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Abstract
Machine learning models are often trained on data sets subject to selection bias. In particular, selection
bias can be hard to avoid in scenarios where the proportion of positives is low and labeling is expensive,
such as fraud detection. However, when selection bias is related to sensitive characteristics such as gender
and race, it can result in an unequal distribution of burdens across sensitive groups, where marginalized
groups are misrepresented and disproportionately scrutinized. Moreover, when the predictions of existing
systems affect the selection of new labels, a feedback loop can occur in which selection bias is amplified
over time. In this work, we explore the effectiveness of active learning approaches to mitigate fairness-
related harm caused by selection bias. Active learning approaches aim to select the most informative
instances from unlabeled data. We hypothesize that this characteristic steers data collection towards
underexplored areas of the feature space and away from overexplored areas – including areas affected
by selection bias. Our preliminary simulation results confirm the intuition that active learning can
mitigate the negative consequences of selection bias, compared to both the baseline scenario and random
sampling.
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1. Introduction

Machine learning models are often trained on data sets subject to selection bias: non-random
selection of instances from the population. When selection bias is related to sensitive character-
istics such as gender and race, it can result in fairness-related harm. For example, in banking,
fraud detection models are typically trained on labeled transaction data, which can be affected
by social biases against sensitive groups. Transactions of customers belonging to those groups
may be flagged more often as suspicious, creating the appearance of a relatively high number of
fraudulent transactions compared to other groups - even when the true fraud rates are similar.
As aptly put by a quote popularly attributed to Sophocles: look and you will find it - what is
unsought will go undetected. Unaddressed, the consequences can be severe: fairness-related
harm linked to selection bias has been observed in various cases such as fraud detection in
welfare benefit applications [1], predictive policing [2], and medical diagnosis [3].
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Given these implications, it seems imperative to understand and mitigate the harmful effects
of selection bias in machine learning. In this paper, we present the results of a preliminary
simulation study which explores the effectiveness of active learning approaches in mitigating
fairness-related harm caused by selection bias. Active learning approaches aim to select the
most informative instances from unlabeled data. We hypothesize that this characteristic steers
data collection towards underexplored areas of the feature space and away from overexplored
areas – including areas affected by selection bias. Our simulation results confirm the intuition
that active learning can mitigate the negative consequences of selection bias, compared to both
the baseline scenario and random sampling.

The remainder of this work is structured as follows. In Section 2, we further detail the problem
of selection bias and the moral argument that motivates our work. In Section 3, we motivate
our hypothesis that active learning can be helpful to mitigate harmful effects of selection bias.
In Section 4, we provide a brief overview of related work. Section 5 details our experiment
setup and the results are presented in Section 6. Section 7 concludes the paper.

2. The Unfairness of Selection Bias

A major assumption in machine learning is that the training data is representative of the
population from which it is drawn. In practice, training data is often not sampled at random,
skewing the distribution of the training data set [4]. In particular, when positives are rare,
(manual) labeling of instances is expensive, and resources are limited, the selection of instances
to be labeled is typically informed by domain expertise or the output of existing statistical
models. In other words, non-random selection is leveraged to achieve reasonable predictive
performance with a small number of labeled instances. However, selection bias in historical
decision-making policies can be affected by social biases and structural injustice, resulting in an
unequal distribution of labeled data across sensitive groups [e.g., 1, 3].

Both over- and underrepresentation can result in fairness-related harm. In the context of
clinical prediction models, the underrepresentation of demographic groups in clinical data sets
can lead to underdiagnosis. For example, it is well-known that women have been historically
underrepresented in clinical trials. As a result, there exists limited knowledge regarding adverse
effects, benefits, and risks of treatments for women [3], which negatively affects healthcare
outcomes. In the context of fraud detection, selection bias can result in an unequal distribution
of burdens, where marginalized groups are overrepresented and disproportionately scrutinized.
For example, in 2021, it was brought to light that the Dutch Tax and Customs Administration had
unlawfully processed Dutch citizenship in fraud investigations of childcare benefit applications
and even explicitly included Dutch citizenship as a risk factor in the risk assessment model
[1, 5]. As a result, applicants who had a nationality other than Dutch were overly scrutinized
through manual processing of the application and many of them were wrongfully accused of
fraud.

