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Abstract
Active learning has proven to be an effective approach for reducing the amount of labeled data required in
supervised learning tasks, thereby reducing data annotation costs. While ensemble-based active learning
schemes have been extensively studied for classification problems, there has been limited research on their
applicability to regression tasks. In this paper, a novel active learning method for regression ensemble
learning is proposed, which utilizes meta-learning. The meta-learning component is employed to predict
continuous utility values for candidate unlabeled data points. The sample selection process is designed to
consider both ensemble accuracy and diversity simultaneously. Furthermore, the ensemble model and the
meta-learner share the same features, enabling the provision of suitable explanations for selecting specific
samples during the active learning procedure, thus enhancing the ensemble performance. Empirical
testing of the proposed method is conducted on various real-world regression datasets, evaluating its
performance and scalability. The results demonstrate its competitiveness when compared to state-of-the-
art approaches in active learning and ensemble learning for regression.
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1. Introduction

In supervised learning, data collection and annotation are essential stages. In passive learning,
training examples are chosen randomly from a distribution and labeled by an oracle. Usually, a
significant amount of data points is needed to train a reliable machine learning model. However,
data annotation can sometimes be associated with high costs. Henceforth, reducing the amount
of labeled data points is necessary. This is broached in the machine learning literature with
Active Learning (AL) [1]. The primary motivation for active learning (AL) stems from the idea
that a model trained with a carefully selected small number of training data points can achieve
comparable performance to a model trained on a larger randomly chosen dataset, all while
being computationally more efficient and cost-effective [1]. Following this idea, starting from
a small and non-optimal training set, AL aims at iteratively selecting unlabelled data points
whose inclusion in the training set improves the performance of the machine learning model.
The unlabelled data points are evaluated and sorted according to a utility measure that serves
as a data selection criterion. The selected data point is labeled by an oracle and then added to
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the training set. The entire procedure is iterated until a stopping criterion is met, e.g., a budget
on the total number of points to be added or on annotation costs is consumed.

Compared to classification, active learning (AL) is less commonly used for regression tasks
[2, 3], and even less so for regression ensembles [4]. Although several methods designed for
classification have been adapted and applied to regression tasks for both ensemble learning
[5] and active learning [6, 3], regression presents unique challenges that can result in poorly
performing models [7]. One significant distinction between regression and classification is
that the range of a model’s output in regression is undefined and potentially infinite. This
poses limitations on ensemble construction, such as the selection of base models, as many
commonly used supervised learning models cannot predict beyond the range of observed labels
in the training set, for example, Generalized Additive Models (GAM) [7]. For active learning,
this also makes it non-trivial to apply a significant branch of AL approaches based on density
estimation, like margin sampling-based strategies [8]. Moreover, in regression tasks, there is no
concept of distance, making distance-based sampling approaches not applicable [2]. However,
some methods have successfully transferred certain AL techniques originally developed for
classification to regression, such as Query-By-Committee (QBC) [9] and Expected Model Change
(EMC) [3, 2, 10].

Ensemble learning is widely known as an effective technique in machine learning for both
classification [11] and regression [7], as it leverages the strengths of each base model and reduces
the effects of overfitting and bias. Works on ensemble learning in the machine learning literature
are focused on managing the base models in the different ensemble construction stages, namely
base models generation [12, 11], selection or pruning [13], and aggregation or combination
[14]. This model management involves, in some cases, training data sampling implicitly [15].
For example, in bagging [12], random sampling is applied to create bootstrap samples are then
used for training the base models independently. Hence, bagging involves a blind sampling
procedure, i.e., without taking into account data points properties. In boosting [16], a sequential
data sampling process is involved by identifying data points with the highest prediction error
and adjusting their weights to minimize the training error. Even though boosting performs
informed sampling, i.e., by taking into account the prediction hardness of training samples,
they rely on labeled data to evaluate the training prediction error and are prone to overfitting
[17, 18]. Opposingly in this paper, we use AL as an informed sampling to improve the ensemble
generalization performance of the ensemble and reduce data annotation costs.

To do so, we introduce METAL a novel, practically useful METa-Active Learning framework
for learning regression ensembles. METAL is based on a meta-learning algorithm that learns
the utility of a set of candidate unlabelled data points to be added to the training set for learning
the ensemble model. Since diversity is a fundamental component in ensemble learning [19, 20],
we devise the utility measure in such a way it takes into account both ensemble accuracy
and diversity. In addition, both ensemble and meta-learner share the same set of features.
Therefore, by evaluating the features’ importance, we can provide a suitable interpretation for
the reason behind selecting a sample by the active learning procedure to improve the ensemble
model accuracy iteratively. The main contributions of this paper can be summarized as follows:
Reducing data annotation costs: A novel meta-Active Learning method is proposed for
actively selecting unlabelled instances to be used for training an ensemble model for regression;
Informed sampling for regression ensemble learning: An Informed Sampling technique is
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developed by training a meta-model for learning a utility function to be used for estimating
the utility (i.e., informativeness) of an unlabelled data point using a set of carefully-crafted
meta-features. The utility is devised to take into account both ensemble accuracy and diversity;
Interpretability: We demonstrate that it is possible to provide a suitable interpretation for
the reasons behind selecting a sample in the AL iterative process even with a heterogeneous
ensemble model (i.e., an ensemble of regression models belonging to distinct families of machine
learning models); Empirical validation : A comparative empirical study of METAL with
state-of-the-art methods for active and ensemble learning for regression and a discussion of its
implications in terms of predictive performance and scalability is provided.

