𝑘 that were annotated in the
previous ⌊𝐵/𝑏⌋ cycles. 𝑠𝑘 represents the proportion of samples with category 𝑘 in all annotated
samples, that is expressed as 𝑠𝑘 = 𝑛𝑘/∑𝐾

𝑖=1 𝑛𝑖, where∑
𝐾
𝑘=1 𝑠𝑘 = 1. CBI is expressed as the inverse

of the standard deviation of the 𝑠𝑘 array:

𝐶𝐵𝐼 = 1
𝜎([𝑠1, 𝑠2, … , 𝑠𝐾])

. (9)

When the proportion of each category of annotated sample is more similar, the higher the CBI,
i.e., the algorithm can select more minority samples in the unbalanced data.
In addition, in order to quantify the diversity of selected samples in a batch, we calculated

the Euclidean distance and Kullback–Leibler (KL) divergence between the feature vectors of
selected samples as the measure of diversity. Let 𝑓𝑖 be the feature vector extracted from sample
𝑥𝑖, and 𝑑 be the dimension of the feature vector. We calculated the Euclidean distance (ED)
for each pair of feature vectors in a batch and calculated the average distance as a measure of
diversity. For KL divergence-based diversity, the probability density for each feature vector
is obtained by normalizing the features, denoted as 𝜌𝑖, where 𝜌𝑖,𝑗 is the probability of the 𝑗-th
feature on the vector 𝑓𝑖. The 𝜌𝑟𝑒𝑓 is calculated from all the normalized feature vectors in a batch:

𝜌𝑟𝑒𝑓 = 1/𝑏∑𝑏
𝑖 𝜌𝑖. Then, the KL divergence between each sample’s feature vector probability

distribution and the reference distribution is calculated as:

𝐾𝐿(𝜌𝑖||𝜌𝑟𝑒𝑓) =
𝑑
∑
𝑗=1

𝜌𝑖,𝑗𝑙𝑜𝑔 (
𝜌𝑖,𝑗
𝜌𝑟𝑒𝑓 ,𝑗

) . (10)

The KL divergence for each selected sample in a batch is represented as a list
[𝐾𝐿(𝜌1||𝜌𝑟𝑒𝑓), 𝐾𝐿(𝜌2||𝜌𝑟𝑒𝑓), … , 𝐾𝐿(𝜌𝑏||𝜌𝑟𝑒𝑓)]. The average KL divergence of the list is measured
as diversity.
For MNIST, FMNIST, and CIFRA10, we use the output of the penultimate layer of the pre-

trained Resnet50 as the image feature extractor. For other datasets, we use the original sample
directly as features, i.e., 𝑥𝑖 = 𝑓𝑖, to calculate the diversity.

4.2. Experimental Results

Table 1 presents the experimental results of the nine strategies, including Macro F1 score, CBI,
and relative diversity, which were averaged across 10 repetitive experimental trials and the AL

Zhixin Huang et al. CEUR Workshop Proceedings 25–45

33



Table 1
The CBI and Macro F1 of all strategies averaged over ten repetitions. The best CBI and F1 score achieved
on each dataset are marked in bold.

LETTER MNIST FMNIST CIFAR10 CROP E-DEVICE ECG5000
CBI F1 CBI F1 CBI F1 CBI F1 CBI F1 CBI F1 CBI F1

RS 2.79 .414 2.29 .811 2.29 .716 2.05 .531 2.70 .345 2.42 .616 2.44 .479

US

Baseline 3.05 .512 2.75 .868 3.45 .740 2.81 .598 4.41 .336 2.87 .632 2.95 .538
CB 3.80 .525 2.88 .864 3.69 .742 3.02 .606 4.86 .365 3.03 .632 3.06 .530
FBU 3.47 .597 2.68 .891 3.69 .742 2.93 .591 4.47 .361 2.85 .639 2.92 .528

AL-FaMoUS 4.33 .609 3.01 .895 3.74 .748 3.17 .607 5.49 .376 3.03 .643 3.12 .541

BALD

Baseline 3.47 .500 2.71 .855 3.58 .735 2.61 .597 4.21 .337 2.91 .608 2.75 .528
CB 3.74 .492 2.81 .855 3.72 .734 2.72 .610 4.51 .351 3.42 .618 2.94 .532
FBU 3.50 .572 2.78 .886 3.61 .741 2.58 .593 4.21 .367 2.82 .620 2.77 .528

AL-FaMoUS 4.12 .591 3.13 .886 3.80 .746 2.90 .617 5.00 .370 3.42 .626 3.05 .537

Table 2
The mean of relative diversity according to Euclidean distance (ED) and KL diversity compared with the
Baseline. A positive relative diversity means the selection algorithm can select more diverse samples in
a batch than the Baseline. The best relative diversities achieved on each dataset are marked in bold.

