
Designing NORIA: a Knowledge Graph-based
Platform for Anomaly Detection and Incident
Management in ICT Systems
Lionel Tailhardat1,2,*, Yoan Chabot1 and Raphaël Troncy2

1Orange, France
2EURECOM, Sophia-Antipolis, France

Abstract
To monitor complex systems, such as telecommunication and computer networks, interconnecting het-
erogeneous data with shared definitions is necessary for efficient interpretation of events and incidents.
Semantic Web technologies are essential in this context, as they address the problems of data hetero-
geneity, knowledge sharing and logical/probabilistic reasoning. Well-established Network Monitoring
Systems (NMSs) and Security Information and Event Management systems (SIEMs) do not explicitly
use Semantic Web knowledge representation, however. To fill this gap, we propose an end-to-end data
processing architecture that combines NMSs/SIEMs design patterns with Semantic Web tools. The
platform features batch/stream processing, declarative data mapping with RML, data patching & reconcil-
iation with SPARQL queries and SKOS, provenance auditability with centralized configuration and data
management, and semantic data transfer with Kafka. The proposed architecture has been instantiated
and tested in an industrial setting, producing an RDF knowledge graph that shows strong potential for
addressing cross-domain anomalies from heterogeneous data.
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1. Introduction

Incident management for broad scale Information and Communications Technology (ICT)
systems implies scrutinizing massive amount of heterogeneous data for proper definition of
remediation strategies. In the best case, crisp reasoning over situations at hand brings fast root
cause analysis and high level of confidence for selecting the corrective maintenance actions to
carry out. Anomaly detection within decision support systems, such as Network Monitoring
Systems (NMSs) and Security Information and Event Management (SIEM) tools, typically rely
on expert knowledge translated into logical rules for catching specific situations based on the
systems activity traces. However, uncertainty arises whenever the ICT system’s activity shows
unexpected values or behaviors poorly fitting known activity models. A typical solution would
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be to fine-tune the decision support system stack, for example by extending the detection rule
set with the new values, or retraining the anomaly detection model. This unfortunately brings
computational complexity and overfitting to the diagnosis stage.

A better solution is to keep rules and models consistent by working on semantically equal data.
The notions of “ontology” and “data model” solve the challenge of reasoning upon composite
alerting signals at the semantic level. Indeed RDF Knowledge Graphs [1] bring an abstraction
level for standard interpretation and logical reasoning over heterogeneous data.

Leveraging on Semantic Web tools could bring decision support systems for ICT systems to a
next level of diagnosis and recommendation capabilities. However, few feedback exist about
the design of such data processing platform from an end-to-end perspective. This paper reports
on the design experiments for a knowledge graph-based data platform made at Orange, an
international telecommunication infrastructure and service provider. The NORIA platform is
part of an ongoing research effort for improved resilience of complex networks. It comprises
the following key features: 1) building a RDF Knowledge Graph from static (IT resources lists,
organization) & streamed (trouble tickets, logs) data; 2) providing data & inferences provenance
and confidence indicators; 3) enabling inline & posterior entity patching and reconciliation;
4) enabling multi-level & synergical reasoning. Our main contributions with this paper are:
setting design methodology and principles for an end-to-end knowledge graph-based data
platform, providing Extract Transform & Load (ETL) architecture details and code for handling
descriptive datasets and events streams, and sharing lessons learned while building the platform
about data mapping strategies and configuration deployment.

The rest of the paper is organized as follows: Section 2 presents related work. Section 3
explores design challenges and requirements through a tool chain model proposal. Section 4
details our knowledge graph-based data platform architecture. References to contributed open
source code are provided there. Section 5 evaluates the platform features and discusses lessons
learned. Finally, Section 6 concludes the paper and discusses some future work.

2. Related Work

Designing a data processing architecture for Incident Management of ICT systems involves
various research and technical domains, such as: data transformation and wrangling, computing
and service architecture, decision making and business process management. In this section,
we review related work from the aspect of current NMSs & SIEMs architectures, and Semantic
Web data management solutions.

NMSs [2, 3] and SIEMs [4, 5] are two different product lines due to the nature of the data
processed and the expectations regarding the incident management processes in which they are
involved (e.g. ISO/IEC 20001, NIST SP 800-612). For telecommunication networks, alarms (i.e. a
durable or non fugitive fault that happens on an atomic function, as per ITU-T G.7710/Y.17013)
are first class citizens that should be reported to a Management and Control System. For
cybersecurity, technical logs need to be combined with vulnerabilities and threat intelligence

1https://www.iso.org/standard/70636.html
2http://dx.doi.org/10.6028/NIST.SP.800-61r2
3https://www.itu.int/rec/T-REC-G.7710/
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in a Log Collection → Log Normalization → Notifications and Alerts → Security Incident
Detection component chain [6] for threat response management.

