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Abstract
Metadata is used to describe data. It includes information about the who, when, where, how, and why
of data collection. Ideally, it should be in a machine-understandable format like RDF. This enables
data queries using structured query languages like SPARQL and empowers further data usage. In this
paper, we investigate metadata as a source for generating Knowledge Graphs (KGs). We introduce a
semi-automated approach that transforms raw metadata files into a KG. We develop the Biodiversity
Metadata Ontology (BMO) as an underlying schema for our technique. We auto-populate the constructed
ontology with instances from several metadata files as a unified KG. Finally, we discuss the common
obstacles that face such a transformation procedure. Our results show that metadata files are a promising
source for KG construction. In addition, our resources and code are publicly available1.
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1. Introduction

A Knowledge Graph (KG) is a graph-based model built to accumulate and convey knowledge of
the real world; it contains a set of nodes and edges representing entities of interest and their
relations [1, 2]. Auer et al. [3] propose them to bring scholarly communication to the 21st century.
While publications are one way to encode knowledge around an area of research, observational
and experimental data are another. For example, a large amount of heterogeneous data is
collected and generated in biodiversity research. Integrating this data remains a significant
challenge [4]. Metadata are often associated with biodiversity datasets, describing them in
various ways, for example, who, when, where, how, and why the data is collected. A metadata
file contains essential information for various applications, like dataset search and Question
Answering (QA) [5]. One way to exploit this untapped wealth is by transforming this raw
metadata into KGs. Page [6] demonstrates a biodiversity-specific KG example, with this, we can
increase the FAIRness [7] of the data by enhancing its re-usability. For example, we enable data
querying using a structured query language like SPARQL.

Embeddings are a well-established technique that captures the semantics of a given word
or sentence. Previous works have shown their significant impact on many Natural Language
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Processing (NLP) applications [8, 9, 10]. In this work, we transform raw metadata files into a
KG using an embedding-based matching technique. We demonstrate the effectiveness of the
method and discuss common challenges in the automated transformation process. We tested our
technique on a biodiversity use case; however, we expect our method to be domain-independent
since we do not rely on any domain-specific mapping rules.

The proposed approach yields several research questions that we try to answer for the first
time in this paper:

• RQ1: Is it possible to construct a KG using metadata as the only data source?
• RQ2: How can we automate the transformation of metadata to KG?
• RQ3: What are the challenges facing such automated transformation?

We distinguish the contributions of this paper compared to the previously published poster
paper [11] as follows:

• Biodiversity Metadata Ontology (BMO), our data model, is a hand-crafted schema for
biodiversity metadata.

• Embedding-based approach that maps from metadata to BMO.
• Auto population technique of BMO with triple validation.
• Evaluation of the matching technique and discussion on the faced challenges.
• Biodiversity Metadata Knowledge Graph (BMKG), the resulting knowledge graph that is

automatically generated for the biodiversity metadata.

The rest of this paper is organized as follows: We give an overview of related work in Section 2.
In Section 3, we demonstrate our approach. We discuss the results and answer our research
questions in Section 4 and Section 5. Finally, we conclude in Section 6.

2. Related Work
In this section, we give an overview of the related work.
SCM-KG [12] integrates scholarly communication metadata into a KG from two different

sources DBLP1 and Microsoft Academic Graph (MAG)2. Their motivation is the disambiguation
of personal entities that represent authors. Such entities included a list of publication IDs
as a disambiguation property. The authors claimed the completeness of SCM-KG since each
data source covers different aspects. For example, DBLP has a complete listing of authors and
publications. However, MAG has more keywords and abstracts. The authors introduced a
pipeline that consists of 1) two manual steps concerning data acquisition and pre-processing.
2) three automatic steps, including ontology matching using rule-based techniques, similarity
measurement, and instance linking. The authors deal with various data sources like CSVs, PDFs,
and structured databases. Such heterogenous input may use different schemas. e.g., DBLP
and MAG model the same concepts (e.g., affiliation) differently. Thus, the authors involved a
mapping step in creating their target unified graph through an ontology engineering phase.
They used subsets from Dublin Core and FOAF ontology, and they created missing vocabulary

