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Abstract

The recent growing interest in low-resource languages has been significantly bolstered by transformer-based models. By
fine-tuning three such models, two based on BERT and the other on RoBERTa, I aim at geolocating sequences exhibiting
non-standard language varieties relying solely on linguistic content. I find that, given that the information contained in the
embeddings is all we need to carry out this complex task, a model architecture with less task-specific layers leads to better
results. Furthermore, models pre-trained on miscellaneous corpora generalize better than those trained exclusively on tweets.
The work also shows that the greater availability of resources of a certain regional variety positively affects the capacity of

the model.

1. Introduction

Recognizing varieties and forming an opinion about
where the speaker comes from is something so ingrained
in our experience as speakers that it seems innate, and
even a little magical. The question that drives this work
is: can Large Language Models (LLMs) do what we do
and if so, how well can they do it? do they do that in
a way that is operationally similar to ours? The Italian
scenario is a good testing ground as despite his limited
geographical extent, it is one of the most linguistically-
diverse in Europe. In their work, Ramponi and Casula say
that current transformer-based models are rather limited
for modeling language variation over space in highly mul-
tilingual areas such as Italy [1]. I don’t agree completely,
not only because of the encouraging results of the ap-
plication of LLMs in a always growing number of tasks,
but also because what we can explain on how they work
does not highlight anything which may prevent good
performance. Furthermore, the work of Lutsai and Lam-
pert [2] reaches the astonishing result of a median error
of 30km worldwide level, and fewer than 15 km on the
US-level datasets for the models trained and evaluated
on text features of tweets’ content and meta data context,
using a BERT model [3]. The fact that Twitter language
identifier classifies with the label designed for standard
Italian language also contents both partially and fully
written in language varieties of Italy, as observed again
by Ramponi and Casula [1] may suggest that the LLMs
already have in their pre-training dataset the knowledge
that they need to carry out a geolocalization task.

This document describes the model I submitted to the
EVALITA 2023 evaluation campaign [4] for the task Ge-
oLingIT [5].
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1.1. Task

The goal of this project is to predict its location in terms
of longitude and latitude coordinates (fine-grain geoloca-
tion) of tweets exhibiting non-standard language, based
solely on linguistic content. This is a (double) regression
task. In contrast to previous geolocation shared tasks on
other areas ([6]; [7]; [8]), GeoLinglt is focused on Italy.

1.2. Dataset

GeoLingIT task data comprises 15K geotagged tweets
that exhibit non-standard Italian language use (the con-
tent may be fully written in local language varieties or
exhibiting code-switching with standard italian), and that
have been collected in the corpus Diatoplt [1]. The data
is annotated with latitude and longitude. After removing
the emojis and tags, all the labeled data provided by the
organizers were merged and then split into train-eval-
test sets. Several crossvalidations were performed with
3-folds or 2-folds split, using train-eval sets. Target and
output coordinate data were normalized using Min-Max
scaling, as this understandably improved the quality of
model prediction.

2. System description

Knowing that representations learned by transformer-
based models achieve strong performance across many
tasks with various datasets ([9], inter alia), I first decided
to perform the fine-tuning of three different monolin-
gual BERT-based [3] or RoBERTa-based [10] models, pre-
trained on Italian texts. After picking the best performing
model, I cross-validated it on a diverse set of hyperpa-
rameter configurations (e.g., number and size of hidden
layers, activation functions) to pick the best task-specific
architecture. All the runs were performed on Colab using
high-RAM Nvidia A100 GPUs.
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Table 1
averaged MAE on the eval set for each model; batch size 50-100-150; 10 epochs; in bold the best result

umberto-commoncrawl-cased-v1 bert-base-italian-cased AIBERTo-it
fold1 fold2 fold3 avg fold1 fold2 fold3 avg fold1 fold2 fold3 avg
50 0.0147 0.0136 0.0144 0.0142 0.0184 0.0179 0.0184 0.0182 0.0216 0.0209 0.021 0.0211
100 0.0159 0.018 0.0176 0.0171 0.0176 0.0206 0.0191 0.0191 0.0232 0.0228 0.0235 0.0231
150 0.0168 0.0163 0.0173 0.0168 0.0181 0.019 0.0202 0.0191 0.0248 0.0239 0.0247 0.0244
Table 2