LETTER MNIST FMNIST CIFAR10 CROP E-DEVICE ECG5000

ED
KL

ED
KL

ED
KL

ED
KL

ED
KL

ED
KL

ED
KL

10−3 10−2 10−2 10−4 10−7 10−6 10−3

US
CB 0.49 1.71 -0.08 2.60 0.63 0.42 0.93 5.02 0.07 5.31 0.06 -1.31 -0.34 -0.45
FBU 1.49 2.00 8.24 3.33 2.80 2.04 1.09 9.01 0.10 7.22 0.20 1.13 3.28 7.74

AL-FaMoUS 1.58 2.70 8.85 3.63 3.43 2.11 4.26 1.52 0.13 1.06 0.21 1.13 4.78 1.63

BALD
CB 0.27 1.05 1.49 0.49 -2.14 -1.01 0.27 4.01 0.03 3.22 0.07 0.73 -0.06 -0.12
FBU 1.05 1.80 6.75 2.61 0.52 1.02 0.78 9.03 0.14 0.68 0.28 6.82 2.54 4.12

AL-FaMoUS 1.08 2.34 8.20 3.40 1.38 1.34 2.02 20.0 0.16 1.15 0.61 7.55 3.56 5.33

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
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Figure 4: The relationship between the choice of 𝜆 and the regularization term in the optimization
process of the US-based CB method applied on MNIST.

cycles. Overall, the results indicate that the proposed AL-FaMoUS outperformed the compared
AL strategies on all datasets. The findings are summarized as follows:

AL-FaMoUS exhibited better performance. In comparison to other AL strategies, AL-
FaMoUS exhibited better performance across all datasets in terms of Macro F1-score. These
findings suggest that AL-FaMoUS effectively enhanced the identification of minor classes while
concurrently ensuring that the performance of the major classes remains uncompromised. For
example, on the LETTER dataset, AL-FaMoUS outperformed US and BALD baseline in terms of
Macro F1 score, exhibiting a mean improvement by 9.7% and 9.1%, respectively.

CB did not create a benefit in all datasets. Using CB on relatively simple datasets such as
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Figure 5: The Marco F1 curves of the RS strategy and the BALD-based AL strategies on the four image
imbalanced datasets

MNIST and LETTER does not create a performance gain in all cases. As illustrated in Fig. 5b
AL-FaMoUS and FBU obtained comparably excellent results on MNIST compared to CB, whereas
CB even had a slightly lower F1 score than the baseline. One reason could be the well-structured
dataset with relatively homogeneous learning patterns in the minor class. As shown in Table 1,
although the CBI of CB is higher than that of FBU, i.e., CB selects more samples from minority
classes. But the diversity of CB selection samples is lower than FBU. Table 4 shows that US-based
CB even selected less diverse samples than the Baseline (relative ED diversity is −0.08). Fig. 5a
presents a similar conclusion about LETTER.

Fast model updates could enhance sample diversity. The enhancement in performance
can be attributed to the presence of sample diversity due to fast model updates. The experimental
results presented in Table 4 show that FBU has positive relative diversity scores on all datasets,
indicating that FBU can enhance the diversity of sample selection relative to the Baseline.
Both FBU and AL-FaMoUS demonstrated favorable results compared to other strategies across
different datasets, such asMNIST, LETTER, and Electric-Devices. Specifically, FBU outperformed
the BALD baseline by up to 7.8% in terms of Macro F1, as is shown in Fig. 5a.
FBU did not improve the performance on complex datasets. The performance of the

FBU method did not surpass that of the baseline approach in complex datasets. Specifically, we
observed a decrease 0.7% in F1 score for the US-based FBU method on CIFAR10 compared to
the US baseline. This result is consistent with the findings in [17]. In addition, [17] suggested
that one promising solution could be an SNGP network consisting of multiple layers with
Laplace approximation. Furthermore, Table 1 indicates the AL-FaMoUS strategy based on both
acquisition functions of US and BALD achieved a higher mean F1 than the corresponding FBU.
As shown in Fig. 5d, when F1 reaches 75%, compared with the AL-FaMoUS, the FBU method
requires 12.8% more annotations. It may be explained by the FBU falling into the local optima
due to the monotonous major-class samples selected according to the single selection criteria,
i.e., the top-ranked utility scores.