1https://dblp.org/
2https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/
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themselves. They provided an entity linking step to their pipeline for ontology matching via a
Jaccard similarity. They used the common title and the publication year, if provided, to match
the instances to the ontology.
ENVENTS [13] introduced a dataset for top-tier conferences in the computer science field,

e.g., ISWC, ESWC, CVPR. It encapsulates scientific events in terms of historical data about the
publications, submissions, start date, end date, location, and homepage for 25 top-prestigious
event series (718 editions in total) in five computer science communities. The authors manually
collected and analyzed the metadata (raw data) since 1990 of these conferences from different
sources like DBLP, and ACM Digital Libraries3. Then, they applied a pre-processing data
phase where they aimed to fill in the missing data, identify and correct incorrect data, and
remove irrelevant information. Thus, four tasks are involved in this phase: data integration,
data cleansing, data transformation, and event name unification. Then, the authors analyzed
the collected metadata of the events in terms of, e.g., the h5 index, average acceptance rate,
and the number of editions of each event. The primary use case of such work is Question
Answering (QA). The dataset is publicly available online in three formats (CSV, XML, and RDF).

ENVENTSKG [14, 15] is the successor of the previous work. The authors released their dataset
as a unified KG instead of individual RDF dumps, including data for more computer science
communities. I.e., EVENTSKG is a KG that contains metadata of top-40 prestigious events series.
Like EVENTS, the main goal of EVENTSKG is to facilitate the analysis of events metadata by
enabling them to be queried using semantic query languages like SPARQL. This work relies on
the Scientific Event Ontology (SEO) [16] as a data model. Two steps are included to enhance their
previous pipeline. On the one hand, for the linked data generation, where the authors developed
an RDFer, a Java tool to convert input data from CSV to linked data (RDF/XML syntax). On the
other hand, the linked data enrichment (LDE) is included to infer the interlinking relationships
between RDF triples using inference engines, i.e., reasoners.

Schröder et al. [17] managed to create a Personal Knowledge Graph (PKG) from file names as
the only data source used in a semi-automatic approach. File names are considered metadata
for files that have minimal context. Despite the unusual source to create a KG, a user that is
defined as a knowledge engineer is responsible for creating the RDF triples. However, an active
learning technique aids the knowledge engineer by suggesting entity types. The authors used
rule-based techniques to extract terminologies of interest. They followed several steps to unify
the extracted entities and populate the ontology. Then, they conducted taxonomic and non-
taxonomic relations using language resources. The authors used Jaccard and Embedding-based
similarities, for instance and type matching, respectively.

3. Approach

Figure 1 shows the seven phases of our semi-automated pipeline that we detail in the following
sections. It consists of 1) A description of the data sources we used to develop the data model
and evaluate our matching technique (Data Acquisition). 2) The preprocessing that we applied
on the collected metadata files to facilitate its interpretation (Preprocessing). 3) The process of
our data modeling (Ontology Development). 4) The embedding sources we used to generate the

3https://dl.acm.org/
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Figure 1: Overview of our raw metadata to KG transformation workflow. Rectangle shapes are
automated modules. Oval shapes are manual steps.

word embeddings in addition to vectors construction methods (Embeddings Generation). 5) Our
similarity measurement and ontology matching techniques (Match). 6) Our auto-population
technique with supported datatype validations (Validate & Populate), and finally, 7) how we
published and indexed our contributions, including the Biodiversity Metadata Knowledge
Graph (BMKG) (Release). We used the first fold of the collected metadata, “Seen Data” to
develop the underlying ontology Biodiversity Metadata Ontology (BMO) and to generate the
ontological embeddings BMOE. We used the second fold of the collected metadata, “Unseen Data”
for ontology matching and auto-population. Both “Data Acquisition”, “Ontology Development”,
and “Release” stages involve manual labor. The rest of the modules are fully automated.