In both contexts, data processing architectures generally follow the producer/consumer
design pattern4 (a.k.a. observer pattern) and inspirations from distributed computing (i.e.
hubs + aggregator). This is done in particularly to enable handling data sources with varied
characteristics according to the monitored system uniformity and requirements (e.g. a High-
Performance Computing platform with a data transfer and processing service offer vs an Internet
Service Provider with communication service and PaaS – Platform as a Service – offers). Data
persistence/dynamics characteristics and usage objective are driving forces behind the local
computing performance through the choice of a best storage technology (e.g. Input/Output
performance, storage footprint): 1) daemons and web applications (e.g. dedicated filesystem for
raw logs, binaries and libraries); 2) events and node information (e.g. PostgreSQL5 for structured
notifications and characteristics); 3) performance data (e.g. RRD6 for throughput or CPU usage
time series). Other lines of research exist for improving system performance: distributed event
management and multi-agent architectures; data sketching; stream processing and anomaly
detection subject to resource constraints.

Knowledge Graphs [1] bring an abstraction level for standard interpretation and logical
reasoning over heterogeneous data. Graph data structures are sometimes used directly internally
in NMSs and SIEMs for cases such as visualizing network topologies and data flows, representing
and implementing failure mechanism models for root cause analysis (e.g. with fault tree analysis),
or enabling knowledge management and data exploration with a traversal approach. Knowledge
representation with Semantic Web technologies is not in use explicitly in well-established tools,
however. Despite this, various research projects offer solutions of different complexity and
maturity to support the Knowledge Graph Construction (KGC) process and make Incident
Management more effective.

In end-to-end frameworks [7, 8, 9, 10], the KGC step is never considered singular, initial
or terminal, but rather is the subject of multiple instances of a similar tool/principle within
processing flows depending on the application field. In addition, this step is always placed
between heterogeneous non-RDF data and a knowledge graph working sometimes as a main
data storage, and sometimes as a support for third-party inference processes.

Generic tools devoted to KGC focus on stream processing and reasoning, for example: RML-
Streamer [11] applies declarative mapping on the fly to structured data streams (e.g. file, Kafka
topic) with RDF Mapping Language (RML) [12] rules; StreamingMASSIF [13] uses basic string
substitution for mapping, and allows for real-time reasoning (e.g. SPARQL query processing,
Complex Event Time processing); C-SPARQL [14] extends the SPARQL query language for
continuous reasoning within a publisher/subscriber platform. For static data: RMLMapper [12]
enables data fetching and declarative mapping with RML rules; Ontop [15] creates a virtual graph
representation of various data sources via SPARQL queries; and SLOGERT [16] orchestrates log
modeling and annotation with Cyber Threat Intelligence tags7.

4The TM Forum’s Open Digital Architecture (ODA) aims to improve user experience and Information System (IS)
interoperability in the ICT industry beyond general best-practice approaches for Decision Support Systems design.

5https://www.postgresql.org/
6http://www.rrdtool.org/
7As for SLOGERT v0.9.1: with MITRE CEE categories from http://cee.mitre.org/language/1.0-alpha/
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This paper’s end-to-end data processing approach combines NMSs/SIEMs design patterns
with Semantic Web tools. It includes requirements for distributed processing, separation of
concerns, data sketching (i.e. enabling both early and posterior reasoning on data), openness to
third-party databases/tools, and re-use of well-established frameworks (e.g. declarative mapping,
message passing).

3. Design methodology and challenges

This section outlines the methodology followed in constructing a knowledge graph-based data
platform with stream processing and reasoning capabilities for Incident Management over ICT
systems. It proposes a conceptual tool chain and examines design challenges and requirements
to frame the high-level design and implementation work discussed in Section 4.

Conceptual tool chain & design principles. Looking at data integration theory and generic
data transformation processes (e.g. “Extract, Transform, Load”, CRISP-DM [17]), we remark
that none directly take into account the abstraction and reasoning capabilities brought by the
Semantic Web technologies and Knowledge Graphs. Furthermore, these design patterns set apart
decision making concerns where informed-decisions potentially involve gradual understanding
of data (i.e. raw data → information → knowledge) combined with synergical reasoning [18].

Extending on these, we propose a tool chain model (Figure 1) to guide design thinking
steps: unstructured data (e.g. event logs) enters the tool chain and becomes structured data
by application of a defined/learnt structure model. Semantic mapping is applied for making
annotated data. These can benefit of additional knowledge from some enrichment service
(e.g. mapping assets to organization or vulnerability knowledge). Reasoning service (e.g. rule-
based inference, confidence propagation, link/entity prediction) works from annotated data for
producing further knowledge (i.e. interpreted data). Downstream agents (e.g. operational teams,
information system) get informed (e.g. situation awareness) by querying interpreted data. This
conceptual tool chain is open to complementary processes, such as a direct feed of structured
data or recursive loops of the inference step.

Based on the above, we posit the following design principles (further discussed below) to
streamline integration and improve user adoption: 1) Minimize transformation needs at ingress:
data encoding (serialization & structuration) must be backward compatible early in the process-
ing chain to limit the number of technologies used; 2) Independent downstream usage: parallel
downstream applications may focus on different data facets, so the serialization/structure should
allow easy separation of data from meta-data without imposing specific remote procedure calls;
3) Implementation independent: abstractly describing transformation and processing rules en-
ables system behavior description and transposition independent of implementation; 4) Integrate,
customize or build: prioritize integrating existing frameworks that meet requirements, extend
partially meeting frameworks, or develop specific solutions if neither of the previous options
apply.