The adverse consequences of selection bias are further amplified when the predictions of ex-
isting systems affect the selection of new labels, resulting in a feedback loop. For example, when
a fraud detection model is trained on a data set in which a sensitive group is overrepresented,
the model is more likely to generate alerts of potentially fraudulent activities for members of
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this group, resulting in higher testing and a relatively larger number of positives. When the
model is retrained on the newly available data, selection bias is reinforced. This type of feedback
loop has been previously characterized in different domains [e.g., 6], most prominently in the
context of criminal justice [2, 7, 8, 9, 10].

If the goal is to achieve reasonable predictive performance, some form of selection bias seems
unavoidable under limited resources.1 However, from a moral perspective, a disproportionate
distribution of burdens or benefits caused by the misrepresentation of sensitive groups in the
training data violates basic principles of equality [11]. Moreover, as shown by the case of the
Dutch childcare benefit scandal, a failure to mitigate this form of selection bias may not survive
legal scrutiny under EU law.2

In conclusion, we argue that practitioners have a responsibility to mitigate the harmful effects
of selection bias related to sensitive group membership.

3. Fairness-Aware Data Collection through Active Learning

Active learning is a form of semi-supervised machine learning, where the objective is to achieve
high predictive performance with a small number of labeled samples [13]. To this end, active
learning methods iteratively query an oracle (e.g., a human domain expert) to label specific data
points that are expected to improve the predictive performance of the machine learning model.
Once the labels are obtained, the model is retrained on a data set including the newly labeled
data. This process is repeated several times. Active learning is typically used when it is too
costly or time-consuming to label all data instances manually.

Active learning approaches can generally be divided into two main categories. Pool-based
approaches select one instance (screening-based) or multiple instances (batch-mode) from a
pool of unlabeled data instances. In streaming settings, streaming-based approaches determine
whether a new instance is labeled or discarded on a one-by-one basis as new data arrives. In this
setting, unlabeled instances are not revisited. In this work, we focus primarily on pool-based
approaches, as this setting best matches the typical scenarios where selection bias can occur,
such as fraud detection.

An important component of pool-based active learning approaches is the sampling approach
that determines which sample of data instances will be selected for labeling by the oracle. One
of the most common sampling approaches is uncertainty sampling, in which data instances are
ranked based on how uncertain the algorithm is regarding the true label of the data instance,
typically informed by the confidence score of the machine learning model [14].

Returning to the problem of selection bias, we hypothesize that active learning could po-
tentially mitigate fairness-related harm caused by selection bias related to sensitive group
membership. In particular, uncertainty sampling is expected to steer data collection towards
underexplored areas of the feature space and away from overexplored areas – including areas

1Of course, the mere notion of limited resources and the perceived value of predictive performance already embed
important value judgments. In particular, a straightforward alternative mitigation strategy would be to increase the
amount of available resources such that random selection is feasible.

2We would like to emphasize that EU law is highly contextual and judicial decisions related to the Dutch childcare
benefits scandal cannot be readily applied to all cases of unfairness caused by selection bias. We refer to Weerts
et al. [12] for a more elaborate overview of EU non-discrimination law in the context of algorithmic fairness.
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affected by selection bias. For example, consider a scenario where some group 𝐴 is historically
overrepresented in a data set compared to group 𝐵. A model trained on this data set is likely to
produce more uncertain confidence scores for instances in group 𝐵 compared to instances that
belong to group 𝐴. As a result, the active learning algorithm is more likely to query instances
in group 𝐵, counteracting selection bias.

Previous research points towards the potential effectiveness of active learning in the context
of unfairness caused by selection bias. While Branchaud-Charron et al. [15] do not explicitly
study the problems of selection bias and feedback loops, the authors do find that active learning
approaches can effectively improve fairness measured by several fairness metrics compared to
random sampling. Additionally, Richards et al. [16] do not explicitly consider fairness, but do
show that active learning is more effective at mitigating selection bias unrelated to sensitive
group membership than other techniques such as importance weighting. While neither of these
works fit our setting exactly, the results are promising.