3.1. Data Acquisition

The first step in this work is to decide the sources of metadata files. We decided to collect
them from seven biodiversity data portals that have various characteristics. These portals
are German Centre for Integrative Biodiversity Research (iDiv)4, BEF-China5, Biodiversity
Exploratories (BExIS)6, Global Biodiversity Information Facility (GBIF)7 and data.world8. In
addition, we included biodiversity-related metadata from PANGAEA9 and, Dryad10, both are
well-established data publishers for ecological data. We queried these portals using 20 keywords
identified as typical for the biodiversity domain [18] including, e.g., “abundance”, “benthic”,
“biomass”, “carbon”, “climate change”, “decomposition”, “earthworms”, “ecosystem”. We picked
the first 50 datasets from each repository from the search results and selected the complete
ones, those that have mostly completed their metadata fields. This manual inspection ensures
domain specificity as well. Figure 2 shows the overall distribution of the selected metadata
files over the repositories. We divided the collected data into Seen and Unseen data. For the

4https://data.botanik.uni-halle.de/bef-china/
5https://bef-china.com/
6https://www.biodiversity-exploratories.de/en/
7https://www.gbif.org/
8https://data.world/
9https://www.pangaea.de/
10https://datadryad.org/stash

https://data.botanik.uni-halle.de/bef-china/
https://bef-china.com/
https://www.biodiversity-exploratories.de/en/
https://www.gbif.org/
https://data.world/
https://www.pangaea.de/
https://datadryad.org/stash


20

47

31

18
19

18

30

2

5 5

2 2 2 2

0

5

10

15

20

25

30

35

40

45

50

iDiv BEF-China BExIS GBIF PANGAEA DRYAD data.world

N
u

m
b

e
r 

o
f 

C
o

lle
ct

e
d

 M
et

ad
at

a 
Fi

le
s

Data Repositories

Seen Data Unseen Data

Figure 2: Seen & Unseen metadata distribution.

Unseen data, we picked five files from each repository with the most samples: BEF-China and
BExIS, and we selected two files from each of the rest. We considered the remaining metadata
samples as Seen data. We use Seen data for modeling the underlying ontology and creating
its embeddings. The Unseen data is used to create the ground truth by manually annotating
its fields to the BMO; thus, we validate the matching technique. In addition, it is also used to
auto-populate the final resultant KG.

3.2. Preprocessing

We applied a preprocessing step to the “Seen data”. It included the conversion of the XML
files into a key-value data structure. That way, a key encodes the entire hierarchy of
a metadata field. For example, the key dataset.temporalCoverage...calendarDate
corresponds to the XML in Listing 1. Moreover, we cleaned the keys from generic
words, e.g., dataset, calandarDate, id, #text. We decided on these generic terms
by manual analysis of the entire repositories. So, a clean key for this example is
temporalCoverage.beginDate. We keep the key-value structure, “flat dictionary”, in a
separate file, and we use it to pre-train word embeddings and triple validation later in this work.

Listing 1: Metadata field XML snippet
<dataset id="171">

<temporalCoverage>
<rangeOfDates>

<beginDate>
<calendarDate>

2009/07/31
</calendarDate>

</beginDate>
</rangeOfDates>

</temporalCoverage>
</dataset>



3.3. Ontology Development

The target of this phase is to find a common vocabulary for the seven data repositories we
decided to work with. After the preprocessing step, we calculated the frequency of each key
in the Seen data to analyze the used keys for each data repository and get insights on the
most common keys in the biodiversity metadata in general. Table 1 shows a sample of the
auto-generated keys after we apply the cleaning steps and their frequencies. The last column
depicts our chosen key that would appear in the ontology. The selected format would be
the shared vocabulary among all data portals. The selected repositories use various syntactic
representations for the same semantic meaning. For example, “abstract” conveys the information
from both fields: “Short_Abstract”, and “Abstract.Abstract”. We manually analyzed the resultant
cleaned and grouped keys to develop a shared schema that aligns our data repositories. We
kept the “Selected” key with all its synonyms. Such selected keys represent our schema. We
use its synonyms to generate the embedding of the key later in this work. We held several
meetings with a biodiversity expert to validate and review such schema. During those meetings,
we integrated the biodiversity expert’s opinion, e.g., we included other vocabularies for one
data repository, i.e., BExIS. Thus, in this phase, ontology development is an iterative process
where we integrate the feedback from the domain expert.