We note that all the experiments are fully reproducible, and the code is available under this
link1. The datasets are publicly available.

2. Literature Review

Opposingly to classification, AL studies gave less attention to regression [1]. However, some of
the methods that were originally developed for classification are successfully transferred or
adapted to regression, such as Expected Model Change (EMC) [2, 3] and Querry-By-Committee
(QBC) paradigm [9]. For instance, Cai et al. [3, 2] showed that EMC outperforms Querry-By-
Committee (QBC) on several benchmark regression data sets. However, one major limitation
of the proposed EMC is that a large change in the model does not necessarily imply a better
performance, as it may only be the result of selecting an outlier. Therefore, Authors in [10]
have proposed an improved version of EMC that avoids the selection of outliers by embedding
a local outlier probability for both linear and non-linear regression problems. In the same
context, Seo et al. [21] relied on Gaussian Processes Regression properties to provide target
distributions by estimating posterior mean and variance. These estimates are used for AL by
querying data points with high estimated posterior variance. In the QBC paradigm [9], many
models are trained to form a committee and predict labels of unlabelled data. Instances with the
highest prediction disagreement between the committee members are selected. Many works
focused on reformulating the committee disagreement measures to fit regression output by using
variance-based measures [6]. Other works have focused on applying active sampling-based
techniques to regression. For instance, authors in [22] propose two AL approaches based on
greedy sampling. While the first approach is designed to select new samples that increase the
diversity in the output space, the second one performs the selection by taking into account
diversity in both input and output spaces.

Meta-learning was also applied for AL by learning the utility/informativeness of an unlabelled
instance based on a set of characterizing meta-features, generally devised to take into consid-
eration the main learner’s performance and the characteristics of the problem. Even though
the application of meta-learning for estimating the utility of unlabelled data appears to be very
intuitive, only a few works applied it to learn AL sampling strategies and were mainly restricted
to classification [23, 24]. Since very few works dealt with AL for regression ensembles, this
section is dedicated to both classification and regression problems. When dealing with ensemble
learning, QBC is one of the most suited AL methods since it is theoretically well-motivated by

1https://www.dropbox.com/sh/9g54gm4xksciaps/AACe8F9zF5id5ysBZYundQWGa?dl=0
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the ensemble’s error decomposition [9]. The expected ensemble error at a given data point can
be decomposed into two main terms, namely, an averaged error term, measuring the average
error of the ensemble base models, and an ambiguity term, which is simply the variance of
the ensemble around the weighted mean and it measures the disagreement between the base
models. The ambiguity term can be entirely estimated from unlabelled data, making thus the
application of QBC straightforward. In addition, the decomposition states that if the ensemble
is strongly biased, the ambiguity will be small because the base models encompass very similar
functions and thus agree on data points outside the training set. Therefore, the ensemble error
will be equal to the base models’ average error. If, on the other hand, there is a large variance,
the ambiguity, in this case, is high, and the ensemble error will be smaller than the average
error. As a result, AL can be coupled with ensemble learning where selection is made in favor
of unlabelled instances, maximizing the ambiguity term and contributing thus to minimizing
the overall ensemble error [9]. Even though the definition of disagreement (i.e., ambiguity) is
not restricted to discrete labels, QBC is widely applied to classification. Different adaptions
of the disagreement measure are suggested and applied to learning classification ensembles
[25, 26, 27, 28].

Active sampling is also applied to learn an ensemble of classifiers. Shan et al. [29] propose
an ensemble framework composed of one static and one dynamic classifier built to react to
different types of concept drifts in streaming data. The ensemble is combined with uncertainty
estimation and random sampling strategies to decide whether to label the upcoming streaming
instances for updating both classifiers or not. Some recent works applied meta-learning to
learn AL procedures for ensemble methods. In [30], the authors proposed a deep ensemble
learning model composed of a selector and a predictor. The selector is designed to actively select
key load segments with the most similar patterns to the current training patterns. Taguchi et
al. [4] introduced a meta-learning approach that predicts the expected error reduction for a
candidate sample. The selection of new instances to be annotated is based on the prediction of
the meta-learner, which plays the role of a selector. The predictor is an ensemble model. Feeding
the same original features to both predictor and selector, the method is shown to be highly
competitive to approaches relying on hand-crafted meta-features for the selector [31]. Most of
the aforementioned works on AL are either focused on enhancing the ensemble diversity or
accuracy exclusively and are mainly restricted to classification problems. In this work, we adapt
meta-learning for AL on regression ensemble by taking into account both ensemble accuracy
and diversity. We carefully devise the meta-features by taking into account the properties of the
data and the regression task. In addition, we provide interpretations of active instance selection
that are not restricted to a specific regression family of models.