Active learning could have several advantages compared to existing fairness-aware machine
learning (fair-ml) approaches. First of all, selection bias is addressed directly at its source:
during data collection. As such, we expect the approach to be more effective compared to
technical interventions that address harmful consequences through fairness constraints during
training. Second, if active learning is shown to consistently and effectively mitigate selection
bias, this implies that unfairness can be mitigated without having access to sensitive features
– an important concern in many efforts towards fair outcomes. However, we would like to
emphasize that even if active learning is effective, it will not be a panacea. Selection bias is
primarily a concern in scenarios where social bias and structural injustice are prevalent. In
such contexts, selection bias is unlikely to be the only source of downstream unfairness and
additional interventions are necessary to ensure equitable outcomes.

4. Related Work

Researchers have developed a plethora of fair-ml approaches aimed at mitigating unfairness,
ranging from pre-processing the data that obscure undesirable associations [e.g., 17], enforcing
fairness constraints duringmodel training [e.g., 18], and post-processing (predictions of) existing
models [e.g., 19]. A common denominator of these approaches is that fairness is formulated as
an optimization task, where the objective is to achieve high predictive performance under some
quantitative fairness constraint, such as a maximum difference in error rates across sensitive
groups.

Our work is related to sampling-based pre-processing techniques [e.g., 20], which use specific
sampling schemes to satisfy particular fairness constraints. However, different from our work,
these approaches typically assume a fully labeled training data set. More closely related to our
work are fair-ml approaches that adapt or complement existing active learning approaches.
For example, the Fairness-aware Active Learning (FAL) framework [21] aims to create a bal-
anced data set by selecting new data instances based on total accuracy and improvement of
demographic parity and equalized odds. Similarly, Parity-Constrained Meta Active Learning
(PANDA) [22] uses meta-learning to learn a selection policy that optimizes accuracy and fair-
ness constraints, outperforming random sampling, uncertainty sampling, and FAL in terms of
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accuracy and two commonly used fairness metrics.
All of the above-mentioned fair-ml approaches are proposed as generic tools to mitigate

unfairness via quantitative fairness constraints and most of them do not make explicit assump-
tions about the nature of the bias that lies at the root of unfairness. We argue that formulating
fairness as a black-box optimization task has several limitations. While fairness metrics can be
useful indicators of potential fairness-related harm, they often fail to capture more nuanced
notions of equality, rendering them poor optimization constraints [11]. Moreover, fair-ml
approaches attempt to address fairness primarily during the modeling stage of the development
process, which often fails to meaningfully address the biases and design choices at the root of
fairness-related harm [23]. In contrast to traditional fair-ml approaches, our work thus falls
in a line of recent work [e.g., 8, 9, 24] that shifts focus towards understanding and mitigating
specific types of biases directly.

5. Simulation Setup

We use a simulation study to explore the potential effectiveness of active learning for mitigating
the harmful effects of selection bias related to sensitive group membership. The source code of
the simulation is available on Github.3

Data Set and Pre-processing The data set that is used for this research is a simulated fraud
data set created using Sparkov Data Generation [25] and was published under the CC0 1.0 public
domain license [26]. The simulated data set consists of 1.8 million transactions of which roughly
9000 are fraudulent, resulting in a fraud rate of 0.005. The data set contains several features,
including demographics (e.g., gender, date of birth) and characteristics of the transaction (e.g.,
transaction number, amount, time, category).

To make it easier to visualize and observe the harmful effects of selection bias, non-fraudulent
transactions are under-sampled such that the data set has a ground-truth fraud rate of 0.1 for
both males and females. Further pre-processing consists of dropping several features (e.g.,
identifiers such as trans_num and the client’s first and last name), merging similar categories
(e.g., grocery_net and grocery_pos into one category grocery ), one-hot-encoding of categorical
features (e.g., the transaction category), and transforming dob to a new feature age .

Simulation Design We simulate a scenario in which a machine learning model is trained on
a data set affected by selection bias. The selection bias in the initial training data is simulated
by sampling different levels of observed fraud of two sensitive groups, males and females.