We used the Python module, rdflib11 to create the RDF file for the schema, the Biodiversity
Metadata Ontology (BMO). We reused existing vocabulary from schema.org. In addition,
we defined a new concept under BMO namespace if it did not exist. For example, we reused
“Organization”, “Person”, and “Address” from schema.org. However, we defined both “Taxonomic
Coverage” and “Geographic Coverage” using BMO namespace. In addition, we used datatype
properties from Wikidata [19] and Dublin Core12.

Figure 3 depicts the concepts and relations of the Biodiversity Metadata Ontology (BMO). The
dashed lines represent the subClassOf relation where the dashed node notes the parent class.
Other nodes and lines represent concrete classes and relations, respectively. We demonstrate
the properties of our main concept Dataset in Table 2. The “Match” column denotes the
skos:exactMatch from the corresponding source except for both license and accessRights,
they represent skos:closeMatch due to a range mismatch between our properties and those
defined in Dublin Core.

3.4. Embeddings Generation

In this section, we explain embeddings sources and methods we developed to transform the
keywords into embedding space.

Embedding Sources We supported two variations of embeddings. On the one hand, for
domain-specific embeddings, we trained a fasttext [10] model on the Seen data by converting
the key-value pairs, “flat dictionary” (see Section 3.2), into synthetic sentences. Iteratively, we
used both the key and its value in such a dictionary to create the corresponding sentence. On the

11https://rdflib.readthedocs.io/en/stable/
12https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
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Table 1
Auto-generated keys examples, frequencies, and the selected key name.

Auto-generated Frequency Selected

versionID 19 version
version 49 version

Short_Abstract 2 abstract
Abstract.Abstract 18 abstract
abstract 362 abstract

DOI 15 doi
doi 2 doi

contact.phone 8 contactPerson_phone
contacts.contactPerson.phone 12 contactPerson_phone
coverage
.geographicCoverage
.boundingCoordinates
.eastBoundingCoordinate

57
geographicCoverage
_boundingCoordinates
_eastBoundingCoordinate

SpaceBoundingBoxes
.BoundingBox
.eastBoundingCoordinate

250
geographicCoverage
_boundingCoordinates
_eastBoundingCoordinate

(Schema)

Dataset

(BMO)

Geographic 
Coverage

(Schema)

Temporal 
Coverage

(BMO)

Coverage

(Schema)

Project
(Schema)

Funding

(Schema)

Person
(Schema)

Address
(Schema)

Organization
(Schema)

Country

(Schema)

City

(BMO)

Method
method

geographicCoveragetaxonomicCoverage

temporalCoverage

subClassOf

subClassOf subClassOf

hasProject funding

organization hasAddress country

city
contactPerson
dataCreator
metadataProvider

(BMO)

Taxonomic 
Coverage

(BMO)

Plot

(BMO)

Bounding 
Coordinate

numberOfPlots

boundingCoordinate

teamLeader

Figure 3: Biodiversity Metadata Ontology (BMO) concepts and relations.

other hand, for the pre-trained embeddings13, we used the publicly available Wikipedia-based
embeddings. We used these resources to generate both ontological embeddings (BMOE) and
metadata embeddings (MetaE) for the unseen data. We compare both embedding sources during
our experiments.

Generation Method The selected repositories use different keywords representing precisely
the same thing. For example, BEF-China, GBIF, and BExIS use geographicCoverage, and
DRYAD uses only Coverage to describe the geographical specs of a study. The same applies
for taxonomicCoverage that BEF-China, GBIF, and BExIS use, whereas Taxonomic_Scope
and TaxonCoverage are used by iDiv and PANGAEA, respectively. Thus, we used the list
13https://fasttext.cc/docs/en/english-vectors.html
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Table 2
Properties of our main concept: Dataset. Short forms; SCH, DCT, and WD map to schema.org, Dublin
Core Terms, and Wikidata respectively.