3. Methodology

METAL combines both meta-learning and AL to reduce annotation costs and optimize the
construction of an ensemble model for regression tasks. To do so, a meta-learner is trained to
learn a utility measure that is devised to take into account both ensemble accuracy and diversity.
The selection of unlabelled instances during the AL process is based on the expected values of
the utility on the unlabelled set.
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3.1. Notations and Problem Formulation

Let the dataset 𝔻 be defined as (𝑥𝑖, 𝑦𝑖) ∈ 𝔻 ⊂ ℝ𝑛 × ℝ ∶ 𝑖 = {1, ⋯ , 𝑁 } and generated by an
unknown function 𝑓 (𝑥) = 𝑦, where 𝑛 is the number of features of a data point 𝑥, and 𝑦 denotes
a numerical response variable. We formulate a regression problem as the task of learning a
function ̂𝑓𝜃 ∶ 𝑥𝑖 → ℝ such that

̂𝑓𝜃(𝑥𝑖, 𝜃) ≈ 𝑓 (𝑥𝑖) = 𝑦𝑖, ∀𝑥𝑖 ∈ X, 𝑦𝑖 ∈ Y (1)

where 𝜃 ∈ ℝ𝑛 is an unknown (hyper)parameters vector.
Denote with 𝐹 an ensemble of 𝑀 of regression models ̂𝑓𝑗, 𝑗 = {1, ⋯ ,𝑀} Formally, 𝐹 can be

written as the convex weighted combination of the 𝑀 base models. 𝐹 on an input data point 𝑥 is
given by:

𝐹(𝑥) =
𝑀
∑
𝑗=1

𝑤𝑗𝑓𝑗(𝑥) (2)

where 𝑤𝑗, 𝑗 ∈ [1,𝑀] are the ensemble weights. The weights are constrained to be positive and
sum to one. This constraint is necessary for some of the following results. For simplicity, we
set the weights to be equal, i.e., 𝑤𝑗 =

1
𝑀∀𝑗 ∈ [1,𝑀]. Denote with 𝔻𝐿 the labeled data set, i.e.,

containing annotated data generated by the unknown function 𝑓. We split 𝔻𝐿 into 𝔻𝑡𝑟𝑎𝑖𝑛 that
is used to train the models composing the ensemble 𝐹 and 𝔻𝑚𝑒𝑡𝑎 that will be used to learn
the meta-model. The meta-model is denoted by the selector in the following. Let 𝔻𝑈 be the
unlabelled data set. Our goal is to actively sample data points from 𝔻𝑈 to learn the ensemble
model 𝐹 that best approximates 𝑓.

3.2. Combining AL with Ensemble Learning

Ensemble learning is inspired by the principle of committees. In fact, it is assumed that there is no
single expert that outperforms all the others on every query. Instead, better overall performance
may be obtained by combining the outputs of many experts, i.e., models. In this work, we use
AL for annotation costs optimization and as an informed sampling strategy for the ensemble
construction process. To do so, 𝑀 different hypotheses are drawn from the data by means of
an active sampling procedure. These hypotheses are used to generate the ensemble 𝑀 base
models. Initially, these models are created by sampling randomly with replacement 𝑀 subsets
𝔻𝑡𝑟𝑎𝑖𝑛,𝑗, 𝑗 ∈ [1,𝑀] from𝔻𝑡𝑟𝑎𝑖𝑛 with the same size. The𝑀models can create either a homogeneous
ensemble if they belong to the same family of regression models or a heterogeneous ensemble if
they are selected from different families of models. Afterward, the selector is built and trained
using 𝔻𝑚𝑒𝑡𝑎 and used afterward to predict the utility of the unlabelled instances in 𝔻𝑈. The
training The instance with the highest predicted utility 𝑥∗ is selected to be added subsequently
to the 𝑀 subsets created to build the ensemble base models.

𝑥∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥∈𝔻𝑈 = 𝑈 (𝑥) (3)

where 𝑈 denotes the utility measure of an unlabeled data point 𝑥. However, adding the same
instance to these M subsets will increase their similarity after several iterations. The base models
are expected to become similar in this case, e.g., as trained on the same data, especially in the
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case of homogeneous ensembles. This alters the diversity aspect of the ensemble. One solution
to mitigate this issue is to consider the top 𝑀 unlabelled instances with the highest predicted
utility values from 𝔻𝑈 to be added to each of the 𝑀 subsets. This solution is inadequate when
a maximum budget of annotations 𝐵 per iteration is set to be less than the ensemble size (i.e.,
𝐵 < 𝑀) or in the case of the small dataset and big ensemble size. In the following subsection,
we explain how the utility measure and the stopping criterion are devised to account for both
accuracy and diversity of the ensemble.

3.3. Utility Criterion

Since the main learner is an ensemble model, the utility measure, which evaluates the utility of
unlabelled instances, has to be defined with respect to ensemble properties. Ensemble diversity
is considered to be one of the most important aspects of ensemble learning [32]. Even though the
enforcement and the evaluation of diversity in regression ensembles are still quite unexplored
topics [32, 33], the ensemble error decomposition schema presented by [9] can give some
insights about the importance of diversity and individual ensemble base models’ performance.