Note that knowledge engineering methodologies (e.g. Competency Questions [19] and
Linked-Open Terms [20]) are separate from our proposal. Data models resulting from these
methodologies are used in the annotation step, but our tool chain is not affected by changes in



data models from a functional and technical perspective.

Dataset characteristics organize the processing architecture. Scrutinizing Orange inter-
nal datasets and third party datasets based on their TAM Domain/Sub domain8, we took note of
the data structures and technical characteristics (e.g. number and type of features, serializa-
tion syntax, schema definition, access protocol, update period) for devising a data integration
strategy. The update period and data access method emerged as key design factors: descriptive
datasets (e.g. assets database, network topology, organization) have a low refreshment pace (one
day to one week period) and are generally available through file-based platforms (e.g. database
API, file dumps), while network operations and events (e.g. interface status change, applications
logs, alarms, trouble tickets) are stream feeds with fast-paced time-stamped data (real time to
quarter-hour period).

Data wrangling with syntax heterogeneity. When transforming data, we need to simulta-
neously consider syntax heterogeneity and batch/stream processing. This can be represented
using the 𝐸𝑇 [𝑃1]𝐿[𝑃2]𝐿 model embedded in Figure 1, where 𝑃1 components are for per
feed processing and 𝑃2 components apply at the dataset level. The 𝑃1/𝐿 interface should
comply with standard data transport solutions (e.g. JSON for Kafka messages) and knowledge
graph data ingestion methods (e.g. SPARQL Update, periodic/on-demand bulk load), while the
𝐿/𝑃2/𝐿 interface requires data representation transformation to match 𝑃2 requirements (e.g.
Turtle to JSON-Graph) and integrate results (e.g. time-stamped confidence as a RDF triple) into
the knowledge graph-based application data model.

Data wrangling with annotation, patching & reconciliation tasks. We assume data
must have meaning (e.g. data is about a hostname or a date, and not just a string of characters)
and structure to be useful (in our case, a relational graph structure). Therefore we introduce
the concept of data patching & reconciliation to do in-place update of the graph data and link
entities from different sources. This includes substituting equivalent literals with controlled
vocabulary and normalizing terms and relationships.

Post-processing constraints on the ETL stages. First, it is important to track the data
origin for trustworthiness. From a practical standpoint, this allows for: 1) isolating/correcting
contaminated (intentionally or not) data sources; 2) accessing the original data to restore its
original meaning and context; 3) exposing data characteristics (e.g. freshness, validity period) for
refined decision making. Second, it is necessary to make post-processing efficient by considering
both the composition of post-processing (e.g. sequential, parallel) and the form of the data
for lossless transformation, such as from graph to table. The third goal is to determine how
post-processing results are utilized. This involves considering the compatibility of processing
blocks and whether the results can be interpreted beyond their original context. It also involves
reintroducing the results into the base data space to serve iterative or synergistic reasoning. The
nature of the result must also be considered in terms of form and value, as it can add information

8i.e. their parent application/research domain within the TM Forum’s GB929 Application Framework (TAM), see
https://www.tmforum.org/application-framework/
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to an existing object (e.g. assigning a cyber security risk level to a network asset) or create a
new object (e.g. an alert). Provenance and trust are necessary here, but with different semantics
since they affect the product of data interpretation, not the original data.

4. KG-based platform and data processing architecture

Thinking through the design methodology of Section 3, we developed two data integration
pipelines and a mechanism for data interpretation (Figure 1) based on well-known open source
frameworks (e.g. Apache Kafka9, Apache Airflow10, OpenLink Virtuoso11), academic projects
(e.g. RMLMapper [12], StreamingMASSIF [13], string2vocabulary [21], grlc [22], RDFUnit12) and
adhoc code (Table 1). The overall system is akin to a Lambda data processing architecture [23].

Figure 1: Conceptual tool chain & data platform overview.
Acronyms: ESB = Enterprise Service Bus, SSB = Semantic Service Bus, KG = Knowledge Graph. Plain arrows are for data flows,
dotted arrows for control and query flows. Arrows start from the component initiating the flow/transaction. Numbers for the
“descriptive datasets” and “events” blocks refer to the number of sources in Table 2. Component names within brackets relate to
adhoc code from Table 1. 𝑃1 and 𝑃2 stands for Processing components groups in an 𝐸𝑇 [𝑃1]𝐿[𝑃2][𝐿] reading of the tool chain
(i.e. matching the tool chain with the ETL process model).

