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Abstract
Dung’s Abstract Argumentation Framework (AAF) has emerged as a central formalism in AI for modeling
disputes among agents. A recent extension of the Dung’s framework is the so-called Epistemic Abstract
Argumentation Framework (EAAF), which enhances AAF by allowing the representation of some pieces
of epistemic knowledge [1]. EAAF generalizes the concept of attack in AAF, introducing strong and weak
epistemic attacks, whose intuitive meaning is that an attacked argument is epistemically accepted only if
the attacking argument is possibly or certainly rejected, respectively. The semantics of EAAF has been
de�ned and studied for several argumentation semantics but not for the stable one, which is arguably
one of the most investigated semantics in argumentation. Motivated by this, in this paper, we propose an
intuitive stable semantics for EAAF that naturally extends that for AAF and coincides with the preferred
semantics in the case of odd-cycle free EAAFs (analogously to what happens in the case of AAF). We
analyze the complexity of two argumentation problems: existence, i.e. checking whether there is at least
one epistemic extension; and acceptance, i.e. checking whether an argument is epistemically accepted.

1. Introduction

In the last decades, Argumentation [2, 3, 4] has become an important research �eld in the area
of autonomous agents and multi-agent systems [5]. Argumentation has applications in several
contexts, including modeling dialogues, negotiation [6, 7], and persuasion [8]. It has been widely
used to model agents’ interactions [9, 10, 11, 12], especially in the context of debates [13, 14, 15].

Dung’s Abstract Argumentation Framework (AAF) is a simple yet powerful formalism for
modeling disputes between two or more agents [16]. An AAF consists of a set of arguments
and a binary attack relation over the set of arguments that speci�es the interactions between
arguments: intuitively, if argument a attacks argument b, then b is acceptable only if a is not.
Hence, arguments are abstract entities whose status is entirely determined by the attack relation.
An AAF can be seen as a directed graph, whose nodes represent arguments and edges represent
attacks. Several argumentation semantics—e.g. grounded (gr), complete (co), preferred (pr), and
stable (st) [16]—have been de�ned for AAF, leading to the characterization of �-extensions, that
intuitively consist of the sets of arguments that can be collectively accepted under semantics
� � {gr, co, pr, st}.
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Figure 1: AAF � of Example 1 (le�) and EAAF � of Example 2 (right).

Example 1. Consider an AAF �=�{a, b}, {(a, b), (b, a)}� whose corresponding graph is shown
in Figure 1(left). � describes the following scenario. A party planner invites Alice (a) and Bob
(b) to join a party. Due to their old rivalry (i) Alice replies that she will not join the party if
Bob does, and (ii) Bob replies that he will not join the party if Alice does. This situation can be
modeled by AAF �, where an argument x states that “(the person whose initial is) x joins the
party”. Under the stable semantics, there are two extensions E1 = {a} and E2 = {b} stating
that only Alice or only Bob will attend the party, respectively. �

Thus, as prescribed by E1 and E2, in the previous example we have that the participation
of Alice and Bob to the party is uncertain. To deal with uncertain information represented by
the presence of multiple extensions, credulous and skeptical reasoning has been introduced.
Speci�cally, an argument is credulously true (or accepted) if there exists an extension containing
the argument, whereas an argument is skeptically true if it occurs in all extensions. However,
uncertain information in AAF under multiple-status semantics proposed so far cannot be
exploited to determine the status of arguments (which in turn in�uences the status of other
arguments) by taking into account the information given by the whole set of extensions, as
in the case of credulous and skeptical acceptance. To overcome such a situation, and thus
provide a natural and compact way for expressing such kind of conditions, the use of epistemic
arguments and attacks has been recently proposed in [1], leading to the de�nition of the so-
called Epistemic Abstract Argumentation Framework (EAAF) which enhances AAF by allowing
the representation of some pieces of epistemic knowledge. Informally, epistemic attacks allow
considering all extensions and not only the current one. Thus, an epistemic attack from a to b
is such that a defeats b if a occurs in at least one extension (strong epistemic attack) or in all
extensions and at least one (weak epistemic attack), as illustrated in the following example.