Type Property Match Source Meaning

datatype title name SCH The title of the dataset
abstract abstract SCH The short text that summa-

rizes a dataset
description description SCH The summary of the dataset
language inLanguage SCH The language of the data pro-

vided
intellectualRights accessRights DCT Specify if the data is public or

private
license license DCT The license of the dataset
citation citation SCH How to cite the dataset
dataFormat BMO The dataset format, e.g., delim-

iter
version version SCH The version of the dataset
keywordsSet keywords SCH Dataset tags
doi P356 WD Dataset DOI
alternateIdentifier identifier SCH Dataset download or home

URL
publicationDate datePublished SCH When the dataset is published
numberOfRecords P4876 WD How many records in the

dataset

object contactPerson BMO The contact person of the
dataset

metadataProvider BMO Who provided the metadata
dataCreator BMO Who created the data
project BMO The associated project of the

dataset
geographicCoverage BMO The geo specs of the study
temporalCoverage BMO The time duration of the study
taxonomicCoverage BMO The included taxons of the

study

of synonyms for each selected key that was created during the BMO development. We aim
to obtain embedding vectors of BMO relations that encode information from synonyms. For
example, a vector for “version”, represents the version of the dataset, would be a function of all
its synonyms: “version”, “versionID”.

We developed two methods for approaching such an idea: 1) Mean: An embedding vec-
tor of a given key 𝑒𝑘𝑒𝑦 is determined as the mean vector of all its synonyms set as defined
as 𝑆𝐸 in Equation 1. 2) Weighted Mean: Similar to the Mean method and inspired from
TF-IDF14, we gave higher weight to the more specific words that form an entire key. For
example, temporalCoverage.startDate, startDate would have double the weight of
temporalCoverage. temporalCoverage is a less discriminative word since it would appear
with another term like endDate. This method is described in Equation 2 where 𝑒𝑠𝑖𝑗 is the
individual word vector of a given key of synonyms set 𝑆𝐸, and we use the word position 𝑗 as
its weight. We use the embeddings generation methods to transform BMO ontology and the
Unseen data keys into the embeddings space.

14https://en.wikipedia.org/wiki/Tf-idf
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𝑒𝑘𝑒𝑦 =

∑︀|𝑆𝐸|
𝑖=1

∑︀|𝑊𝑜𝑟𝑑𝑠|
𝑗=1 𝑒𝑠𝑖𝑗

|𝑆𝐸|
(1)

𝑒𝑘𝑒𝑦 =

∑︀|𝑆𝐸|
𝑖=1

∑︀|𝑊𝑜𝑟𝑑𝑠|
𝑗=1 𝑒𝑠𝑖𝑗 × 𝑗

|𝑆𝐸|
(2)

3.5. Match

In this phase, we converted BMO into embeddings space using the equations above yielded
BMOE. We also performed the same pre-processing procedure to obtain clean keys of the Unseen
data. Then, we transformed the Unseen data keys into vector space as well yielded MetaE. One
significant difference between this step and generating BMO embeddings is that the Unseen
data have no synonyms; however, the mean-based operations are only done on the words of
the key only. For matching, we used cosine similarity in the embedding space between the
ontological embeddings, BMOE, and Unseen metadata embeddings, MetaE. For each MetaE, we
retrieve the closest BMO vector that has ≥ 70% similarity. We avoid the closest assignment
for better recall. We chose such a threshold to balance the precision and recall. We tried
higher thresholds; however, it misses a lot of true matches. This makes sense since the target
ontological embeddings are created using a mean or weighted mean operation; thus, a 100%
similarity will never be achieved. This step matches the unseen data to the ontology concepts
and properties; however, it lacks the instances.

3.6. Validate & Populate

To populate the BMO with instances, we rely on the “flat dictionary”. In that sense, the key has
mapped to, e.g., ontology property, and its value represents the instance we add to the ontology.
Auto-populating such ontology given only matches from the step above is not accurate for two
reasons: 1) invalid entries in the metadata fields, and 2) miss-classification that yields datatype
violations. We allow the population of a triple if and only if its value has the expected datatype.
For example, we populate dataCreator_Phone if the corresponding value is a phone. We
cover basic datatype validations using regular expressions for the following datatypes: Phone,
Email, Coordinate, URL, Decimal, and Date. In addition, we validate the resultant KG using the
W3C RDF Validation Service15.