Diverse performance on the extremely imbalanced dataset. The performance of differ-
ent strategies varies on the extremely imbalanced dataset, particularly in the case of ECG5000,
where the minor-class samples constitute only 1% of the major-class samples. The Macro F1
measure is particularly sensitive to the performance of the minor classes. Specifically, the F1
score of FBU is significantly lower than that of the US baselines, with a maximum difference of
3%. The CBI in Tab 1 indicates that the reason could be more and more major-class samples
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Figure 6: The performance of compared methods on ECG5000. The blue line indicates our proposed
method.

were selected over AL cycles, which kept making the dataset more imbalanced (CBI of US-based
FBU lower than Baseline) and eventually resulted in the model being biased toward the major
classes. We also noticed that the performance of CB is also lower than the US-based baseline in
Figs. 6a. One possible reason is that in highly imbalanced datasets, model training is biased due
to the lack of sample diversity in CB, which can be proved in Tab 4 that relative diversity is
negative on ECG5000. The model ignored the minor-class samples completely so that it could
not query the desired pseudo-label to perform class balance optimization. In contrast, Fig. 6
presents that AL-FaMoUS outperformed the other strategies regarding F1 score.
Detailed experimental results are given in Appendix B.

5. Conclusion and Future Plans

Our study focused on addressing two primary challenges appearing in AL: (1) the model trained
on an imbalanced dataset ignores the significance of the minor-class in sample selection of
the AL process and (2) the model that has learned a limited training set and is not timely
updated or retrained can not select samples containing diverse, unknown learning patterns,
leading to a loss of sample diversity. To tackle both challenges, we proposed the AL-FaMoUS,
a general solution combining a class-balanced minibatch selection strategy and fast model
updates to the AL process. Moreover, we implemented the single-sample-based AL-FaMoUS
and evaluated it on seven public imbalanced datasets using BALD and US as baselines. As
a result, the single-sample-based AL-FaMoUS outperformed the other existing AL strategies
regarding macro F1 score and selected more diverse samples in the experiments. Besides, the
experiments showed that the AL-FaMoUS can be applied to different architectures of BNNs,
indicating the adaptability and flexibility of the AL-FaMoUS solution.
In future research, the current experimental setup can be extended from the following

perspectives: (1) search the optimal parameters of SNGP at the initial stage of AL; (2) research
on the impact of the budget per cycle 𝑏 on the BNN’s performance and the required computation
source; (3) verify the performance impact under the different imbalance ratios of the dataset on
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AL-FaMoUS; (4) dynamic adjustment of the regularization parameter 𝜆 in AL cycles, and (5)
evaluatemore state-of-the-art AL strategies as baselines, such as BatchBALD [16] or BADGE [46].
In addition, the research directions can also move forward to different practical application
scenarios with considering other deep learning domains. Besides the class balance problem, for
example, novel and/or anomalous classes can be detected and emphasized at the stage of sample
selection by applying novelty/anomaly detection techniques. Also, the fast Bayesian update
can be replaced by other updating strategies, such as various continual learning strategies.
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A. Detailed experiment parameter setting

Table 3
Experimental parameter setting for 4, imb.ratio indicates the ratio of the minor-class samples to the
major-class samples. imb 𝒟𝑢 size is the total number of samples of the imbalanced unlabeled dataset.