Example 2. Consider the AAF � of Example 1 and assume that there are two more people:
Carol (c) and David (d). Carol’s answer is that she will not attend the party if it is sure (i.e. it
is skeptically true) that Alice will, whereas David answers that he will not attend the party if
the participation of Bob is possible (i.e. it is credulously true). Intuitively, the party planner
should conclude that, as the participation of both Alice and Bob is uncertain, Carol will attend
the party, whereas David will not.

This situation can be modeled by means of the Epistemic AAF (EAAF) shown in Figure 1(right)
where a defeats c with a weak epistemic attack, whereas b defeats d with a strong epistemic
attack (we use the two kinds of edges represented in the �gure to denote weak and strong
epistemic attacks). Under the stable semantics, there are two extensions: E1 = {a, c} modeling
the fact that Alice and Carol will attend the party, whereas Bob and David will not; and
E2 = {b, c} modeling the fact that Bob and Carol will attend the party, whereas Alice and
David will not. Observe that the epistemic arguments c and d (i.e. the arguments defeated by
an epistemic attack) are deterministic [17], that is, they have the same acceptance status in all
extensions (true for c and false for d). �
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Contributions. We introduce the stable semantics for Epistemic Abstract Argumentation
Frameworks (EAAFs) and investigate the complexity of two fundamental problems (see below).
The proposed EAAF semantics aims to let epistemic arguments be deterministic [17], that is,
they have the same acceptance status in all extensions; the status of an argument depends on
the credulous or skeptical acceptance of its attackers. Considering the dependence of the status
of an argument on its attackers only is inspired by the well-known directionality property
proposed for AAF [18, 19], which, if satis�ed, then guarantees that the status of each argument
depends only on that of its attackers. Speci�cally, our main contributions are as follows.

• We formally present EAAF stable semantics; it extends that of AAF and coincides with EAAF
preferred semantics in case of odd-cycle free EAAFs (as it happens for the case of AAF).

• We investigate the complexity of the acceptance and existence problems under stable semantics
Our complexity results are summarized in Table 2 (in Section 4).

2. Preliminaries

We �rst review the Dung’s framework and then discuss and an extension of AAF with epistemic
constraints.

2.1. Abstract Argumentation Framework

An Abstract Argumentation Framework (AAF) is a pair �A, ��, where A is a (�nite) set of
arguments and � � A � A is a set of attacks (also called defeats). Di�erent argumentation
semantics have been proposed for AAF, leading to the characterization of collectively acceptable
sets of arguments called extensions [16].

Given an AAF � = �A, �� and a set S � A of arguments, an argument a � A is said to be i)
defeated w.r.t. S i� �b � S such that (b, a) � �; ii) acceptable w.r.t. S i� �b � A with (b, a) � �,
�c � S such that (c, b) � �. The sets of defeated and acceptable arguments w.r.t. S are de�ned
as follows (where � is understood):
• Def(S) = {a � A | �b � S . (b, a) � �};
• Acc(S)={a � A | �b�A . (b, a) � � implies b � Def(S)}.

To simplify the notation, we will often use S+ to denote Def(S).
Given an AAF �A, ��, a set S � A of arguments is said to be:
• con�ict-free i� S � S+ = �;
• admissible i� it is con�ict-free and S � Acc(S).

Given an AAF �A, ��, a set S � A is an extension called:

• complete (co) i� it is con�ict-free and S = Acc(S);

• preferred (pr) i� it is a �-maximal complete extension;

• stable (st) i� it is a total complete extension, i.e. a complete extension such that S � S+ = A;

• grounded (gr) i� it is the �-smallest complete extension.
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a b ca b c
Figure 2: AAF � of Example 3 (le�) and AAF �� of Example 4 (right).