Subsequently, the model is retrained daily, based on all the labeled data that has been collected
up until that point in time. Newly labeled data originates from two sources: (1) transactions that
are labeled organically through alerts of the fraud detection model (i.e., these are the transactions
for which the model outputs the highest confidence scores), (2) transactions labeled through
explorative sampling (e.g., via active learning).

Note that this setup implies several important assumptions. First of all, it is assumed that
labels are not noisy: fraud analysts are always able to accurately determine the ground-truth

3https://github.com/reneetheunissen/fraud_detection
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labels. In practice, this assumption may not hold, especially when human annotators use
different levels of scrutiny for different types of alerts. Furthermore, it is assumed that each
label has equal annotation costs, resulting in a fixed amount of alerts that can be labeled each
day. Additionally, we assume no external sources of labels, such as notifications from customers.
That is, we assume that all observed fraudulent transactions are discovered through either fraud
detection system alerts or explorative sampling. Finally, we assume that the data set is not
subject to concept drift.

Simulation Parameters The simulation has four main parameters that are varied across sim-
ulation scenarios: the observed fraud rates for males and females, the alert rate, the exploration
rate, and the machine learning model class.

• The observed fraud rate indicates the proportion of all transactions that are labeled
as fraudulent for a particular subgroup. The initial observed fraud rates for males and
females differs across simulation scenarios.

• The alert rate is defined as the proportion of incoming daily transactions that will be
labeled. In other words, this parameter determines how many transactions are added to
the training data set each day.

• The exploratory rate is the proportion of alerts that are labeled through exploratory
sampling. All other alerts are labeled organically through alerts of the fraud detection
model. The exploratory rate represents the balance between exploration of unlabeled data
and identifying fraudulent transactions.

• We train two types of machine learning models of different levels of complexity:
logistic regression models and random forest classifiers. We leverage the implementations
in scikit-learn [27]. All models are trained using the default parameters in scikit-learn 1.2.

Explorative Sampling Approaches We evaluate the following three explorative sampling
approaches.

• Biased data. The model is trained based solely on instances labeled organically through
alerts. This approach serves as the most extreme baseline where no exploration occurs at
all. This scenario is unlikely to occur in practice, as fraudulent transactions are typically
also discovered via external data sources such as notifications from customers or (manual)
investigations by fraud analysts.

• Random sampling. The model is trained based on both alerts and explorative sampling
via random sampling. This approach serves as a baseline where some exploration is done,
but not via active learning. We hypothesize that while exploration will be able to mitigate
harmful effects of selection bias compared to the biased data approach, the approach may
not identify many fraudulent transactions due to the highly imbalanced nature of the
data set.

• Uncertainty sampling. The model is trained based on both alerts and explorative sampling
via uncertainty sampling. We hypothesize that active learning via uncertainty sampling
performs best, as it steers exploration towards underexplored areas of the feature space
and away from overexplored areas – including areas affected by selection bias.
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Evaluation Metrics Selection bias can be viewed as a form of measurement bias in the target
variable: observed base rates are an imperfect proxy of true base rate [28]. Consequently,
metrics computed over the observed labels can be a poor measure of the true characteristics
of the machine learning model. In practice, we only have access to observed rates. In our
simulation, however, we can compute metrics over the ground-truth target variable, allowing
us to investigate the true effects of selection bias.

In particular, we present the following statistics. The true fraud rate (TFR) indicates the
ground-truth proportion of positives. The observed fraud rate (OFR) indicates the proportion of
predicted positives out of all instances until that point in time. The rate of predicted positives
(RPP) shows the proportion of predicted positives. Additionally, we compute the following
predictive performance metrics: false positive rate (FPR), false negative rate (FNR), false discovery
rate (FDR), false omission rate (FOR), classification accuracy (ACC).

Experiments The initial training data set contains 6500 instances in all scenarios, which is
created through random sampling from fraudulent and non-fraudulent transactions for males
and females according to the desired observed fraud rate. Each day, 3340 new transactions arrive.
In each scenario, the simulation runs for 25 days. We perform two experiments.

1. The Effect of Selection Bias. In this set of simulations, we explore the effects of
selection bias in the biased data baseline scenario.