3.7. Release

Resources should be easily accessible to allow replication and reuse. We follow the FAIR
(Findable, Accessible, Interoperable, and Reusable) guidelines [7] to release our contributions.
We release our ground truth [20], ontological embeddings [21], BMO [22], and BMKG [23] in
Turtle, N-triples, and RDF-XML format in Zenodo, so researchers in the community can benefit
from them. We published our resources and code under the Creative Commons Attribution 4.0
International (CC BY 4.0) and Apache License 2.0, respectively.

15https://www.w3.org/RDF/Validator/
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Figure 4: Matching F1-score on Unseen data using our and Wiki-based embeddings.

4. Results

We conducted several experiments to demonstrate the effectiveness of the generated embeddings.
Besides the two mean-based methods (mean and weighted mean) for embeddings generation, we
developed a two baseline approaches. On one hand, to test the effectiveness of embeddings we
developed a base line approach based on string similarity using Levenstein distance (levenstein).
On other hand, to test the effectiveness of mean operations, we handled each key in the Unseen
data as a single word without any kind of spliting, then, transform that word to a vector (key
to vec). For evaluation, we manually annotated the cleaned Unseen Data with the correct
match from the ontology. We use such ground truth to evaluate our matching technique. We
considered the value of the auto-generated key to classify it. In the following, we show our
matching results and give insights about the resultant auto-generated KG.

4.1. Matching Results

Since we have two embedding sources (our custom embeddings and pre-trained Wikipedia-
based embeddings) and three techniques (baseline (no mean), mean, and weighted mean) to
obtain an embedding vector with an additional lexical baseline (levenstein), we conducted
seven experiments to cover all combinations. Figure 4 shows the F1-score for all experimental
settings. We calculated the scores per data repository and the accumulated them as well (all).
We found that the Weighted Mean approach combined with the pre-trained Wikipedia-based
embeddings yielded the best scores. This proves that our developed mean-based method
successfully captured a wide range of syntactic representations from metadata keywords. Since
we used synthetic sentences that are derived from a combination of metadata key and value,
“flat dictionary” items combined, we lacked proper natural text during the training. Thus, it
justifies the lower scores with our custom embeddings. From the repositories perspective, our
approach gained the lowest scores on PANGAEA due to the lack of proper metadata fields,
thus, confusing our matching procedure. However, our method reaches, at some times, 100%
precision on Dryad due to its relatively more straightforward fields to match, e.g., “title”.



4.2. Resultant Knowledge Graph

Our resultant BMKG represents BMO with instances. It contains those instances from the
Unseen data. Figure 5 represents the frequency of triples in the BMKG. Darker colors de-
pict higher field frequency. Dataset datatype properties, e.g., keywordSet, citation, and
description, are the most occurred fields in the graph from the Unseen metadata files. They
are auto-populated correctly with valid instances. The data properties are followed by the
DataCreator and ContactPerson. The NumberOfPlots seems to be more frequently used
than BoundingCoordinates under GeographicCoverage. The MetadataProvider is fre-
quently incomplete compared to both DataCreator and ContactPerson since it is usually
described by givenName and phone only.

We gave a closer look to the BMKG where we manually investigated the populated Dataset
instances using Protégé16. Figure 6 shows a snippet of the automatically generated KG. We
picked a random instance of the core concept “Dataset” and investigated the auto-populated
triples manually using Protégé with its original corresponding metadata file. In the figure, “num-
berOfRecords”, “temporalCoverage”, “title”, “geographicCoverage”, “dataCreator” are correctly
matched and populated (green rectangles 1, 4, 5, 6, 7). However, our technique mismatches
the “Project” and the “startDate” under the “TemporalCoverage” triple (red rectangles 2 and 3).
From the original file, the former is just a “description”, and the latter should be “endDate”. In
addition, we identified missing triples under the “dataCreator”, e.g., phone value. This means
that our validation layer failed to validate a phone value.