LETTER MNIST FMINIST CIFAR10 CROP E-DEVICE ECG5000

Dataset

type image image image image time time time
class num 26 10 10 10 24 7 5
imb. ratio 10% 10% 10% 10% 10% 23% 1%
imb 𝒟𝑢 size 8274 32430 32981 27481 6668 8318 2500

test dataset size 5000 10000 10000 10000 12000 8318 2500

SNGP
backbone FCN ResNet-6 ResNet-6 ResNet-18 TCN TCN TCN
kernel size 8 1 5 5 2 2 1

Train

train batch 16 20 20 20 10 20 10
optimizer SGD SGD SGD SGD Adam Adam Adam

learning rate 0.05 0.1 0.1 0.1 0.001 0.001 0.001
momentum 0.9 0.9 0.9 0.9 - - -
n_epochs 100 100 200 200 100 150 100

AL Setting
𝑏0 32 100 100 300 100 100 50
𝑏 32 100 100 300 100 100 50

cycle 20 7 10 20 6 30 6
Class Balance 𝜆 0.1 0.5 0.1 0.5 0.5 0.05 0.05

B. Performance comparison on different datasets
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Figure 7: The performance on LETTER dataset

LETTER This dataset consists of 26 classes. As illustrated in Fig. 7c, both FBU and AL-FaMoUS
demonstrate significantly better performance in comparison to CB and their respective baselines.
For example, we noted that an additional annotation of approximately 50% is required to achieve
70% accuracy when using the baseline method compared to AL-FaMoUS. Moreover, in terms of
Macro F1 score, AL-FaMoUS outperforms FBU, exhibiting a mean improvement of 1.2% and
1.5% for the US and BALD, respectively.
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Table 4
The accuracy andMacro F1 of all strategies averaged over ten repetitions. The best F1 score and accuracy
achieved on each dataset are marked in bold.

LETTER MNIST FMNIST CIFAR10 CROP E-DEVICE ECG5000
Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

RS .494 .414 .834 .811 .722 .716 .580 .531 .440 .345 .688 .616 .926 .479

US

Baseline .547 .512 .886 .868 .747 .740 .630 .598 .423 .336 .696 .632 .936 .538
CB .552 .525 .883 .864 .750 .742 .639 .606 .446 .365 .695 .632 .935 .530
FBU .618 .597 .905 .891 .748 .742 .625 .591 .440 .361 .702 .639 .936 .528

AL-FaMoUS .627 .609 .908 .895 .755 .748 .639 .607 .455 .376 .704 .643 .938 .541

BALD

Baseline .534 .500 .876 .855 .741 .735 .631 .597 .425 .337 .684 .608 .934 .528
CB .523 .492 .875 .855 .741 .734 .641 .610 .435 .351 .686 .618 .935 .532
FBU .600 .572 .901 .886 .747 .741 .630 .593 .450 .367 .693 .620 .935 .528

AL-FaMoUS .612 .591 .901 .886 .751 .746 .647 .617 .449 .370 .695 .626 .937 .537
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(c) BALD based 𝒟𝑙 on LETTER

Figure 8: The class distribution on LETTER dataset
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Figure 9: The performance on MNIST dataset

MNIST A similar finding was also observed in the experiments on MNIST, as shown in Fig 9d.
For total budgets below 400, both FBU and AL-FaMoUS maintained a considerable advantage,
underscoring the significance of sample diversity in the selection process. Besides, BC and the
BALD baseline achieved comparable results. The main reason could be that MNIST is a well-
structured dataset, where the existing learning patterns could be relatively tedious. Therefore,
using a class balance selection strategy in AL cycles can not create a significant benefit. One
possible reason is that the dataset is relatively simple, as we observed in the Fig 9d that even
with fewer samples in the minority class, the accuracy on test dataset can reach 95% rapidly.
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Figure 10: The performance on FMNIST dataset
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(b) US based 𝒟𝑙 on FMNIST
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(c) BALD based 𝒟𝑙 on FMNIST

Figure 11: The class distribution on FMNIST dataset

FMNIST According to the results in Table 1, we observed the US-based FBU and CB performed
equally well and better than the US baseline by about 0.2% of the mean F1 score. By comparison,
the mean accuracy of the BALD baseline and the corresponding CB dropped by up to 0.9%. It
suggests the selection of AL strategies had a considerable influence on this dataset. Furthermore,
AL-FaMoUS improved the performance of both US and BALD AL strategies in terms of accuracy
and F1 score. It is noteworthy that AL-FaMoUS with BALD achieved an improvement by 1.5%
and 2.7% in terms of accuracy compared to FBU and CB, respectively, as shown in Fig. 10c.
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Figure 12: The performance on CIFAR10 dataset