Knowledge graph management. We manage the knowledge graph using a Virtuoso quad
store, with enabled SPARQL endpoint and Faceted Browser services. Named graphs enable fast
data access and help track the source of triples in RDF datasets. We use predefined URI patterns
that closely match the NORIA-O data model (see below), following the Graph per Source and/or
Graph per Aspect data management patterns [24]. This prior knowledge simplifies the creation

9https://kafka.apache.org/
10https://airflow.apache.org/
11https://virtuoso.openlinksw.com/
12https://github.com/AKSW/RDFUnit
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Table 1
Adhoc code (complementary developments).

Component name Role

airflow-dag-gen Parametric Airflow DAG generator for data integration and patching.

KafkaSink StreamingMASSIF [11] component for JSON-LD output to Kafka,
available at https://github.com/Orange-OpenSource/SMASSIF-RML.

grlc Enhanced grlc [22] with GitLab connector and SPARQL Update,
available at https://github.com/Orange-OpenSource/grlc.

NORIA-O RDF data model for IT networks, events and operations information,
available at https://w3id.org/noria/.

SMASSIF-RML Modified RMLMapper [12] for StreamingMASSIF [13] component,
available at https://github.com/Orange-OpenSource/SMASSIF-RML.

ssb-consum-up Kafka to SPARQL gateway,
available at https://github.com/Orange-OpenSource/ssb-consum-up.

virtuoso_loader Event-triggered (Kafka) bulk load of remote RDF datasets into Virtuoso.

of linked data using a declarative transformation approach before inserting mapped data into
the graph (see below for implementation details).

Batch processing for descriptive datasets [airflow-dag-gen, virtuoso_loader]. A set
of Apache Airflow DAGs13 periodically trigger data downloading, mapping and inserting
tasks. DAGs are defined on a per ⟨𝑆𝑜𝑢𝑟𝑐𝑒, 𝑉 𝑖𝑒𝑤⟩ basis and are configured using a limited
set of parameters: schedule interval, a reference to a noria:ETL_process_node entity, and
templated ETL tasks to schedule.
noria:ETL_process_node entities are configuration nodes stored in the platform’s knowl-

edge graph. They include a reference to the data source to download via a dcat:downloadUrl
property, and a relationship to the RML mapping rules (also stored in the platform’s knowledge
graph). This allows for centralizing information (configurations and mapped data) with a
homogeneous representation, resulting in simplified interrogation and audit of data provenance.
Because RML is RDF data, making these rules available from the knowledge graph is as simple
as uploading an RML file into the graph store once the mapping implementation done.

Prior starting a mapping thread (i.e. a local rmlmapper-java instance), 1) a fetchRules
task queries the knowledge graph for the mapping rules and stores them in a temporary file,
and 2) a fetchData task downloads the raw data to map. Then mapping is started with
complementary output configuration parameters asking for RDF Trig14 serialization (enables
targeting specific named graphs in the downstream graph store with rr:graph attributes in
the mapping implementation) and provenance metadata generation at the dataset level [25]
(relates the mapping activity to the rml:source used in the mapping implementation with a
prov:used attribute). Because rmlmapper-java does not include target graph data in the
provenance metadata file, we rewrite the file with an adjustProvenance step. Once the
mapping thread is over, a loadRequest signal triggers fetchMappedData and loaderRun

13https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/dags.html
14https://www.w3.org/TR/trig/
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threads on a downstream virtuoso_loader component listening to a specialized Kafka topic.
This ends the batch processing for descriptive datasets by inserting mapped data and provenance
metadata into the knowledge graph.

Speed processing for events [SMASSIF-RML, KafkaSink, ssb-consum-up]. A set of
specialized StreamingMASSIF pipelines continuously consume, map and forward data for
insertion into the knowledge graph by a downstream ssb-consum-up component (a Kafka to
SPARQL gateway). The typical form of the pipelines is 𝐾𝑎𝑓𝑘𝑎𝑆𝑜𝑢𝑟𝑐𝑒 → 𝑅𝑀𝐿𝑀𝑎𝑝𝑝𝑒𝑟 →
(𝑂𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔) → 𝐾𝑎𝑓𝑘𝑎𝑆𝑖𝑛𝑘, where 𝐾𝑎𝑓𝑘𝑎𝑆𝑜𝑢𝑟𝑐𝑒 is a StreamingMASSIF native
component, 𝑅𝑀𝐿𝑀𝑎𝑝𝑝𝑒𝑟 is a modified version of the rmlmapper-java tool (to handle
streamed data as a StreamingMASSIF component), 𝑂𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 can consist of any
combination of StreamingMASSIF’s reasoning components15, and 𝐾𝑎𝑓𝑘𝑎𝑆𝑖𝑛𝑘 is a contributed
component that sends the data stream in JSON-LD syntax to a Semantic Service Bus (SSB).
Pipelines are defined on a per ⟨𝑆𝑜𝑢𝑟𝑐𝑒, 𝑉 𝑖𝑒𝑤⟩ basis and are configured using a limited set of
parameters: input topic, reference to an RML rules implementation, and output topic.