𝐸𝐹 = 𝔼[(𝑓 − 𝐹)2] =
𝑀
∑
𝑗=1

𝑤𝑗𝐸𝑗 −
𝑀
∑
𝑗=1

𝑤𝑗𝐴𝑗 = 𝐸 − 𝐴 (4)

where 𝐸 = ∑𝑀
𝑗=1 𝑤𝑗𝐸𝑗 = 𝔼[𝑤𝑗(𝑓𝑗 − 𝑓)2], 𝐴 = ∑𝑀

𝑗=1 𝑤𝑗𝐴𝑗 = 𝔼[𝑤𝑗(𝑓𝑗 − 𝐹)2] and 𝑤𝑗, 𝑗 = {1, ⋯ ,𝑀}
are the ensemble weights. Equation 4 separates the generalization error into two terms. The
first one, 𝐸, is an aggregation of the base models’ errors. The second term 𝐴, called ambiguity,
measures the variability/ disagreement among the base models’ outputs and reflects diversity
between them. It is straightforward to see that increasing the ambiguity yields a reduction in
the overall ensemble error. However, since the overall error is always positive, 𝐴 can be seen as
a lower bound of 𝐸. That is why a trade-off between decreasing 𝐸 and increasing 𝐴 should be
established. Denote with 𝑥𝑖 a given unlabelled data point and with 𝐹∪𝑥𝑖 the ensemble composed
of models trained on 𝑀 subsets 𝔻𝑡𝑟𝑎𝑖𝑛,𝑗, 𝑗 = {1, ⋯ ,𝑀} including the addition of a given instance
𝑥𝑖. The gain of 𝑥𝑖 evaluated on 𝔻 is giving by:

𝑔𝑎𝑖𝑛(𝑥𝑖, 𝔻) = 𝐸𝔻𝐹 − 𝐸𝔻𝐹∪𝑥𝑖 (5)

where 𝔻 states for the dataset on which the ensemble 𝐹 error is evaluated. 𝑥∗ that maximizes
the gain is simply selected.

𝑥∗ = argmax
𝑥𝑖∈𝔻𝑈

𝑔𝑎𝑖𝑛(𝑥𝑖, 𝔻) (6)

However, to increase the ambiguity, instead of adding 𝑥∗ to all models, i.e., to the training sets
of all the models, we add it to the model 𝑓 ∗ yielding the highest deviation from 𝐹 on 𝑥∗.

𝑓 ∗ = argmax
𝑓𝑗,𝑗∈{1,⋯,𝑀}

𝐴𝑗(𝑥∗) = argmax
𝑓𝑗,𝑗∈{1,⋯,𝑀}

(𝑓𝑗(𝑥∗) − 𝐹(𝑥∗))2 (7)
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Require: Training dataset 𝔻𝑡𝑟𝑎𝑖𝑛
1: Split 𝔻𝑡𝑟𝑎𝑖𝑛 into 𝔻𝐹 ,𝑡𝑟𝑎𝑖𝑛, 𝔻𝑚𝑒𝑡𝑎,𝑡𝑟𝑎𝑖𝑛 and 𝔻𝑚𝑒𝑡𝑎,𝑒𝑣𝑎𝑙
2: Use 𝔻𝐹 ,𝑡𝑟𝑎𝑖𝑛 to generate 𝔻𝐹 ,𝑡𝑟𝑎𝑖𝑛,𝑗, 𝑗 = {1, ⋯ ,𝑀} to train the base models
3: Build the ensemble 𝐹
4: for Each 𝑥𝑗 ∈ 𝔻𝑚𝑒𝑡𝑎,𝑡𝑟𝑎𝑖𝑛 do
5: Calculate 𝑔𝑎𝑖𝑛(𝑥𝑗, 𝔻𝑚𝑒𝑡𝑎,𝑒𝑣𝑎𝑙)
6: end for
7: 𝐺 = {𝑔𝑎𝑖𝑛(𝑥𝑗, 𝔻𝑚𝑒𝑡𝑎,𝑒𝑣𝑎𝑙), 𝑗 = 1, ⋯ , |𝔻𝑚𝑒𝑡𝑎,𝑡𝑟𝑎𝑖𝑛|}
8: Train MetaM on {𝑋𝔻𝑚𝑒𝑡𝑎,𝑡𝑟𝑎𝑖𝑛 , 𝐺}
9: Return MetaM

Algorithm 1: Learning MetaM

3.4. METAL Framework

METAL is composed of three main stages. In the first stage, a meta-modelMetaM is trained after
preparing a meta-dataset to learn the gain induced by the addition of a given data instance to the
ensemble training set and predict the gain of unlabelled data instances in 𝔻𝑈. The second stage
consists of selecting the data instance from 𝔻𝑈 with maximal predicted gain and determining
to which ensemble member should be added (See Eq.7). In the third stage, both training and
unlabelled datasets are updated by adding the selected instance to the training subsets of the
selected ensemble member and removing it from 𝔻𝑈. The three stages are iterated until a
stopping criterion is met (i.e., a maximum number of iterations in this work).
MetaM is used to learn the gain measure defined in Eq.5. Therefore, we split the original