CIFRA10 In Fig. 12c, RS outperformed the others when the total budget was below 1500,
which indicates the learning patterns in this dataset may be more complex and challenging for
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(b) US based 𝒟𝑙 on CIFAR10
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(c) BALD based 𝒟𝑙 on CIFAR10

Figure 13: The class distribution on CIFAR10 dataset

training. We especially noted that the accuracy and F1 score of the US-based FBU dropped by
0.5% and 0.7% compared to the US baseline. This result is consistent with the findings in [17],
which suggested that one promising solution could be an SNGP network consisting of multiple
layers with Laplace approximation. Furthermore, Table 1 indicates the AL-FaMoUS strategy
based on both US and BALD achieved a higher mean accuracy than the corresponding FBU. It
may be explained by the FBU falling into the local optima due to the monotonous major-class
samples selected according to the single selection criteria, i.e., the top-ranked utility scores.
However, the regularization term for the class balance weighted the minor-class samples, leading
to the best performance of AL-FaMoUS.
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Figure 14: The performance on CROP dataset
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(b) US based 𝒟𝑙 on CROP
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(c) BALD based 𝒟𝑙 on CROP

Figure 15: The class distribution on CROP dataset
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CROP This dataset consists of 24 classes. Despite a lack of consideration for class balance, the
US and the BALD baseline were inferior to RS, as listed in Table 1. This observation highlights
the crucial role played by sample diversity. The performances of FBU and CB vary depending
on the AL strategy chosen for the baseline, but AL-FaMoUS maintains the optimal results.

500 1000 1500 2000 2500 3000
# samples in l

0.55

0.60

0.65

0.70

0.75

AC
C

RS
Baseline
CB
AL-FaMoUS
FBU

(a) ACC of US on E-Dev

500 1000 1500 2000 2500 3000
# samples in l

0.45

0.50

0.55

0.60

0.65

0.70

F1 RS
Baseline
CB
AL-FaMoUS
FBU

(b) F1 of US on E-Dev

500 1000 1500 2000 2500 3000
# samples in l

0.55

0.60

0.65

0.70

0.75

AC
C

RS
Baseline
CB
AL-FaMoUS
FBU

(c) ACC of BALD

500 1000 1500 2000 2500 3000
# samples in l

0.45

0.50

0.55

0.60

0.65

0.70

F1 RS
Baseline
CB
AL-FaMoUS
FBU

(d) F1 of BALD

Figure 16: The performance on ElectricDevices dataset
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Figure 17: The class distribution on ElectricDevices dataset

Electric Devices This dataset comprises 7 classes, with the minority class samples accounting
for approximately 23% of the majority class samples. As shown in Table 1, BC and the US
baseline perform similarly. Meanwhile, AL-FaMoUS achieves an average F1 improvement of
1.1% and 0.4% compared to the US baseline and FBU, respectively. The mean accuracy of all
methods based on BALD decreases by 1.2% relative to the US baseline. Nevertheless, AL-FaMoUS
consistently demonstrates the best performance. As Figure 16d is shown, when F1 reaches
65%, compared with the BALD baseline, the AL-FaMoUS method only needs to label 70% of the
samples.

ECG5000 This dataset exhibits extreme class imbalance, with the minority class samples
representing only 1% of the majority class samples. Since Macro F1 is sensitive to minority
class performance, the curve of RS in Figure 18b, rises first and then falls. As the AL cycle
increases, more and more samples of the majority class are selected, resulting in the model being
biased toward the majority class, leading to poor performance of the minority class. Notably,
FBU’s F1 score is significantly lower than the US baselines, with a maximum difference of 3%.
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Figure 18: The performance on ECG5000 dataset
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(b) US based 𝒟𝑙 on ECG5000
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(c) BALD based 𝒟𝑙 on ECG5000

Figure 19: The class distribution on CROP dataset

The experimental results indicate that this method overlooks class balance, leading to poor
classification performance in the minority class. In contrast, AL-FaMoUS achieves the best
results, with the highest F1 improvement of 6% compared to FBU. Additionally, Figures 18a
and 18c show that AL-FaMoUS attains optimal accuracy in most AL cycles. The experimental
results demonstrate that our proposed method not only enhances the recognition accuracy of
the minority class through class balance but also maintains the performance of the majority
class recognition.
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