averaged MAE on the eval set; umberto-commoncrawl-cased-

epochs; in bold the 4 best results, in red the 4 worse results

v1 in each architecture and configuration; batch size 50; 10

No Hidden Layer

1 Hidden Layer (5) 1 Hidden Layer (300)

fold1 fold2 fold3 avg fold1
Identity ~ 0.0147  0.0136  0.0144  0.0142  0.0485
Sigmoid / / / / 0.0174
ReLU / / / / 0.2957
3 Hidden Layers
(5,5, 10)

fold1 fold2 fold3 avg fold1

Identity ~ 0.0434  0.0517  0.0761 0.0570 0.024
Sigmoid ~ 0.0347  0.0275  0.0395 0.0339 0.0229
RelLU 0.1819  0.0303 0.034 0.0820 0.3067

fold2 fold3 avg fold1 fold2 avg
0.0179  0.0282  0.0315  0.0150  0.0145 0.0147
0.0138  0.0142  0.0151  0.0187  0.0151 0.0169
0.0143  0.1462 0.1520 0.0147  0.0152  0.0149
3 Hidden Layers 3 Hidden Layers
(10,5, 5) (300, 100, 100)

fold2 fold3 avg fold1 fold2 avg
0.0204  0.0412 0.0285 0.0228  0.0207 0.0217
0.0351 0.0272 0.0284 0.0144  0.0171 0.0157
0.1171 0.1822 0.202 0.0784  0.1479 0.1131

2.1. Comparing different models

To assess how different pre-trained monolingual models
perform on the given dataset, I fine-tuned the RoBERTa-
based umberto-commoncrawl-cased-v1 [11] model, and
the BERT-based models bert-base-italian-cased [12] and
AIBERTo-it [13], adding a single linear layer with two out-
put neurons to the pooling layer of each model, without
activation function. I tested this "minimal" task-specific
architecture on 3 batch values (50, 100, 150) for 10 epochs,
dividing the train-dev set into 3 folds.

2.2. Adding a single hidden layer

To explore the potential benefits of introducing additional
complexity to the model, I designed a new task-specific
architecture adding a single hidden layer right after the
pooling layer, testing different sizes (5 neurons and then
300 neurons) followed by an activation function (Iden-
tity, Sigmoid or ReLU), and finally, a two-neuron output
layer. To reduce the computational cost, only umberto-
commoncrawl-cased-vl was tested using this and the
next architectures. For the same reason batch size 50 was
maintained.

2.3. Adding more hidden layers

Still with the rationale of knowing whether adding fur-
ther complexity would enhance the model’s learning ca-
pacity, I tested a task-specific setting with 3 hidden layers
with neurons in combination (5, 5, 10) (10, 5, 5) and (300,

100, 100) on various activation functions (Identity, Sig-
moid, ReLU) added before the two-neuron output layer.

3. Results

The umberto-commoncrawl-cased-v1 model on the "min-
imal" task specific architecture yielded the best Mean
Absolut Error (MAE) results in 3-fold cross-validation
using the provided labelled data, and achieved 128.19 km
of avg distance in km on the blind test set provided by the
challenge organizer. Although AIBERTo-it and bert-base-
italian-cased were outperformed, their achieved results
are not too distant, as shown in Table 1.

The second best MAE results were achieved using the
300 neurons single hidden layer task-specific architecture,
and then followed by the 5 neurons single hidden layer
architecture, as shown in Table 2. This can be explained
by thinking that adding a small hidden layer after the
pooling layer leads to an initial drastic reduction in the
size of the model output.

The worst results, on the other hand, were all obtained
with the 3 hidden layers architecture and ReLU as ac-
tivation function. The accuracy dropped possibly be-
cause of excessive feature compression: when several
hidden layers are stacked, this reduction is followed by
another further reduction of the size of the input vec-
tor, and the linear activation function was of no use in
this case. Therefore, further complicating the architec-
ture requires an additional regularization effort, which
the results achieved with only one hidden layer or even



without hidden layers show to be useless.