training set into 𝔻𝑡𝑟𝑎𝑖𝑛 into three disjoint subsets 𝔻𝐹 ,𝑡𝑟𝑎𝑖𝑛, 𝔻𝑚𝑒𝑡𝑎,𝑡𝑟𝑎𝑖𝑛 and 𝔻𝑚𝑒𝑡𝑎,𝑒𝑣𝑎𝑙. 𝔻𝐹 ,𝑡𝑟𝑎𝑖𝑛
is used to create the subsets 𝔻𝐹 ,𝑡𝑟𝑎𝑖𝑛,𝑗, 𝑗 = {1, ⋯ ,𝑀} to train the 𝑀 ensemble members as
explained in subsection 3.2. 𝔻𝑚𝑒𝑡𝑎,𝑡𝑟𝑎𝑖𝑛 is the training dataset for the meta model MetaM.
For each data instance, 𝑥𝑗 ∈ 𝔻𝑚𝑒𝑡𝑎,𝑡𝑟𝑎𝑖𝑛, the gain achieved by adding 𝑥𝑗 to the training sub-
sets 𝔻𝐹 ,𝑡𝑟𝑎𝑖𝑛,𝑗, 𝑗 = {1, ⋯ ,𝑀} is evaluated using evaluation dataset 𝔻𝑚𝑒𝑡𝑎,𝑒𝑣𝑎𝑙. The set of gains,
𝐺 = {𝑔𝑎𝑖𝑛(𝑥𝑗, 𝔻𝑚𝑒𝑡𝑎,𝑒𝑣𝑎𝑙), 𝑗 = 1, ⋯ , |𝔻𝑚𝑒𝑡𝑎,𝑡𝑟𝑎𝑖𝑛|} calculated for the data in 𝔻𝑚𝑒𝑡𝑎,𝑡𝑟𝑎𝑖𝑛 is regarded
as the response variables corresponding to the explanatory variables 𝑋𝔻𝑚𝑒𝑡𝑎,𝑡𝑟𝑎𝑖𝑛 in 𝔻𝑚𝑒𝑡𝑎,𝑡𝑟𝑎𝑖𝑛.
The pairs {(𝑥𝑗, 𝑔𝑎𝑖𝑛(𝑥𝑗, 𝔻𝑚𝑒𝑡𝑎,𝑒𝑣𝑎𝑙)), 𝑗 = 1, ⋯ , |𝔻𝑚𝑒𝑡𝑎,𝑡𝑟𝑎𝑖𝑛|} are used for training MetaM. This meta-
learning stage consists of learning the active learning process and is summarized in Algorithm
1.

MetaM is used afterward to predict the gain of data instances in𝔻𝑈. The sample 𝑥∗ maximizing
the gain is selected and attributed to the training set of the ensemble member verifying the
condition in Eq.7.

3.5. Interpretability of sample selection

Our framework is composed of two models, a meta-model for predicting the gain of unlabelled
samples and a main model for predicting the response variable. Both models share the same
set of features. The gain predicted by the meta-model is related to the loss of the main model
(i.e., ensemble). Therefore, the selected sample by the meta-model is also associated with the
importance of the features of the sample to the main model. In this context, we use machine
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learning algorithms equipped with a measure of feature importance for the meta-model MetaM
and the ensemble base models. The overall importance of each feature for the ensemble is
assessed by computing the average of the corresponding normalized importance measures over
all the base models. We monitor the change in the features’ importance and in their empirical
distributions over the active learning iterations in order to explain the rationale behind sample
selection in the active learning process. Concrete examples are provided in Section 4.2.

4. Experiments

In this section, we present the experiments carried out to validate METAL and to answer the
following research questions: Q1: How is the performance of METAL compared to state-of-
the-art (SoA) methods for active learning for regression problems? Q 2: What is the impact
of relying only on the averaged error or the ambiguity in evaluating the gain of an unlabelled
data instance? Q3: Since active learning can be viewed as an informed sampling strategy for
ensemble construction, how is the performance of METAL compared to the SoA ensemble
methods for regression? Q4: How is the scalability of METAL in terms of computational
resources compared to SoA methods for active learning? Q5: How the meta-model and the
ensemble can be used together to provide a suitable interpretation for selecting a sample in the
process of active learning to improve the ensemble performance?

4.1. Experimental Setup

The methods are evaluated using the root mean squared error (RMSE). In each experiment,
the data is split into 30% for training, 20% for testing, and 50% is assumed to be an unlabelled
dataset. For each dataset, a cross-validation (CV) with 10 folds is performed for the evaluation
with 100 repetitions for the active learning methods (i.e., different initialization of the labeled
set). We used 15 benchmarking datasets for our experiments. They are briefly summarized
in Table 1. We note that all the experiments are fully reproducible, and the code is available
under this link2. The datasets are publicly available.

ID Dataset Data Source Data characteristics
Att. Ins. RT

1 2Dplanes dcc.fc.up.pt 10 40768 [-999.709,999.961]
2 Friedman Domain dcc.fc.up.pt 10 40768 [1.50,27.975 ]
3 Abalone UCI 8 4177 [1.00,29.00 ]
4 Auto-Price UCI 14 159 [9,46.60]
5 Bank8FM DELVE 8 8192 [0,0.70]
6 House (8H) DELVE 8 22784 [0,427300 ]
7 Bos.Housing UCI 13 506 [5,50]
8 Cal.Housing StatLib 8 20460 [14999,500001]
9 Kinematics DELVE 8 8192 [0.04017,1.45852 ]
10 Pole Telecom dcc.fc.up.pt 48 15000 [0.00,100.00 ]
11 puma8NH DELVE 8 8192 [-0.085173,0.088266]
12 Puma32H DELVE 32 8192 [-0.085173,0.088266]
13 Stock Prices StatLib 10 950 [34,60.5]
14 Triazines UCI 60 186 [0.10,0.90]
15 Red wine quality UCI 12 1599 [3,8]

Table 1
List of Datasets used for the experiments.

2https://www.dropbox.com/sh/9g54gm4xksciaps/AACe8F9zF5id5ysBZYundQWGa?dl=0
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4.1.1. METAL Set-up

We build a homogeneous ensemble of 10 Decision Trees (DTs) [34] generated with a bootstrap
sampling process over the train labelled data.