The set of complete (resp. preferred, stable, grounded) extensions of an AAF � will be denoted
by co(�) (resp. pr(�), st(�), gr(�)). It is well-known that the set of complete extensions
forms a complete semilattice w.r.t. �, where gr(�) is the meet element, whereas the greatest
elements are the preferred extensions. All the above-mentioned semantics except the stable
admit at least one extension. The grounded semantics, that admits exactly one extension, is said
to be a unique-status semantics, while the others are said to be multiple-status semantics. With
a little abuse of notation, in the following we also use gr(�) to denote the grounded extension.
For any AAF �, st(�) � pr(�) � co(�) and gr(�) � co(�).

Example 3. Let � = �A, �� be an AAF where A = {a, b, c} and � = {(a, b), (b, a), (b, c)},
whose graph is show in Figure 2 (left). The set of complete extensions of � is co(�) = {E0 =
�, E1 = {a, c}, E2 = {b}}. E0 is the grounded extension, while E1 and E2 are preferred and
stable extensions. �

Given an AAF � = �A, �� and a semantics � � {gr, co, pr, st}, for g � A, the credulous
(resp. skeptical) acceptance problem, denoted as CA� (resp. SA�) is deciding whether g is
credulously (resp. skeptically) accepted, that is deciding whether g belongs to any (resp. every)
�-extension of �. Clearly, CAgr and SAgr coincide.

Recently, a satisfaction problem for AAF called determinism (DS�) has been introduced [17].
Given a �-extension E, an argument g � A is said to be: accepted if g � E; rejected if g � E;
undecided otherwise (g �� E � E+). For a semantic �, an argument is said to be deterministic if
all �-extensions assign the same status (either accepted, rejected, or undecided) to it.

Finally, the existence (resp. non-empty existence) problem denoted as Ex� (resp. Ex¬�
� ) is

deciding whether there exists at least one (resp. at least one non-empty) �-extension for AAF �.
For AAFs, the complexity of the existence and acceptance problems has been investigated

(see [20] for an overview). The complexity of the determinism problem is investigated in [17].
The complexity results of these problems are summarized in the left-hand side part of Table 2.

Example 4. Consider the AAF � of Example 3. Under preferred and stable semantics, both
arguments a and b are credulously accepted. None of them is skeptically accepted, nor deter-
ministic.

Considering the AAF �� obtained from � by adding the self-attack (c, c) (see Figure 2 (right)),
there are three complete extensions E�

0 = �, E�
1 = {a} and E�

2 = {b}. Both E�
1 and E�

2 are
preferred extensions, but only E�

2 is stable. �

2.2. AAF with Epistemic Constraints

An Epistemic Argumentation Framework (EAF) has been proposed in [21]. An EAF is a triple
�A, �, C�, where �A, �� is an AAF and C is an epistemic constraint, that is, a propositional
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formula extended with the modal operators K and M. Here, the constraint is the belief of an
agent which must be satis�ed. Intuitively, K� (resp. M�) states that the considered agent
believes that � is always (resp. possibly) true. EAF semantics is given by sets of feasible
extensions of the underlying AAF, called �-extension sets (�-labeling sets in [21, 1]), consisting
of maximal sets of arguments that satis�es the constraint. There could be di�erent �-extension
sets (�-sets) for the same epistemic formula, as shown in the following example.

Example 5. Consider the AAF � = �A = {a, b, c, d}, � = {(a, b), (b, a), (c, d), (d, c), (b, c)�
having 5 complete extensions E0 = �, E1 = {a}, E2 = {a, c}, E3 = {a, d} and E4 = {b, d}.
E0 is the grounded extension, while E2, E3 and E4 are preferred and stable extensions. Under
the preferred semantics, considering the epistemic constraint C1 = Kc, there exists a unique �-
set {E2} for EAF �A, �, C1�, whereas considering C2 = Kc�Kd there are the two alternative
�-sets {E2} and {E3, E4} for EAF �A, �, C2�. �

We point out that despite the name Epistemic Argumentation Framework is used, the role of
epistemic formulae is only that of introducing constraints over the set of feasible extensions,
that is it is similar to that of constraints or preferences in AAF [22, 23, 24, 25, 26].