We posit that RDF data downstream of the mapping pipelines can serve multiple purposes
as distinct streams (e.g. direct update of the knowledge graph, intermediary vocabulary rec-
onciliation, multi-source event logs co-occurrence alerting, notification-triggered dependency
calculus). To manage the distribution of streams, we developed the concept of SSB using the
Kafka event streaming technology and considering the following features: 1) forwarding RDF
data messages in standard RDF serialization; 2) providing provenance metadata; 3) providing
named-graph compatibility; 4) enabling the use of SPARQL Update actions16.

The Kafka platform uses ⟨𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒⟩ pair-based messaging with native JSON compatibility,
hence JSON-LD is a natural serialization choice for forwarding RDF data through the SSB. We
identified two strategies for mapping JSON-LD with the ⟨𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒⟩ message model while
handling potentially RDF dataset-shaped streams: 1) build Kafka messages with key = NULL,
and value = <JSON-LD payload> (with or without named graph); 2) assuming named
graph at the subject level, build Kafka messages with key = <JSON-LD metadata> (e.g.
{[provenanceMetadata] , [updateAction], [otherMetadata]} ) and value = <JSON-LD payload>
(with named graph). The strategy #1 is the most straightforward and versatile approach,
as it delegates all decision making regarding RDF triples to the downstream consumer(s), includ-
ing which graph update operations to apply (such as INSERT or DELETE). Further, it directly
complies with the fact that the Kafka’s 𝑘𝑒𝑦 is for partitioning and compaction17, which means
that 𝑘𝑒𝑦 is akin to a primary key and may not be used for metadata unless made compati-
ble with the partitioning and compaction principles (note that 𝑘𝑒𝑦 can be left empty). The
strategy #2 enables providing guidance to downstream consumers on how to handle RDF
triples through metadata. We remark that updateAction can leverage on well-known vo-
cabularies such as schema:UpdateAction18. Similarly, provenanceMetadata can include
a prov:wasGeneratedBy attribute to keep track of the successive modifications made within
a tool chain. A downside of the second strategy is that the scope of the updateAction should
15As for StreamingMASSIF v0.0.1: Windowing, Filtering, Abstraction, Complex Event Processing (CEP).
16https://www.w3.org/TR/sparql11-update/
17https://kafka.apache.org/documentation/#compaction
18https://schema.org/UpdateAction
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match all <JSON-LD payload> triples, both in terms of the operations to apply and target
named graph. Because the strategy #2 can be later built upon the #1, we chose to implement
the #1 as a starter, that is: straightforward payload mapping at the KafkaSink level and graph
update operations defined at the ssb-consum-up level.

Since we are using named graphs at the knowledge graph level and that the Virtuoso graph
store requires defining the target graph parameter for data insertion using SPARQL update
queries, we explicit the design of the ssb-consum-up component with Equations (1) & (2):

(𝑠, 𝑝, 𝑜, 𝑔) −→
𝑂𝑝

𝑂𝑝{GRAPH 𝑔 {𝑠 𝑝 𝑜}} (1)

(𝑠, 𝑝, 𝑜) −→
𝑂𝑝,𝑔

𝑂𝑝{GRAPH 𝑔 {𝑠 𝑝 𝑜}} (2)

where Eq. (1) states that incoming messages from the SSB are RDF triples along with a target
graph information, thus data insertion into the downstream SPARQL endpoint is akin to
translating the messages into SPARQL update queries subject to a user-defined action 𝑂𝑝 (e.g.
INSERT); and Eq. (2) reflects the same with an additional user-defined target graph parameter 𝑔
whenever incoming messages are raw RDF triples. Assuming many StreamingMASSIF pipelines
pushing mapped data with target graph information into a same SSB topic, then a single
ssb-consum-up component instance is sufficient for continuous data insertion (e.g. with
𝑂𝑝 = 𝐼𝑁𝑆𝐸𝑅𝑇 , and 𝑔 = ⟨𝐷𝑒𝑓𝑎𝑢𝑙𝑡𝐺𝑟𝑎𝑝ℎ𝑈𝑅𝐼⟩ for filling any gaps).

Data model [NORIA-O]. Based on Orange network & cybersecurity expert panel interviews
and Competency Questions analysis [19], four facets structuring the knowledge domain emerge
from the entities and properties that we identified for describing incident management over
ICT systems: structural (network assets such as servers and links), functional (network services
and flows), dynamic (events and states changes) and procedural (processes and actions). There
are several efforts to propose data models representing computing resources and how they are
allocated for hosting services. However, to date, there is no model to describe the multiple
interdependencies between the structural, dynamic, and functional aspects of a network in-
frastructure. In line with the Linked Open Term methodology [20], we have formalized and
implemented the NORIA-O conceptual model [26], an OWL-2 ontology that re-uses and extends
well-known ontologies such as SEAS19, FOLIO20, UCO21, ORG22, BOT23 and BBO24. It is used as
the main data model for the data integration and exploitation work described in this paper as it
can model complex ICT system situations and serve as a basis for anomaly detection and root
cause analysis. The NORIA-O data model also provides a set of controlled vocabularies useful for
standard interpretation of the knowledge graph entities; for example, with reconciliation (see
below) on the network device alarms through the <Notification/EventTypeGroup/SecurityAlarm>
concept scheme.