• Observed fraud rates. To study the effects of the magnitude of the initial selection
bias, we perform a set of simulations where the initial observed fraud rate for females
is constant (0.05) and the observed fraud rate of males in the initial training data is
varied between the range of 0 and 1.

• Alert rates. We vary the alert rate to investigate the effect of the magnitude of
selection bias over time. Across simulations, the alert rate is varied between the
values 0.01, 0.05, and 0.10.

2. The Effect of Exploration. In this experiment, we study to what extent exploration
through random sampling and uncertainty sampling can mitigate harmful effects of
selection bias. Across simulations, the exploratory rate is varied between the values 0.10,
0.25, and 0.50. In this experiment, the alert rate is set to 0.05. observed fraud rate is set to
0.3 for the overrepresented group and 0.05 for the underrepresented group.

6. Results

6.1. Experiment 1: The Effect of Selection Bias

High Observed Fraud Rates Lead to False Alerts and Overscrutinization of the Over-
represented Group Our first simulation shows the effects of selection bias in the initial
training data (Figure 1). We observe that a high observed fraud rate leads to false alerts and
overscrutinization of the overrepresented group, while a low observed fraud rates leads to
undecteded fraud. As expected, a high observed fraud rate results in an increase of the FPR, FDR,
and RPP, which leads to more transactions incorrectly being predicted as fraudulent, while a
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low observed fraud rate results an RPP that is lower than the true proportion of positives (0.10),
which leads to many undetected fraudulent cases.

(a) RPP and ACC for males and
females using the logistic re-
gression classifier.

(b) FDR and FOR for males and
females using the logistic re-
gression classifier.

(c) FPR and FNR for males and fe-
males using the logistic regres-
sion classifier.

(d) RPP and ACC for males and fe-
males using the random forest
classifier.

(e) FDR and FOR for males and fe-
males using the random forest
classifier.

(f) FPR and FNR for males and fe-
males using the random forest
classifier.

Figure 1: The impact of the observed fraud rate of males in the initial training data on different metrics
as measured after one prediction.

Increasing the Number of Labeled Instances Reduces Inequalities Figure 2 shows the
effect of different alert rates over time. Low alert rates increases the inequality between the
over and underrepresented groups. Moreover, we observe that these effects are amplified over
time. In particular, low alert rates do not offer a great variety of alerts, resulting in further
overscrutinization of the overrepresented group. The divergence of the alert distribution is the
driving factor behind the development of other metrics (OFR, TFR, FPR, FNR, FDR, and FOR).
When the alert rate is high, harmful effects of selection bias are dampened. The wider variety
of alerts allows for organic correction of the high initial observed fraud rates as well as other
metrics.
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(a) The alert distribution using 1%
alerts.

(b) The alert distribution using 5%
alerts.

(c) The alert distribution using
10% alerts.

(d) The OFR and TFR using 1%
alerts.

(e) The OFR and TFR using 5%
alerts.

(f) The OFR and TFR using 10%
alerts.

We visualize the results of our simulations for the logistic regression model for random sampling
(Figure 3) and uncertainty sampling (Figure 4). The results of the random forest model are omitted due

to space constraints.

(g) The FPR and FNR using 1%
alerts.

(h) The FPR and FNR using 5%
alerts.

(i) The FPR and FNR using 10%
alerts.

(j) The FDR and FOR using 1%
alerts.

(k) The FDR and FOR using 5%
alerts.

(l) The FDR and FOR using 10%
alerts.

Figure 2: The evolution of the metrics in the biased data scenario over time, as alert rates are varied
between 0.01, 0.05, and 0.10.
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6.2. Experiment 2: The Effect of Exploration

Uncertainty Sampling Outperforms Random Sampling Figures 3 and Figure 4 show
the results of our simulations for random sampling and uncertainty sampling, respectively.
The results of the random forest model are omitted due to space constraints. While a low
exploratory rate of random sampling improves the distribution of alerts between the over and
underrepresented group, the improvement is unable to improve predictive performance metrics.
Indeed, without improving the observed fraud rate, selection bias persists and the RPP will
continue to decrease while the FNR will continue to increase.

