Abstract
This paper describes our approach to the EVALITA 2023 PoliticIT task on predicting political ideology and gender from Italian tweets. Furthermore, we investigate the effects of out-of-domain data (transcripts of parliamentary speeches) and cross-lingual transfer from Spanish. Overall, our simple traditional SVM classifier performed best according to the shared task evaluation, ranking first in ideology detection and second in gender identification. We also demonstrate promising results for out-of-domain data and cross-lingual transfer learning.

Keywords
Political Ideology Detection, classification, SVM, BERT, XLM-Roberta, Transfer learning, Multitask learning

1. Introduction
Although difficult to define, a relatively uncontroversial definition of political ideology is ‘a set of beliefs about the proper order of society, and how it can be achieved’ [1, 2]. As the definition suggests, people’s political ideologies, and especially those of politicians, have a significant impact on society. Much like other personal characteristics, such as gender, age, or native language [3, 4, 5], political ideology can help to understand individual and social behavior [6, 7, 8].

Besides analyzing social and political discourse, detecting ideology is a crucial step for correctly understanding political texts. Certain words or phrases have different intended meanings depending on the ideological position of speakers or authors [9, 10], and a message can also be understood differently based on the audience. In its extreme case, so-called ‘dog whistles’ [11] may allow politicians to send ‘coded messages’ to only a part of the public who share their ideological position. As a result, identifying political ideology is also important for natural language understanding tasks.

This paper describes our contribution to the EVALITA 2023 [12] shared task [13] on predicting political orientation and gender of politicians from social media posts in Italian. The task is defined as three related classification sub-tasks: (1) binary political orientation (left, right), (2) fine-grained political orientation (left, moderate_left, moderate_right, right) and (3) binary gender (female, male). We evaluated both simple linear classifiers and models based on deep pretrained networks. We also experimented with additional resources from different domains (parliamentary speeches) and similar datasets in another language (Spanish).

The rest of this paper reports on our approach and results. The code, the models hyper-parameters, and any additional resources used in our contribution can be found at https://github.com/fidan-c/PoliticIT23-ideology-detection.

2. Method and Experiments
2.1. Data
The PoliticIT dataset comprises between 80 and 100 tweets from 1751 politicians (1298 for training and development, 453 for testing). As usual, the test set was released only at the end of the competition. All tweet instances are anonymized by masking references to politicians, political parties and other Twitter account mentions. Further information on data collection and labeling can be found in Russo et al. [13].

Besides the PoliticIT dataset, we experiment with a few additional resources: transcripts of the parliamentary speeches from the Italian section of the parliamentary corpora collection ParlaMint [14] and the PoliticES 2023 shared task dataset [15].

Parliamentary speeches We use the Italian section of the ParlaMint 3.0 pre-release, which contains speeches both from the Senate and the Chamber of Deputies, spanning from March 2013 to September 2022. We filter out
samples that belong to the chairperson and those that are less than 50 characters long. We also exclude speakers without a known party affiliation, as well as those who are affiliated with parties whose political orientation is either not specified or reported to be ‘center’ or ‘big tent’. Compared to the dataset released for the present shared task, the political orientation in the ParlaMint data is more fine-grained. For binary class labels, we map ParlaMint orientation labels to left if the class includes L (left) and to right if it includes R (right). We follow the same approach for the multi-class classification task, but mark orientation labels as moderate if they include C (center). For example, samples with original labels CL (center-left) or CCL (center to center-left) are mapped to moderate_left, while samples marked as R or FR (far-right) are mapped to right. The resulting corpus includes 167 moderate_left, 153 moderate_right, 89 right instances, and no instances with (non-center) left labels.

Compared to social media posts, parliamentary speeches tend to be much longer, and a few speakers have many more speeches than others in the corpus. To get a balanced dataset, we randomly select at most 10 speeches from each speaker and concatenate them with a separator token. The resulting corpus contains samples with an average of 2575.95 space-separated tokens per instance.

PoliticES 2023 shared task data

The dataset consists of 2797 instances, each containing 80 tweets written by different users who share the same gender and political views. All tweets are anonymized, mirroring the anonymization procedure for the PoliticIT dataset. We use the PoliticES 2023 shared task data to conduct cross-lingual transfer learning experiments between Italian and Spanish. Further information about the data collection and labeling can be obtained from García-Díaz et al. [16].