19https://ci.mines-stetienne.fr/seas/
20https://github.com/IBCNServices/Folio-Ontology
21https://ontology.unifiedcyberontology.org/
22http://www.w3.org/ns/org
23https://w3id.org/bot
24https://www.irit.fr/recherches/MELODI/ontologies/BBO
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Patching & Reconciliation [airflow-dag-gen, grlc]. The per source and per concept
mapping approaches discussed above entails handling data ingest interdependencies with
complementary patching & reconciliation tasks. We make use of an Airflow DAGs-based
periodic run of ordered patching queries in SPARQL syntax via a enhanced grlc [22] tool
instance. For this approach to work, we assume that the NORIA-O data model (see above) is
available in the data store, including the controlled vocabularies (a.k.a. NORIA-O KOS).

We observe that patching requests follow a limited number of forms that can be expressed as
(arche)types of patching queries, thus leading to a standard approach to patching (Eq. 3, where
𝑃 stands for Patching Queries and 𝑂 for Ontology):

𝑃𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑠 × 𝑃𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛𝑠
query generator−−−−−−−−→ 𝑃 ; 𝑂 × 𝑃

patching−−−−→ 𝑂′ (3)

We define the three following archetypes, hence making the mapping definition process faster
and easier to maintain via patching requirements set in a definition file (e.g. YAML syntax) and
query generation (e.g. Python script + templated SPARQL queries in JINJA2 syntax25):

1. 𝑙𝑖𝑡𝑒𝑟𝑎𝑙2𝐾𝑂𝑆 := ⟨𝐿𝑖𝑡𝑒𝑟𝑎𝑙⟩ → ⟨𝑠𝑘𝑜𝑠 : 𝐶𝑜𝑛𝑐𝑒𝑝𝑡(𝑆𝑢𝑏𝑗𝑒𝑐𝑡)⟩. We implement it with
SPARQL queries as an exact string match via a LCASE(STR(x)) = LCASE(STR(y))
statement in order to avoid declaring redundant skos:altLabel in the NORIA-O vo-
cabulary files. For example, from Figure 1: “interface went down” → EventRecord.type(<
kos/Notification/EventType/StateChange>).

2. 𝑙𝑖𝑡𝑒𝑟𝑎𝑙2𝑈𝑅𝐼 := ⟨𝐿𝑖𝑡𝑒𝑟𝑎𝑙⟩ → ⟨𝑆𝑢𝑏𝑗𝑒𝑐𝑡⟩) (but not a KOS URI). Likewise 𝑙𝑖𝑡𝑒𝑟𝑎𝑙2𝐾𝑂𝑆,
we implement it as an exact string match. For example, from Figure 1: “router HSR2EE2”
→ Resource.resourceHostName('HSR2EE2').

3. 𝑎𝑑𝑑𝑆ℎ𝑜𝑟𝑡𝑐𝑢𝑡 := {⟨𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒,𝑂𝑏𝑗𝑒𝑐𝑡⟩} → ⟨𝑆𝑢𝑏𝑗𝑒𝑐𝑡⟩, i.e. a direct property between a
subject and an object when these two nodes are related by a given longer path. For example,
from Figure 1: “issue potentially triggered by” → EventRecord.conformsTo(Vulnerability('
CVE-2021-20433')).

Complementary iterative processing. Complementary Airflow DAGs trigger data model
and data quality audits (e.g. querying the knowledge graph against the NORIA-O competency
questions, checking data ingest conformance with the RDFUnit tool), performance evaluations
(e.g. queries velocity vs NORIA-O expressivity), and application-specific code (e.g. querying the
IT network topology from the knowledge graph and then running a graph-based risk assessment
method).

5. Lessons learned

Our design currently runs on Orange internal data (10 data sources encompassing 128 used
features over 15 tables, see Table 2). Batch processing generates, updates and patches the
knowledge graph on a hourly basis. Speed processing works on generated data until further

25https://jinja.palletsprojects.com/
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integration within the data ecosystem. The size of the resulting RDF dataset at hand is ap-
proximately four million triples for 400K entities, including streamed events spanning over 111
days26.

Table 2
Data sources and mapping overview, with generic names of Orange internal data sources, along with
features and mapping statistics. Acronyms: AAA = Authentication, Authorization and Accounting; VM
= Virtual Machine. Unused features are due to data redundancy, or data without correspondence with
the NORIA-O data model.