Uncertainty sampling, on the other hand, is able to counter negative effects of selection bias
and decrease disparities in predictive performance between groups. Uncertainty sampling leads
to a better alert distribution with balanced alerts (both fraudulent and non-fraudulent) of both
the over- and underrepresented group. In this way, the observed fraud rate is corrected over
time through the additional exploratory data.

As can be expected, higher exploratory rates (up to 0.50) result in higher levels of mitigation
of harmful effects: a better alert distribution, decreased disparities in the FPR, FNR, FDR, and
FOR, and increase in accuracy.

7. Conclusion

In this work, we have studied the problem of selection bias related to sensitive features and
analyzed the effectiveness of active learning to mitigate the ensuing harmful effects.

The results of our simulations confirm that in the absence of interventions, selection bias
is reinforced over time, resulting in an increase in scrutinization as well as an increase in
the number of false positives for overrepresented groups. Moreover, our experiments show
preliminary evidence that uncertainty sampling can mitigate disparities between groups caused
by selection bias and, in the studied setting, outperforms exploration via random sampling.

Our results also imply that limited resources are an important bottleneck in the organic
correction of disparities in observed fraud rates, as increasing the number of labeled instances
reduces inequalities between sensitive groups even in absence of interventions. These results
suggest that the problem of mitigating selection bias can be seen as analogous to the well-
known exploration-exploitation trade-off. That is, under limited resources, decision-makers are
required to balance the mitigation of selection bias through exploration and the exploitation of
existing models for identifying positives in production.

The preliminary results presented in this paper open up many directions for future work.
First of all, we see several ways in which our simulation study can be extended, including the
replication of our experiments on more (real-world) data sets, uncertainty quantification via
repeated experiments, and relaxation of the simplifying assumptions in our simulation, such
as the lack of noisy labels, equal annotation cost, absence of external sources of labels, and
a lack of concept drift. In particular, the effects of using online or adaptive learners could be
further explored. Additionally, future work could focus on evaluating alternative active learning
sampling techniques. In particular, an important limitation of uncertainty sampling is that it
relies solely on the model’s confidence score as a proxy for uncertainty. This could result in
repeated selection of instance types that are inherently difficult to predict based on the available
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(a) 5% alerts and 10% exploratory
alerts.

(b) 5% alerts and 25% exploratory
alerts.

(c) 5% alerts and 50% exploratory
alerts.

(d) 5% alerts and 10% exploratory
alerts.

(e) 5% alerts and 25% exploratory
alerts.

(f) 5% alerts and 50% exploratory
alerts.

(g) 5% alerts and 10% exploratory
alerts.

(h) 5% alerts and 25% exploratory
alerts.

(i) 5% alerts and 50% exploratory
alerts.

(j) 5% alerts and 10% exploratory
alerts.

(k) 5% alerts and 25% exploratory
alerts.

(l) 5% alerts and 50% exploratory
alerts.

Figure 3: Plots showing the evolution of the alert distribution for the biased data using logistic regression
and random sampling as baseline mitigation technique.
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(a) 5% alerts and 10% exploratory
alerts.

(b) 5% alerts and 25% exploratory
alerts.

(c) 5% alerts and 50% exploratory
alerts.

(d) 5% alerts and 10% exploratory
alerts.

(e) 5% alerts and 25% exploratory
alerts.

(f) 5% alerts and 50% exploratory
alerts.

(g) 5% alerts and 10% exploratory
alerts.

(h) 5% alerts and 25% exploratory
alerts.

(i) 5% alerts and 50% exploratory
alerts.

(j) 5% alerts and 10% exploratory
alerts.

(k) 5% alerts and 25% exploratory
alerts.

(l) 5% alerts and 50% exploratory
alerts.

Figure 4: Plots showing the evolution of the metrics for the biased data using logistic regression and
uncertainty sampling as active learning technique.
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features, even when an additional instance is unlikely to improve the predictive performance of
the model. Finally, we envision future work that tackles the development of active learning
techniques that are specifically designed to tackle selection bias related to sensitive group
membership. In particular, more research is needed to identify a suitable trade-off between
exploration through active learning and exploitation of organically generated alerts across
scenarios.
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