As 30% of the total data size is kept for training data (i.e., 𝔻𝑡𝑟𝑎𝑖𝑛 ), this proportion is split
into 50% for 𝔻𝐹 ,𝑡𝑟𝑎𝑖𝑛, 30% for 𝔻𝑚𝑒𝑡𝑎,𝑡𝑟𝑎𝑖𝑛 and 20% 𝔻𝑚𝑒𝑡𝑎,𝑒𝑣𝑎𝑙. The 10 DTs are initially trained
using different random bootstraps of 𝔻𝑡𝑟𝑎𝑖𝑛, (i.e., 𝔻𝐹 ,𝑡𝑟𝑎𝑖𝑛,𝑗, 𝑗 = {1, ⋯ , 9} ). The maximum number
of iterations in the active learning process is set up to half of the unlabelled set size. The
meta-learner is chosen to be a Random Forest (RF) [12].

4.1.2. S.o.A active and ensemble learning methods Set-up

We compare the performance of METAL against the following approaches for active and
ensemble learning for regression.
Active Learning Methods

QBC [6]: Query-By-Committee: We adopt the variance reduction approach for QBC. A com-
mittee composed of the same base models as our ensemble in METAL , and the unlabelled
sample with the maximum disagreement (i.e., variance) between the committee members
is selected for annotation. The detailed procedure is explained in [6]. The prediction of
the response variable is also generated by an ensemble of committee members.

EMC [3]: Expect model change: METAL is compared to EMC for the Gradient Boosting DT
(GBDT) model as introduced in [2]. We use 10 decision trees for calculating the model
change as a bigger number of trees is required to improve the accuracy of the method.

Ran: One sample is randomly selected for annotation from the unlabelled dataset.

GPF [4]: Gain Prediction Function is ameta-learning approach for active learning for regression
that relies on using a meta-learner for predicting the gain formulated as only the amount
of decrease in the prediction error (𝑔𝑎𝑖𝑛(𝑥𝑖, 𝔻) = 𝐸𝔻(𝐹 ) − 𝐸𝔻(𝐹∪𝑥𝑖)). The original work
uses a single model as a main learner. To ensure a fair comparison with METAL . The
main learner is an ensemble of the same base models as METAL ; the meta-learner is an
RF.

M-Am: is a variant of METAL where only the ambiguity is kept in the definition of the gain:
𝑔𝑎𝑖𝑛(𝑥𝐼, 𝔻) = 𝐴𝔻(𝐹∪𝑥𝐼) − 𝐴𝔻(𝐹 ). This variant is different from QBC since it relies on
the meta-learner’s prediction of ambiguity (i.e., variance) reduction instead of a direct
computation.

M-Er: is a variant of METAL where only the error term is kept in the gain: 𝑔𝑎𝑖𝑛(𝑥𝐼, 𝔻) =
𝐸𝔻(𝐹 ) − 𝐸𝔻(𝐹∪𝑥𝐼).

Ensemble Methods
Active learning can also be viewed as aninformed sampling strategy for optimizing ensemble

construction by selecting samples that lead to enhanced accuracy and diversity. Therefore,
we suggest comparing the ensemble built by METAL with ensemble methods using the whole
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available training set (i.e., initial labeled set and the assumed unlabelled set) (i.e., passive/ blind
sampling). The hyperparameters values of the involved models are tuned with a random search
over a 3-fold CV. We compare our method against the following:

RF [12]: Random Forest uses bagging to create an ensemble of regression trees.

GBM [35]: Gradient boosting machine that uses boosting to create an ensemble of regression
trees.

ENS [34]: An ensemble that averages the same base models as the ensemble of METAL.

Stacking [36]: An ensemble that uses linear stacking to combine METAL base models instead
of using simple average.

MetaBags [7]: A recent approach for learning heterogeneous ensemble for regression by
using bagging on the meta-level to select and aggregate ensemble base models.

4.2. Results and Discussion

Table 2 shows the performance results of METAL against SoA methods for active and ensemble
learning. Results are reported in terms of RMSE. The statistical significance of the results is
assessed using the Bayesian correlated 𝑡-test with the significance level 𝛼 = 0.05, with the null
hypothesis that a given learner wins against METAL after observing the results of all repetitions.

The results presented in Table 2 show that METAL outperforms existing SoA methods for
both active and ensemble learning. In addition,METAL is almost never statistically significantly
worse than any active learning method. It is also highly competitive with ensemble methods
trained on a larger amount of data which shows the efficiency of active learning as an informed
sampling strategy for building an ensemble, supporting thus themain active learning assumption
stating that a better-performing machine learning model can be built using less amount of
training data points carefully selected. This can be explained by orienting the selection towards
establishing a trade-off between accuracy and diversity. METAL has the lowest average rank.
These results illustrate the generalization power of METAL in both cases. Comparing METAL to
its different variants (i.e., M-Er and M-Am), we see the clear advantage of integrating both
error and ambiguity components in the definition of the gain. The results are worse with M-Er,
meaning that ambiguity is needed to enforce a certain degree of diversity in the ensemble.
However, it is not also sufficient on its own. This answers the research question Q1-Q3.