Nature
Data source
(table)

Features
(total)

Features
(used)

Features
(used ratio)

rr:TriplesMap
(count)

Events Trouble Tickets 28 21 75,00 % 6
Change Tickets 124 11 8,87 % 2
Alarm monitoring 152 8 5,26 % 1
Logs monitoring 164 3 1,83 % 1

Descriptive AAA groups 6 4 66,67 % 2
Applications 25 15 60,00 % 2
Teams 14 8 57,14 % 3
Users 12 6 50,00 % 2
Logistic database 51 19 37,25 % 8
Backbone logical links 14 5 35,71 % 2
Backbone physical links 14 4 28,57 % 3
Applications types 63 9 14,29 % 1
Network topology 16 2 12,50 % 1
VM management 74 9 12,16 % 3
VM clusters 57 4 7,02 % 2

By applying the Authoring Test approach [19] with the NORIA-O competency questions27,
the resulting RDF dataset proves to be of great interest from a business perspective as it enables
the handling of incident management needs across heterogeneous data through the use of data
retrieval techniques and complementary AI-based algorithms. Indeed, out of the 26 competency
questions defined with expert panel interviews, a significant number of them (16/26) can be
answered using simple SPARQL queries and the NORIA-O ontology, while the remaining
questions (9/26) may require additional techniques such as relational learning or anomaly
detection algorithms.

From a more technical perspective, the software infrastructure is deployed using an Infras-
tructure as Code approach. A main project installs and configures the platform using templated
scripts based on a host feature inventory. Components can be individually started, stopped, or
upgraded thanks to a microarchitecture design. The platform uses nine virtual machines hosted
in Orange’s private cloud with varying hardware setups (e.g. 1-4 vCPU, 8-16 Gb memory, 20-80
Gb storage). CI/CD is further used for granular version control and performance evaluation,
particularly for the NORIA-O data model, where pre-publishing review and expressivity evalua-
tion are enforced as per the LOT methodology [20]. The data model is automatically loaded
into the data store when there is a change. The same approach is used for orchestration DAGs,
where data integration tasks can change based on data source changes. The latest DAGs releases
are downloaded and scheduled via an update signal sent to the Apache Airflow instance.

26Due to confidentiality, this dataset is not made public.
27https://w3id.org/noria/cqs/
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From the Apache Airflow DAGs and Virtuoso logs, we measure that the map data and adjust
provenance tasks are from far the longest tasks of the DAGs (Table 3). As we implemented simple
RML rules (i.e. without rr:joinCondition), the mapping time can hardly be lowered as it
depends on the input file size and rmlmapper-java tool implementation. We remark from
complementary experiments that rr:joinCondition entail a ×2 to ×5 increase of processing
time. However, improving provenance data generation for the adjust provenance file step (e.g. at
the rmlmapper-java or file rewriting level) may bring better overall performance with a ×4
increase in throughput.

Table 3
Batch processing performance for three representative (small/medium/big) sources from Table 2. Pre-
processing may include: convert to csv, delete first line, convert to UTF-8, crop columns.

AAA groups Users Logistic database Unit

Input data size 0.16 2.4 45.5 [Mb]

Download data 0.44 6.63 % 0.95 1.54 % 3.32 0.69 % [s]
Dump rules 0.14 2.11 % 0.19 0.31 % 0.15 0.03 % [s]
Preprocessing 0.19 2.86 % 9.46 15.37 % 8.66 10.83 % [s]
Map data 3.27 49.25 % 8.54 13.87 % 79.97 16.70 % [s]
Adjust provenance 2.27 34.19 % 40.66 66.05 % 374.26 78.16 % [s]
Notify for loading 0.27 4.07 % 0.29 0.47 % 0.29 0.06 % [s]
Data bulk load 0.05 0.75 % 1.46 2.37 % 12.17 2.54 % [s]
Prov. bulk load 0.01 0.15 % 0.01 0.02 % 0.02 0.00 % [s]
Total time 6.64 61.56 478.84 [s]

Output data 0.52 21 222 [Mb]
5 110 244 532 2 415 676 [Triples]

Throughput 769.58 3 972.25 5 044.85 [Triples/s]

For speed processing, we confirmed the effectiveness of our SMASSIF-RML →
ssb-consum-ub → Virtuoso tool chain based on local experiments with generated data
(related to the “events” category from Table 2). However, a thorough load study is yet to be
conducted with real data sources. Evaluation is left for future work, which will depend on
the evolution schedule of the streaming sources to provide standardized connectors. Besides
performance, we observed that although Kafka allows data replay for overcoming subsystems
failures, it is a complex system; so materializing mapped data in files (as in our batch processing
approach) seems more reliable.

For patching & reconciliation, we make use of 42 SPARQL queries (𝑙𝑖𝑡𝑒𝑟𝑎𝑙2𝐾𝑂𝑆 = 16,
𝑙𝑖𝑡𝑒𝑟𝑎𝑙2𝑈𝑅𝐼 = 19, 𝑎𝑑𝑑𝑆ℎ𝑜𝑟𝑡𝑐𝑢𝑡 = 7). From our experience on reconciliation, 𝑙𝑖𝑡𝑒𝑟𝑎𝑙2𝐾𝑂𝑆
with exact match is sufficient in a great majority of cases, but will misses advanced text anal-
ysis situations, such as for noria:logText parsing (e.g. noria:EventRecord.logText("LINK-3
-UPDOWN: Interface GigabitEthernet0/0/1, changed state to up") to enrich with dcterms:type <kos/
Notification/EventType/stateChange>). Hence we developed two complementary approaches:
1) we extended the String2Vocabulary tool [21] with named graph processing capabilities for
enabling vocabulary reconciliation with a fuzzy match approach as a DAG task consecutive
to data mapping; 2) we experimented with the Slogert framework [16] for complementary

noria:logText structuring and annotation in a 𝐾𝐺
𝑆𝑙𝑜𝑔𝑒𝑟𝑡−−−−→ 𝐾𝐺 fashion through a DAG.