3. Epistemic Abstract Argumentation Framework

We augment AAF with epistemic attacks, leading to the concept of Epistemic Abstract Argu-
mentation Framework (EAAF).

3.1. Syntax

We start by recalling the syntax of EAAF [1].

De�nition 1 (Epistemic AAF). An Epistemic AAF is a quadruple � = �A, �, �, �� where A is a
set of arguments, � � A � A is a set of (standard) attacks, � � A � A is a set of weak (epistemic)
attacks, and � � A�A is a set of strong (epistemic) attacks such that ��� = ��� = ��� = �.

In the following, we represent attacks (a, b) � � by a � b, (a, b) � � by a � b, (a, b) � �
by a �� b. An EAAF �A, �, �, �� can be seen as a directed graph, where A denotes the set of
nodes and �, �, and � denotes three di�erent kinds of edges. Arguments defeated through
epistemic attacks are called epistemic arguments.

We say that there is a path from an argument a � A to argument b � A if either (i) there
exists an attack (a, b) in � or (ii) there exists an argument c � A and two paths, from a to c
and from c to b. We say that an argument b � A depends on an argument a � A if b is reachable
from a in �, that is, if there exists a path from a to b in �. Moreover, an argument a depends
on attack � � (� � � � �) if there exists a path in � that contains � and reaches a.

We now introduce well-formed and plain EAAFs.

De�nition 2. An EAAF � is said to be:

• well-formed if there are no cycles in � with epistemic edges.

• in plain form if every epistemic argument is attacked by a single (epistemic) attack.
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Figure 3: (From le� to right) EAAFs �, ��, ��� and ���� of Example 9.

In the following we assume that our EAAFs are well-formed. The reason for such a restriction is
to guarantee that there exists at most one world view (c.f. Theorem 1). In the following we also
assume that our EAAFs are in plain form. As it will be clear after introducing EAAF semantics,
for well-formed EAAFs in plain form, epistemic arguments are deterministic (c.f. Proposition 2).

Example 6. The EAAF � = �A = {a, b, c, d}, � = {(a, b), (b, a)}, � = {(a, c)}, � =
{(b, d}� of Example 2, whose graph is shown in Figure 1 (right), is well-formed and in plain
form. �

The semantics of EAAF is given by relying on the concept of sub-framework (sub-EAAF),
which is de�ned as follows.

De�nition 3. Given two EAAFs � and ��, we say that �� is a sub-EAAF of � (denoted as
�� � �) if �� is obtained from � by deleting a subset S of the set of epistemic arguments of �
and all the arguments depending on an argument in S w.r.t. �. Moreover, we write �� � � if
�� � � and �� �= �.

Clearly, in De�nition 3 by deleting arguments we also delete attacks having as a source or
target element a deleted argument.

Example 7. Consider the EAAF � = �{a, b, c, d, e, f}, {(a, b), (b, a), (a, e), (d, f), (e, f),
(f, e)}, {(a, c)}, {(b, d)}� shown in Figure 3 (left). We have four sub-EAAFs �� � �, as shown
in the �gure: the �rst one (from left to right) coincides with �, the others are obtained by
deleting all arguments depending on: (i) both arguments c and d, (ii) only d, and (iii) only c,
respectively. �

3.2. Semantics

We �rst introduce the stable semantics of EAAF and then present some results concerning
properties of the proposed framework.

For any EAAF � = �A, �, �, ��, a set W of sets of arguments in A is called world view of
�. Informally, a world view can be seen as a set of extensions that are to be used to compute
the status of epistemic arguments. Given EAAF �� = �A�, ��, ��, ��� � �, we denote by
W��� = {S � A� | S � W} the projection of W over A�.

With the aim of providing EAAF semantics by extending AF semantics, we �rst extend
the de�nitions of defeated and acceptable arguments for EAAF by taking into account the
additional concept of world view, that is a candidate set of extensions, which is used to decide if
an argument is epistemically defeated/acceptable. Given an EAAF �, a world view W of �,
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and a set S � W , the sets of arguments defeated (resp. accepted) w.r.t. S and W are de�ned as
follows:
• Def(W, S) = {b � A | (�a � S . a � b) �

(�T � W . �a � T . a �� b) �
(�T � W . �a � T . a � b)}.