2.2. Linear models

As a first, simple approach, we use linear support vector machines (SVMs) with bag-of-n-grams features. For all the results reported here, we train a separate linear SVM classifier for each task, with both word and character n-grams as features and weigh each feature using tf-idf. For each task, we tune the SVM margin parameter, C, (range 0.001-5.0), the maximum word n-grams (range 0-4) and the character n-grams (range 0-6). Lastly, we test whether n-grams should be case normalized or not (word, character, both or none). We draw 10,000 configurations uniformly from this hyper-parameter space and pick the setting with the highest average F1-score using 10-fold cross validation. The input to the linear models are all tweets belonging to each instance combined with an arbitrary separator symbol inserted between each one of them. To optimize the models trained on the ParlaMint data, we use the complete PoliticIT training set as the development set. Besides the predictions from the best model after the hyper-parameter search, we also experiment with the majority vote of the top-n best performing hyper-parameters. As the voting ensembles performed worse than the single-best model, we do not report their results here.

Since the binary ideology classifier was more accurate than the multi-class one in our initial experiments, we also include a post-processing step, where we adjust multi-class labels when they conflict with binary labels. If the multi-class classifier predicts moderate_left while the binary classifier predicts right, we set the multi-class label to moderate_right. Similarly, we resolve conflicts where the binary classifier predicts left by setting the multi-class label to moderate_left. All linear models are implemented using scikit-learn [17].

2.3. Transformer-based models

We also experiment with multi-task and cross-lingual transfer learning by fine-tuning pretrained language models. Specifically, we work both with a multilingual model, XLM-RoBERTa [18], and a monolingual version of BERT [19].

We customize both models, adding a ‘common block’ followed by three linear classification heads. Both solutions are implemented with PyTorch [20] and the Transformers library [21].

The ‘common block’ is a 2-layer, bi-directional Recurrent Neural Network which takes as input the language model’s representation of the CLS token for each tweet in a given group. We include a ReLU activation function and a dropout layer after each RNN layer, except the last one. The model leverages the hard-shared parameters in the RNN and tries to learn the three tasks simultaneously (i.e., in a multi-task fashion) by minimizing the sum of their training losses: binary cross entropy loss for the two binary tasks and categorical cross entropy loss for the multi-class one. As observed by Liang and Zhang, it is reasonable to assume that in such a setting, the tasks have different levels of difficulty, so we rely on their balanced multi-task learning (BMTL) framework to mitigate this issue [22]. This requires wrapping each loss into a function h, such that $h(t) = \exp(T)$, where T is a temperature parameter that needs to be tuned.

We train the XLM-R model in three different settings: first on the combination of the full PoliticES 2023 dataset and the PoliticIT 2023 training set, then on the Italian dataset alone and lastly only on the Spanish data. Fi-
nally, the BERT-based model is also trained on the Italian dataset alone.

In an attempt to improve the multi-class ideology task score, we include a post-processing step similar to the one described in 2.2. If the binary score is left and the multi-class prediction is moderate, right, we set the multi-class label to moderate, left and the other way around if the two scores are right and moderate. Similarly, if the binary score is left and the multi-class prediction is right, we set the latter to left and the other way around if the two scores are right and left.

All models use the AdamW optimizer and a scheduler with a learning rate that decreases following the values of the cosine function. As a pre-processing step, we remove all punctuation marks and masking tokens originally used to anonymize the tweets (e.g., [POLITICIAN], [POLITICAL_PARTY]), expand all hashtags and convert emojis into their text descriptions.

All models are trained for 15 epochs and their hyperparameters are optimized with Ray Tune [23], relying on a Bayesian optimization strategy.

3. Results

Our best performing system (based on linear SVMs) ranked first among 7 participating teams on both the binary and the multi-class ideology prediction tasks, achieving a macro-averaged F1-score of 92.82 and 75.15, respectively. With respect to the gender prediction task, our system ranked second with a score of 79.25.

Besides these simple models, we experimented with parliamentary speeches as an out-of-domain dataset and cross-lingual transfer, using pretrained language models. We summarize our results in Table 1.

Out-of-domain data To investigate the effectiveness of training on out-of-domain data, we train an SVM model on parliamentary speeches from the ParlaMint dataset and test it on the PoliticIT test-set. We present the results in Table 1 (indicated as SVM-ParlaMint).