More generally, we remark that combining Airflow with grlc [22] allows quick development



of knowledge graph-based applications of the extract-process-report type, and friendly access
to data and operations for non-technical/non-expert users. Furthermore, our two step “simple
mapping vs posterior patching” approach allowed us maximizing direct graph traversal capability
with URIs while minimizing duplicates although handling them. This has notably allowed us to
keep the knowledge graph’s complexity low by avoiding the use of owl:sameAs predicates.
Finally, we remark that, thanks to a report table such as Table 2, tracking the characteristics of the
source files and TripleMaps for comparison is simplified, resulting in time savings for exploring
and cross-referencing information. Building this table is possible through scripted process akin to
𝑅𝑀𝐿𝑠×𝐷𝑎𝑡𝑎𝑆𝑜𝑢𝑟𝑐𝑒𝑠 → {𝑆𝑜𝑢𝑟𝑐𝑒𝐹 𝑖𝑙𝑒, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑡𝑜𝑡𝑎𝑙, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑢𝑠𝑒𝑑}. A nice consequence
of this programmatic analysis is the natural emergence of mapping management patterns; this
notably led to design a DAG generator tool for convenient management and deployment of the
ETL and patching DAGs. Table 2 is also valuable for complementary analysis. First, the “used
ratio” indicator reveals sparse/dense data sources for our application domain, raising concerns
about information redundancy and database design practice. Second, it suggests potential for
additional concepts/relationships, depending on clever understanding of the necessary and
sufficient features for a given domain. Third, it enables direct reading of data flow from sources
to concepts and graphs, revealing design principles and characteristics behind them.

6. Conclusion and Future Work

In this work, we aimed to design and implement a data processing architecture for knowledge
graph-based incident management of broad scale Information and Communications Technology
(ICT) systems. We firstly hypothesized that the cross-referencing of semantic representations
from multiple sources would enable the evolution of decision support systems for ICT systems
to a next level of diagnosis and recommendation capabilities. Next, we developed and de-
ployed a Lambda data processing architecture combining well-known open source frameworks
(Apache Kafka, Apache Airflow, OpenLink Virtuoso), academic projects (RMLMapper [12],
StreamingMASSIF [13], string2vocabulary [21], grlc [22], RDFUnit) and adhoc code released in
open source (grlc28, SMASSIF-RML29, ssb-consum-up30). The proposed architecture has been
instantiated and tested in an industrial setting, producing an RDF knowledge graph that shows
strong potential for addressing cross-domain anomalies from heterogeneous data.

The solution notably minimizes the effort for data quality and trust audit thanks to the
generalized use of RML, and the centralized storage of both data and mapping configuration
within the knowledge graph. Additionally, we open up the possibility of distributed processing
or event-triggered processing through the generalization of RDF data transfer by a message-
broker software. However, the data provenance tagging at the dataset level leads to a loss of
information granularity after the data patching/reconciliation steps and introduces a heavy file
adjustment step. Further, a thorough load study is necessary to consider deploying the stream
processing pipeline on massive data (e.g. telemetry data from broadband network routers or a
fleet of IoT devices).

28https://github.com/Orange-OpenSource/grlc
29https://github.com/Orange-OpenSource/SMASSIF-RML
30https://github.com/Orange-OpenSource/ssb-consum-up

https://github.com/Orange-OpenSource/grlc
https://github.com/Orange-OpenSource/SMASSIF-RML
https://github.com/Orange-OpenSource/ssb-consum-up


Future work on the NORIA platform will consider both improving the Knowledge Graph
Construction (KGC) process and using the resulting knowledge graph for efficient incident
management. Focusing on KGC, future work will explore how the full description of the ETL
processes could be stored within the knowledge graph with RDF process models [27, 28]. This
would allow auditing data platforms through a single language, thanks to a joint representation
of data and processing mechanisms. In the same line of thought, automated patching generation
can be enabled by browsing RML files for rr:predicateObjectMap [rr:objectMap [rml:reference "<
someRef>"]], potentially with an additional toPatchWith(<someGraphPattern>) property for better
end-to-end process automation and automated URI template checking. For stream processing,
we envision comparing our approach with other frameworks [11, 14]. This should help identify
decision boundaries, particularly in terms of energy efficiency and network overhead, in order
to move towards a Kappa architecture [23]. This should also provide insights on the signaling
mechanisms to be implemented for opportunistic processing (e.g. SKOS reconciliation as a
service, in-line graph clustering) and synergical reasoning [18] (cooperative decision making).
Finally, scrutinizing knowledge graph pruning and summarization techniques will prevent
from ever expanding datasets (e.g. ICT systems situation models vs an accumulation of logs),
although using generic RDF data models for knowledge representation is already a mitigating
factor.
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