• Acc(W, S) = {b � A | �a � A .
((a � b) implies a � Def(W, S))�
((a �� b) implies �T � W . a � Def(W, T ))�
((a � b) implies �T � W . a � Def(W, T )).

Example 8. Considering the EAAF � of Example 7 and the world view W = {S1 = {c},
S2 = {a, c}, S3 = {b, c}}, we have that:

• Def(W, S1) = {d} and Acc(W, S1) = {c};

• Def(W, S2) = {b, d} and Acc(W, S2) = {a, c}; and

• Def(W, S3) = {a, d} and Acc(W, S3) = {b, c}. �

Given an EAAF � = �A, �, �, �� and a world view W of �, a set S � W is:

• W-con�ict-free if S � Def(W, S) = �;

• W-admissible if it is W-con�ict-free and S � Acc(W, S);

• W-complete (W -co) if it is W-con�ict-free and S = Acc(W, S).

Moreover, a W-complete set S is said to be :

• W-preferred (W -pr) if S is �-maximal;

• W-stable (W -st) if S � Def(W, S) = A;

• W-grounded (W -gr) if S is �-minimal.

We are now ready to de�ne EAAF semantics. The meaning of EAAF under the grounded,
complete and preferred semantics has been introduced in [1]. For the sake of completeness and
to easy readability we include those semantics in the next de�nition, where the meaning of
EAAF under stable semantics is de�ned by generalizing the de�nition in [1].

De�nition 4 (EAAF Semantics). Let � � {gr, co, pr, st} be a semantics and W a world view
of EAAF �. Then, W is a �-world view for � if ��� � � the following conditions hold:

(i) every S � W��� is a W���-� set, and

(ii) there is no world view W � for �� such that W��� � W � and every S� � W � is W �-� for
��.
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Table 1
�-world view for each EAAF �� � � in Figure 3.

�� gr(��) co(��) pr(��)= st(��)

�� {�} {�, {a}, {b}} {{a}, {b}}
��� {�} {{c}, {a, c}, {b, c}} {{a, c}, {b, c}}
���� {�} {�, {f}, {a, f}, {b}, {b, e}, {b, f}} {{a, f}, {b, e}, {b, f}}
� {�} {{c}, {c, f}, {a, c, f}, {b, c}, {b, c, e}, {b, c, f}} {{a, c, f}, {b, c, e}, {b, c, f}}

We now explain De�nition 4. Given a semantics �, a W -� set intuitively represents a candidate
set of �-extensions for an EAAF. Then, such a set turns out to actually be a set of extensions
if the conditions in De�nition 4 hold, whose rationale is as follows. Given a world view W
of an EAAF �, we check that for all sub-frameworks ��, every element S � W � = W��� is a
W �-� set (condition i) and W � is maximal (condition ii). Intuitively, the �rst condition ensures
that the status of an argument is con�rmed in all sub-frameworks considered. The second
condition of De�nition 4 ensures that, if there is a larger �-world view for which condition i)
holds, then we prefer to take it. That is, intuitively, we aim at having the whole set of extensions.
In [1], it is shown that this set is unique under grounded, complete and preferred semantics.
Finally, as shown below in Example 9, checking that the above-mentioned conditions hold for
all sub-frameworks is important to avoid returning wrong conclusions (i.e., world views that
contradict our intuition).

It is worth noting that whenever � = � = �, we have that the de�nitions of defeated and
acceptable arguments coincide with the ones de�ned for AAF, that is Def({S}, S) = Def(S)
and Acc({S}, S) = Acc(S). This lead to the following result that states that EAAF semantics
extends that of AAF.

Proposition 1. Let � = �A, �, �, �� be a well-formed EAAF with � = � = �, and � = �A, ��
the AAF corresponding to �. Then, if st(�) �= � then st(�) is the only stable-world view of �.