ParlaMint includes both political orientation and gender data for the speakers in the Italian parliament. However, as noted in Section 2.1, it does not include speakers belonging to any (non-center) left parties for the multiclass classification. As a result, the scores for multi-class ideology detection are rather poor. Nonetheless, both the binary ideology and gender scores are not too far behind the models trained on the in-domain data.

Cross-lingual transfer The results obtained with monolingual and cross-lingual pretrained models, Italian BERT and XLM-RoBERTa, are also presented in Table 1. Contrary to our expectations, the BERT-based model performs rather poorly compared to SVM-PoliticIT, with the sole exception of the gender classification task, where the monolingual model achieves a macro-averaged F1-score of 81.17, outperforming the SVM model.

Even though it does not completely exceed the performance of the SVM-PoliticIT classifier, the multilingual model trained on both the Italian and the Spanish data improves the scores substantially. Specifically, the model achieves a macro-averaged F1-score of 80.56 in the gender task, outperforming SVMs. The effectiveness of cross-lingual transfer learning can be observed by examining the results of the monolingual BERT model which, with the only exception of gender, are significantly lower. However, it should be noted that XLM-RoBERTa and BERT are pretrained using different training regimes. To get a clearer understanding of the potential benefits of cross-lingual transfer, we trained XLM-RoBERTa on the Italian dataset alone. The scores we report for the latter model are marginally lower than those obtained with the model trained on both the Italian and the Spanish data, suggesting a beneficial effect of cross-lingual transfer learning. This is further corroborated by the results in a zero-shot setting, where the XLM-RoBERTa model was trained on Spanish data only. Although the scores are well below those of the other models, they are clearly better than random, indicating signal in the cross-lingual data.

4. Discussion and Concluding Remarks

We presented our experiments on how to identify political orientation and gender from social media posts as part of the EVALITA 2023 PoliticIT shared task. Our systems based on linear SVMs achieved the best overall scores. We also experimented with classifiers based on deep pretrained language models, focusing particularly on cross-lingual transfer.

Our first finding is that ‘traditional’ linear models show a better overall performance than the deep learning ones. Given their simplicity and lack of information other than immediate surface features in the training data, their success may come as a surprise. However, this is not the first time that such models have been found to perform similarly or better than deep networks [24, 25, 26, 27, just to name a few]. Similarly, the logistic regression classifiers of Mosquera [28] obtained the third place, only slightly behind the first two systems, in the PoliticES 2022 shared task. This, of course, may be due to a lack of proper tuning of the pretrained models. However, the fact that the linear SVMs outperformed all other participating teams (presumably the majority of them using pretrained models) shows that these simpler models have some strong merits in this task.

Our preliminary experiments on out-of-domain data
show that training an SVM model on parliamentary speeches results in lower, but comparable performance to training on in-domain-data. The results clearly indicate that there is a considerable cross-domain signal for both ideology detection and gender prediction. Although we did not experiment with the use of both in- and out-of-domain data together in this study, the results highlight the potential for using out-of-domain data to improve ideology prediction in social media.

Our experiments also show promising results on cross-lingual transfer. The best results we achieve with pre-trained language models come from fine-tuning a cross-lingual model using both Spanish and Italian data. Part of this success is probably due to the similar methodologies followed by the organizers of both shared tasks. Further investigation of cross-lingual and cross-country transfer on ideology detection may shed light into universal and culture-specific aspects of ‘ideology’.

Our best-performing model is a bag-of-words SVM classifier, relying only on token unigrams as features. Compared to the transformer-based ones, this model allows for better interpretability with its unigram features revealing some linguistic indications of political orientation. Words such as ‘immigrazione’ ‘immigration’, ‘clandestini’ ‘illegal immigrants’ and ‘confini’ ‘borders’ appear constantly in right-wing discourse, while terms such as ‘diritti’ ‘rights’, ‘democrazia’ ‘democracy’ and ‘solidarietà’ ‘solidarity’ seem to point to more leftist views. The model also picked up unmasked tokens left in the data that could suggest a party or politician’s name. This is the case with words like ‘Giorgia’, ‘FI’ and ‘Democratico’, which allude to the current right-wing Prime Minister Giorgia Meloni, a well-known Italian right-wing party ‘Forza Italia’, and a prominent Italian left-wing party ‘Partito Democratico’, respectively. Further and better approaches to explain model behavior is another direction for future research that may shed light in narratives of different ideological groups.

References