We present in Figure 1 a comparison of the averaged runtime of METAL compared to the
remaining active learning methods. In METAL and GPF, the size of sub-dataset 𝔻𝑡𝑟𝑎𝑖𝑛 for
calculating the gain is fixed, and the cost for model construction is constant (i.e., bootstrapping
only in the initialization). Let 𝑚 be the cost for model construction in the gain calculation, 𝑐 be
the cost for predicting one sample in the unlabelled dataset, and 𝑛 its size. The total cost is of
order 𝑂(𝑛𝑐 + 𝑚). For QBC, we construct the committee trained with resampled datasets and
predict the output for each sample in the unlabelled dataset. Then, the sample with the highest
variance is selected for annotation. The computational cost for selecting a new sample is of
order 𝑂(𝑏(𝑛𝑐 + 𝑚)), where 𝑏 is the number of bootstrap sampling. In EMC, in addition to the
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ID QBC EMC Ran GPF M-Am M-Er METAL

1 1.95(0.15) 2.65(0.12) 2.25(0.23) 2.75(0.85) 2.15(0.45) 1.85(0.12) 1.75(0.10)
2 3.42(0.19) 3.43(0.19) 3.55(0.15) 3.65(0.30) 3.35(0.18) 3.54(0.15) 2.65(0.13)
3 3.05(0.28) 3.35(0.28) 3.15(0.25) 3.15(0.35) 2.98(0.23) 3.00(0.23) 2.89(0.25)
4 3.85(0.55) 4.74(0.44) 4.35(0.51) 3.96(0.46) 3.68(0.52) 4.05(0.75) 3.39(0.61)
5 60e-2(6e-3) 71e-2(3e-3) 71e-2(3e-3) 64e-2(7e-3) 68e-2(8e-3) 66e-2(8e-3) 57e-2(6e-3)
6 45e3(39e2) 43e3(40e2) 43e3(32e2) 46e3(29e2) 43e3(28e2) 44e3(28e2) 42e3(12e2)
7 6.75(1.85) 6.75(3.20) 7.34(2.16) 7.35(2.65) 6.05(1.10) 5.63(1.55) 5.45(1.38)
8 86e3(75e2) 88e3(34e2) 87e3(51e2) 94e3(60e2) 85e3(57e2) 86e3(58e2) 76e3(25e2)
9 0.23(7e-3) 0.23(7e-3) 0.23(8e-3) 0.23(9e-3) 0.23(2e-3) 0.23(6e-3) 0.21(8e-3)
10 19.3(2.96) 26.4(3.01) 30.8(6.00) 28.7(6.95) 25.4(4.86) 25.33(5.10) 23.94(6.43)
11 3.92(0.05) 4.66(0.07) 4.45(0.15) 4.05(0.34) 3.95(0.29) 3.98(0.23) 3.65(0.18)
12 22e-2(2e-3) 24e-2(2e-3) 26e-2(2e-3) 25e-2(3e-3) 24e-2(1.5e-3) 24e-2(2.2e-3) 24e-2(2e-3)
13 2.12(0.22) 3.14(0.29) 2.97(1.18) 3.01(1.40) 2.76(0.72) 2.33(0.16) 1.85(0.17)
14 0.14(1e-2) 0.14(1e-2) 0.14(1.4e-2) 0.15(1.4e-2) 0.14(2e-2) 0.14(1.8e-2) 0.12(1.5e-2)
15 0.75(1e-2) 0.71(4e-2) 0.73(3e-2) 0.76(4e-2) 0.74(3e-2) 0.74(3e-2) 0.52(3e-2)

∅ Rank 2.68(0.59) 5.37(1.49) 6.00(0.72) 4.31 (1.15) 3.28(1.30) 4.00(1.29) 1.21(1.65)
Loss/Win 7/1 10/0 10/0 9/0 8/2 9/1 𝑁/𝐴

ID MetaBags RF ENS GBM Stack. METAL

1 1.94(0.15) 3.35(0.16) 1.78(0.13) 2.07(0.15) 1.95(0.18) 1.75(0.10)
2 3.02(0.22) 4.14(0.21) 3.27(0.24) 2.96(0.15) 2.85(0.11) 2.65(0.13)
3 3.01(0.23) 3.55(0.46) 3.17(0.38) 3.06(0.46) 3.02(0.25) 2.89(0.25)
4 3.42(0.60) 5.65(1.11) 3.65(0.61) 3.55(0.55) 3.79(1.19) 3.39(0.61)
5 68e-3(1e-3) 99e-2(1e-3) 67e-2(1e-3) 48e-2(1e-3) 40e-2(1e-3) 57e-2(6e-3)
6 38e3(49e2) 45e3(37e2) 42e3(37e2) 41e3(43e2) 42e3(26e2) 42e3(12e2)
7 6.34(1.71) 7.55(3.24) 5.87(1.43) 8.00(2.20) 5.98(0.92) 5.45(1.38)
8 84e3(30e2) 96e3(46e2) 83e3(20e2) 88e3(36e2) 78e3(39e2) 76e3(25e2)
9 0.23(1.4e-2) 0.25(1.3e-2) 0.23(8e-3) 0.21(1.4e-2) 0.21(1e-2) 0.21(8e-3)
10 21.7(1.85) 39.1(2.02) 23.66(4.18) 35.90(1.6) 27.54(4.5) 23.94(6.43)
11 4.35(0.16) 4.97(0.15) 3.97(0.24) 4.23(0.15) 4.00(0.20) 3.65(0.18)
12 25e-2(5e-4) 26e-2(9e-4) 24e-2(1e-2) 28e-2(8e-4) 35e-2(2e-3) 24e-2(2e-2)
13 1.9(0.15) 4.55(0.33) 2.37(0.30) 2.44(0.24) 1.98(0.15) 1.85(0.17)
14 0.13(2e-2) 0.14(9.4e-3) 0.16(0.30) 0.15(0.24) 0.23(4.1e-2) 0.12(1.5e-2)
15 0.69(4e-2) 0.73(5e-2) 0.69(3e-2) 0.72(4e-2) 0.74(3e-2) 0.52(3e-2)