Clearly, as stable semantics is not guaranteed to exist in AAF, the same holds in EAAF. Indeed,
as stated next, any well-formed EAAF has at most one stable world view.

Theorem 1. Any well-formed EAAF admits at most one st-world view.

For any (well-formed) EAAF � and semantics � � {gr, co, pr, st} we use �(�) to denote
the �-world view of �, and will often call its elements �-extensions.

Example 9. Continuing with Example 7, Table 1 reports the �-world view for each EAAF
�� � � in Figure 3 and � � {gr, co, pr, st}.

Now, consider the EAAF ��� (shown in Figure 3), the world view W = {S = {a}}, and the
stable semantics. If in De�nition 4 we had only focused on the given EAAF ��� without looking
at its sub-frameworks, as S is a W -stable set and W is maximal (i.e., both conditions (i) and (ii)
of De�nition 4 are satis�ed if focusing on ��� only), we would have concluded that c is defeated.
However, we had expected that c would have been accepted. Indeed, according to De�nition 4,
the only stable-world view of ��� is W �� = {{a, c}, {b, c}} (cf. Table 1). In fact, considering
the sub-framework �� (cf. Figure 3) obtained from ��� by deleting the epistemic argument c,
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a b c d
Figure 4: EAAF � of Example 10.

the only stable-world view of �� is W � = W ��
��� = {{a}, {b}}, which using De�nition 4 allows

us to discard W = {{a}} from being a stable-world view of ���. �

According to the proposed EAAF semantics, epistemic arguments are deterministic, that
is, they have the same “truth assignment” in a world view, that in turn depends on either the
credulous or skeptical acceptance of its attackers.

Proposition 2. Let � = �A, �, �, �� be an EAAF, and W the st-world view of �. Then, any
epistemic argument x � A is deterministic, that is, one of the following three conditions hold:
i) � S � W . x � Acc(W, S);
ii) � S � W . x � Def(W, S);
iii) � S � W . x �� (Acc(W, S) � Def(W, S)).

An alternative way to de�ne stable extensions for EAAF could be that of choosing among
complete extensions those that are total, as it is done for AAF. More in detail, given an EAAF �
and its complete-world view W = co(�), we could have de�ned the stable-world view for � as
st(�) = {S � W | S�Def(W, S) = A} ). This is di�erent from what is done in De�nition 4
where to de�ne a st-world view we start with a world view W that is not necessarily co(�).
However, the above-mentioned alternative way to de�ne stable extensions for EAAF may lead
to counter-intuitive solutions, as shown in the following example.

Example 10. Consider the EAAF � = �{a, b, c, d}, {(a, b), (b, a), (a, c), (b, c)}, {(c, d)}, ��,
shown in Figure 4, and the stable semantics. Intuitively, the strong epistemic attack states that
d is accepted if c is skeptically rejected. The stable extensions of �, that is, the elements in
its st-world view are {a, d} and {b, d}. Thus, we obtain that c is skeptically defeated and,
consequently, d is accepted.

However, if we start with the complete-world view co(�), we have that there are three
complete extensions S1 = �, S2 = {a} (with b and c defeated and d undecided) and S3 = {b}
(with a and c defeated and d undecided). As there are no total sets in co(�) , we conclude that
under the above-mentioned “alternative” stable semantics there is no stable status for d and c ,
contradicting our intuition. �

As stated next, di�erently from AAF, stable extensions are not guaranteed to be complete
extensions of EAAF. Related to this, even in AAF credulous and skeptical acceptance may give
di�erent results under di�erent semantics.

Proposition 3. There exists an EAAF � such that S � st(�) and S �� co(�).

Particularly, consider the EAAF � = �{a, b, c, d, e, f}, {(a, b), (b, a), (a, c), (b, c), (c, d)},
{(d, e) (e, f)}, ��. With a little e�ort, it ca be checked that st(�) = {S1 = {a, d, f}, S2 =
{b, d, f}} and co(�) = {�, {a, d}, {b, d}}, and thus neither S1 � co(�) nor S2 � co(�).