4. Discussion

From the coordinates of the target-output pairs obtained
with the best-performing model (umberto-commoncrawl-
cased-v1, "minimal" task-specific architecture, batch 50,
10 epochs), I calculated the error in km using the Haver-
sine distance. From the error histogram we see how the
average error (117.21 km) is not at all generalizable to
all examples. In fact, 25% of the inputs were geolocated
more than 154km away from the target.
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Figure 1: Error distribution of tweets; umberto-commoncrawl-
cased-v1 "minimal" architecture; 50 bins

There are no specific areas where the inputs have a
larger error. In contrast, inputs from areas in Piedmont-
Lombardy-Veneto and Lazio-Campania have lower error
than the others. In fact, two or three marked clusters
can be observed in the scatterplots of the outputs (Figure
2), depending on the model configuration, the most per-
sistent of which is between Lazio and Campania, then
a cluster that follows the Alpine arc and finally less fre-
quently by a cluster on Sicily. Excluding that this can be
attributed to an imbalance in our fine-tuning dataset, this
result must come from the representation of the embed-
dings of each model. Ramponi and Casula [1] argue on
the fact that the pre-training material that had been used
by those models may include content in language vari-
eties of Italy, and they attribute it to the over-prediction
of Italian of current language identifiers, observing that
content both partially and fully written in language vari-
eties of Italy is typically classified as standard italian by
the Twitter language identifier. I can further hypothesize
that the varieties from the areas with the smallest error
are also quantitatively more present in the pre-training
dataset of each model, as these are also the ones from the
most densely populated areas in Italy.

However, it is very complex to reconnect these obser-
vations to one or more linguistic facts concerning the
Italian regional varieties. The question then is how did

we get this results, or even "Does BERT make any sense?"
[14]. We defer the answer to later work.

Comparing the outputs’ scatterplots (Figure 2) of
the models umberto-commoncrawl-cased-v1, bert-base-
italian-cased and AIBERTo-it fine-tuned on the provided
dataset, we hope to probe in some way the embedding
space generated by each model, and hopefully to gain
insights into the quality and characteristics of the learned
embeddings.

In the "minimal" architecture, AIBERTo-it shows a
main cluster in the middle, from which all the other out-
puts radiate, while the other two models identify about
two or three main clusters, like we said before, around
the Alpine arc, between Lazio and Campania and the
last, least marked, approximately on Sicily. Comparing
the specifications of each model, we see that the most
important differences are in the training dataset. While
umberto-commoncrawl-cased-v1' and bert-base-italian-
cased were pre-trained on a miscellaneous corpus, re-
spectively OSCAR [15] Italian subcorpus and Wikipedia
and OPUS corpus [16], AIBERTo-it was pre-trained on
tweets. In this work, the models pre-trained on a mis-
cellaneous corpus (umberto-commoncrawl-cased-v1 and
bert-base-italian-cased) provided embeddings that per-
formed better on tweets than a model pre-trained on a
corpus specifically of the same genre. It is also worth
noting that in Ramponi and Casula’s work [1], the best
performing model was AIBERTo-it, that has a vocabulary
size of 128k, while in the current work the best perform-
ing ones are the 32k umberto-commoncrawl-cased-v1
and the 31k bert-base-italian-cased.

Adding a single large hidden layer makes fewer out-
liers compared to the models with the minimal architec-
ture, and seems to be able to overcome at least partially
the cluster of the Alpine arc and Sicily, while keeping
the central one very compact. However it is necessary
to remember that only umberto-commoncrawl-cased-v1
has been tested with a large hidden layer, and further
experiments could be carried out.

5. Conclusions

The behavior shown by our models (need for regulariza-
tion in the presence of numerous layers, better results
with a single bigger hidden layer) is what we can expect
from a simple neural network. However, it is astonish-
ing that such a simple architecture manages to obtain
non-disastrous results in an complex NLP task. The suc-
cess of this regression task is undoubtedly attributable

The OSCAR [15] subcorpus also has some subsets in other ital-
ian language varieties (such Piedmontese), but the official umberto-
commoncrawl-cased-v1 model card says that it was pre-trained only
on the Italian subcorpus, deduplicated.
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Figure 2: Scatterplots of the target (in black) and output (in red) coordinates for each configuration



to the high-level representations of the input data, to-
gether with BERT’s ability to understand the linguistic
context. Therefore, less is more: a simple setup, using
even just two output neurons, seems to work better than
a more complex one for BERT fine-tuned models on this
task. Furthermore, in this work the models pre-trained
on a miscellaneous corpus provides embeddings that per-
formed better on tweets than a corpus specifically of the
same genre. In conclusion, it is difficult to say how close
we came to the goal, if the goal was to adequately map
the diatopic variation of contemporary Italian, trying
to automatically extract regional and dialectal patterns.
Even if in this work we were unable to further probe the
linguistic information used to carry out our task, the stud-
ies converge in believing that BERT s structure is, however,
linguistically founded, although perhaps in a way that is
more nuanced than can be explained by layers alone [17].
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