∅ Rank 3.70(1.64) 3.11(1.25) 4.00(1.62) 4.29(1.68) 4.05(1.88) 1.65(1.41)
Loss/Win 8/2 8/0 9/0 9/3 9/2 𝑁/𝐴

Table 2
Detailed predictive performance results, comparing SoA active learning methods vs. METAL -including
variations of METAL (top) and SoA ensemble methods vs. METAL (bottom). The results report on
the average and (std. dev) of RMSE. The last rows depict the wins and losses based on the Bayesian
correlated 𝑡−test with the significance level 𝛼 = 0.05 and the null hypothesis that a given method wins
against METAL.

prediction model, 𝑏 bootstrap sample is created for training 𝑏 GBDT models, and therefore the
computational cost for EMC is of order 𝑂(𝑏(𝑛𝑐 + 𝑚)).

METAL and GPF, which perform model construction only a fixed number of times in each
iteration, provide a clear computational advantage compared to QBC and EMC. We notice that
despite their same computational order, EMC is slower than QBC. This can be explained by the
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Figure 1: Averaged computational costs in minutes of active learning methods over the 15 data sets

AGE Min. 1st Qu. Median Mean 3rd Qu. Max.
Value 15.80 82.10 91.90 85.84 96.85 98.90

LSTAT Min. 1st Qu. Median Mean 3rd Qu. Max.
Value 1.98 12.15 14.59 14.25 17.02 27.26

DIS Min. 1st Qu. Median Mean 3rd Qu. Max.
Value 1.69 2.047 2.327 2.471 2.696 6.062

Table 3
Summary of AGE, LSTAT, and DIS before selecting the 5th sample.

manipulation of DTs in GBDT models that are required to evaluate the model change. This
answers the question Q4.

Regarding question Q5, we show an example of an interpretation of sample selection for the
Bos.Housing dataset at a given iteration. In this experiment, the variable MEDV (i.e., the median
value of owner-occupied homes from land information) is the response variable and is predicted
by our ensemble using 13 other explanatory variables, as shown in Table 4. Since MetaM is an
RF, it is possible to compute variables’ importance. The main model is an ensemble of regression
models, and variable importance can be obtained following the procedure detailed in Section 3.5.
Figure 2a shows the importance of the normalized variables by the ensemble before the 5-𝑡ℎ sam-

Feature CRIM ZN INDUS CHAS NOX RM AGE
Value 0.013 90 1.22 0.0 0.403 7.249 21.9
Feature DIS RAD TAX PTRATIO B LSTAT
Value 8.696 5 226 17.9 395.93 4.81

Table 4
Selected data sample at the 5-th iteration.

ple selection. It can be seen that LSTAT, DIS, and AGE have the highest importance at this stage.
LSTAT shows the percentage of low-income inhabitants, and it is natural to assume that

income is strongly related to the prices of houses. DIS presents the distances to the city center,
and it naturally affects house prices. The AGE of the building also is highly correlated with its
price. MetaM predicts the reduction in the ensemble error, which is reflected by the reduction of
the averaged error and the increase in ambiguity once a data sample is added to the training set.
We can see that LSTAT and DIS have higher importance than the other variables in learning
the gain and lower importance for the AGE. Since the gain reflects a decrease in the ensemble
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Figure 2: Variable importance for the ensemble (a) and𝑀𝑒𝑡𝑎𝑀 (RF) (b) before selecting the 5-th sample.

loss after a data sample is added to the training set, the variable with high importance in the
ensemble also has high importance in MetaM as naturally expected. In addition, the actual
selected sample is shown in Table 4. It can be seen that the values of LSTAT are 4.81, DIS 8.696,
and AGE 21.9. The summary of these variables in the training data (i.e., before the data sample
selection) is shown in Table 3. From this table, it can be seen that the sample is selected from
low-density regions, especially for AGE and DIS. Based on this result, we can conjecture that at
this stage of the learning, the information on the AGE and distance DIS of buildings together
with the percentage of the population engaged in low-salary occupations LSTAT is important
for the ensemble accuracy, but a sufficient amount of information is not yet collected. That is
why active sampling is made in favor of low-density regions.

5. Concluding Remarks

This paper introduces METAL a novel, practically useful meta-active learning method for
learning regression ensembles. This work illustrates the combination of meta and active
learning for optimizing ensemble building and enhancing its performance by contributing to
the accuracy-diversity trade-off. The proposed method shows that it is possible to interpret
the reason for sample selection without forcing restrictions on the ensemble construction. In
future work, we aim to explore heterogeneous ensembles and how different families of machine
learning models can be combined to improve prediction accuracy and support explainability.
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