Finally, stable semantics coincides with preferred semantics in case of odd-cycle free EAAFs.
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Proposition 4. Let � be a well-formed, odd-cycle free EAAF. Then, it holds that st(�) = pr(�).

4. Complexity

We investigate the complexity of two fundamental reasoning problems for EAAF under stable
semantics. In particular, we study the existence and credulous/skeptical acceptance problems,
that are often considered for analyzing the complexity of argumentation frameworks.

We recall the main complexity classes used in this section and, in particular, the de�nition
of the classes P, �p

h, �p
h and �p

h, with h � 0 (see e.g. [27]). For h > 0: �p
0 = �p

0 = �p
0 = P ;

�p
1 = NP and �p

1 = coNP ; �p
h = P�p

h�1 ; �p
h = NP�p

h�1 , and �p
h = co�p

h. Herein, PC (resp.
NPC ) denotes the class of problems that can be solved in polynomial time using an oracle in the
class C by a deterministic (resp. non-deterministic) Turing machine. The class �p

h = �p
h[log n]

denotes the subclass of �p
h consisting of the problems that can be solved in polynomial time

by a deterministic Turing machine performing O(log n) calls to an oracle in the class �p
h�1.

Under the standard complexity-theoretic assumptions, we have that �p
h � �p

h+1 � �p
h+1 �

�p
h+1 � PSPACE and �p

h � �p
h+1 � �p

h+1 � �p
h+1 � PSPACE. A decision problem is in

Dp
h i� it is the conjunction of a decision problem in �p

h and a decision problem in �p
h. Hence,

Dp
1 (or simply DP) denotes the class of the problems that are a conjunction of a problem in NP

and one in coNP . Under the standard complexity-theoretic assumptions, we have that NP �
DP, coNP � DP, and DP� �p

2.
Given an EAAF � = �A, �, �, �� and a semantics � � {gr, co, pr, st}:

• the existence (resp. non-empty existence) problem for EAAF, denoted as Ex� (resp. Ex¬�
� )

consists in deciding whether there exists at least one (resp. at least one non-empty) �-extension
S for �;

• the credulous (resp. skeptical) acceptance problem, denoted as CA� (resp. SA�), consists in
deciding whether a given goal argument g � A belongs to any (resp. every) �-extension of �.

Observe that if argument g is epistemic, credulous and skeptical acceptance problems coincide
(cf. Proposition 2). Therefore, we call this problem epistemic acceptance and denote it as EA� .

The following fact states that the epistemic acceptance problem captures the credulous and
skeptical acceptance problems also for non-epistemic arguments under stable semantics.

Fact 1. Let � = �A, �, �, �� be an EAAF, g � A any of its non-epistemic arguments. Then:

• CAst(�, g) = EAst(��, g��) with �� = �A � {g�, g��}, � � {(g, g�)}, � � {(g�, g��)}, ��

• SAst(�, g) = EAst(��, g��) with �� = �A � {g�, g��}, � � {(g, g�)}, �, � � {(g�, g��)}�.

Thus, asking for the credulous and skeptical acceptance of an argument g w.r.t. an EAAF �
is equivalent to asking for the epistemic acceptance of a fresh epistemic argument g�� w.r.t. an
EAAF ��, that is obtained from � by adding only a pair of attacks.

For this reason and for the fact that epistemic arguments are deterministic (Proposition 2),
w.l.o.g. we study the complexity of existence and epistemic acceptance problems in EAAFs (with-
out considering credulous and skeptical acceptance that, as shown above, can be immediately
reduced to epistemic acceptance).
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Table 2
Complexity of the credulous acceptance (CA�), skeptical acceptance (SA�), existence (Ex�), non-empty
existence (Ex¬�

� ), and determinism problems for AAF, and of the epistemic acceptance (EA�), existence
(Ex�), and non-empty existence (Ex¬�

� ) problems for EAAF. For any complexity class C , C-c (resp.
C-h) means C-complete (resp. C-hard); an interval C-h, C � means C-hard and in C �. The results for
� � {gr, co, pr} have been presented in [1], while those for st are new.