5. Discussion & Limitations

In this section, we give the first answers to our previously expressed research questions. RQ1: Is
it possible to construct a KG using metadata as the only data source? our conducted experiments
in this paper show that metadata are a promising data source since we managed to create a KG
from them in a fully automated way. However, the resultant KG suffers from quality issues as
shown in Figure 6. This needs multiples revisions and human intervention to ensure a higher
quality level of the restultant KG. In this paper, we developed a fully automated unsupervised
approach based on embeddings to transform raw metadata files into an ontology and populate
it with instances to generate a final KG. Thus, our approach initially answers RQ2: How can we
automate the transformation of metadata to KG?. We pose the last research question, RQ3: What
are the challenges facing such automated transformation? to discuss the common obstacles with
our provided solutions as follows: 1) A resultant triple might violate datatype constraints due to
a mismatch by our approach or originally filed with a wrong datatype. We proposed validations
that are based on regular expressions for several datatypes. E.g., a triple like: (dataCreator,
phone, X) is considered valid if and only if X is a valid phone value. 2) Inconsistent value format
of metadata attributes. Keywords are used either in a word-by-word form or a list separated by
a delimiter like commas and semicolons. We set the granularity to a word level for consistency,
thus, we split any given list by its delimiter. 3) Embeddings failed to differentiate between values
like surName and givenName since both are names. Thus, we consider the actual string value
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Figure 5: BMKG: fields frequencies. Upper case nodes are objects. Lower case nodes show literals.
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Figure 6: BMKG: Instance analysis. Green rectangles are correctly matched, red ones are otherwise.

to obtain the correct match for such cases. 4) Some repositories provide weak and incomplete
metadata fields like PANGAEA. Such repositories introduce noise that we omit as much as



possible to generate a clean KG.
We list the following limitations that are not solved yet. In our future work, we will consider

the sketched solutions: 1) We discovered more inconsistencies regarding some metadata fields.
Currently, license and intellectualRights properties accept a literal as a range. However, Dublin
Core defines both of them where the expected range is an actual “license” and “right statement”
objects, respectively. We plan to change that to follow the Dublin Core definitions where we
support entity linking. 2) Currently, citation is a data property that accepts a string as a range.
We chose based on the options commonly used in the selected repositories. However, a typical
citation contains more fine-grained data like authors, volume, and issue, which PANGAEA
partially adopts. Thus, we consider a further analysis of the citation field by recognizing its
individual parts. By this means, it would yield into more fine-grained KG and better description.
3) Metadata fields might contain several (semi)redundant information across various fields, e.g.,
BEF-China might have these duplicates under description, abstract, introduction, measurement. A
semi-automated approach could overcome this issue. 4) We found complex fields that have mul-
tiple semantic concepts. E.g., the description that is used in data.world often contain information
about citation or license. So, detecting those nested entities would yield concrete information.

6. Conclusions & Future Work

We investigated the construction of a Knowledge Graph (KG) using metadata as the only source
of data. Our pipeline is tested on, but not limited to, a biodiversity domain use case. We
demonstrated our used data repositories: seven biodiversity data portals. We manually collected
the metadata files from them. We divide them into Seen and Unseen data. We used the Seen data
to construct the underlying data model that aligns the selected data portals. In addition, we used
them to transform the constructed ontology into the embedding space. We used the Unseen data
to evaluate our unsupervised matching techniques and auto-populate the BMO with instances.
Such embeddings-based techniques are based on the mean operation where the similarity
measure is the cosine similarity. We demonstrated the effectiveness of the developed matching
and population techniques. In addition, we showed the current limitations of the methodology,
and we pointed out possible solutions for them. Besides the transformation pipeline, we
presented the Biodiversity Metadata Ontology (BMO) and Biodiversity Metadata Knowledge
Graph (BMKG) as byproducts of this work. We made our resources and code publicly under our
GitHub repository. In addition, we released our ground truth [20], ontological embeddings [21],
BMO [22], and BMKG [23] in Turtle, n-triples, and RDF-XML format in Zenodo.

We see multiple areas to extend this work. First, we plan to enhance our matching technique
by using an ensemble-based method that relies on both embeddings and string similarity. In
addition, we explore more options to close the open issues we have discussed. For example,
we parse complex fields into more fine-grained pieces for better representation. Moreover, we
explore triple verification approaches for more trusted KG. Finally, we expose the BMKG via a
SPARQL endpoint to achieve better data re-usability.
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