AAF EAAF
� CA� SA� Ex� Ex¬�

� DS� EA� Ex� Ex¬�
�

gr P P trivial P trivial P trivial P
co NP-c P trivial NP-c coNP-c �p

2-h, �P
2 trivial NP-c

st NP-c coNP-c NP-c NP-c DP-c DP-h NP-h NP-h
pr NP-c �P

2 -c trivial NP-c �P
2 -c �P

2 -h, �P
3 trivial NP-c

The next theorem states the complexity of epistemic acceptance under stable semantics.

Theorem 2. EAst is DP-hard.

The following corollary states that for EAAF the existence of at least one extension is not
always guaranteed, as for the case of AAF.

Corollary 1. Exst coincides with Ex¬�
st and it is NP-hard.

The results of this section, along with some related complexity results for AAF, are summa-
rized in Table 2. We have also reported the results for � � {gr, co, pr} which are from [1];
those for st are new. We found that the complexity generally increases w.r.t. that of AAF for
the acceptance problems under stable semantics. This particularly holds if we compare the
complexity of EAst for EAAF with that of CAst and SAst for AAF . Finally, deciding accep-
tance (resp. existence) in EAAF under stable semantics is at least hard as checking determinism
(resp. existence) in AAF. For future work we plan to close the complexity gap related to the
complexity of acceptance problems in EAAF under the di�erent semantics.

5. Conclusion and Future Work

Several proposals have been made to extend Dung’s framework with the aim of better modeling
the knowledge to be represented. The extensions include Bipolar AAF [28, 29], AAF with
recursive attacks and supports [30, 31, 32], Dialectical framework [33], Abstract Reasoning
Framework [34], AAF with preferences [35, 36] and constraints [22, 23], as well extensions for
representing uncertain information, e.g. incomplete AAF [37] and probabilistic AAF [38, 39, 40,
41, 42, 43, 44].

We have presented the stable semantics for Epistemic Abstract Argumentation Framework, a
generalization of Dung’s framework where epistemic attacks and arguments can be expressed.
We also provided complexity bounds for the existence and acceptance problems in EAAF under
the well-known stable argumentation semantics. Our complexity analysis shows that the
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epistemic elements (i.e., epistemic attacks/arguments) impact on the complexity of some of the
problems considered. In general, it turns out that EAAF is more expressive than AAF.

The idea of extending logic with epistemic constructs has been investigated also in the �eld
of Answer Set Programming (ASP) [45, 46, 47]. Epistemic logic programs, �rstly proposed in
[45], extend disjunctive logic programs under the stable model semantics with modal constructs
called subjective literals [46, 48, 49, 47]. The introduction of this extension was originally
motivated to correctly represent incomplete information in programs that have several stable
models. Using subjective literals, it is possible to check whether a literal is true in every or
some stable model of the program. These models in this context are also called belief sets, being
collected in a set called world view. The main idea was to expand the syntax and semantics of
Answer Set Programming by modal operators K and M where K� holds if � is true in all answer
sets of a program and M� holds if � is true in at least one answer set. Using this notation,
not Kp�not K �p would correspond to “the truth value of p is unknown” even in the presence
of multiple answer sets. In such a context, several problems are still open and they regard the
support required by stable models, as well as splitting properties that are satis�ed by classical
ASP semantics, but not satis�ed by epistemic ASP-based semantics [50, 49, 51].

Although our focus is on argumentation, we believe that our results could be of interest
to the logic community. In fact, by exploiting the correspondence between AF and Logic
Programming [52], the proposed EAAF semantics could be seen as an alternative semantics
for a special class of epistemic logic programs whose complexity and computation can be
characterized by using our results.

Future work will be devoted to considering other argumentation semantics such as the semi-
stable semantics. Another interesting direction for future work is exploring EAF in a dynamic
setting [53, 54, 55, 56, 57, 58, 59], where objective evidence (underlying AF) and subjective
beliefs (epistemic formulae) may change over time.
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