
BERTicelli at HaSpeeDe 3: Fine-tuning and Cross-validating
Large Language Models for Hate Speech Detection
Leonardo Grotti1,2, Patrick Quick1

1Universiteit Antwerpen, Faculty of Arts, Prinsstraat 13, B-2000, Antwerp
2CLiPS Research Center, University of Antwerp, Belgium

Abstract
The present paper describes the results from the experiments carried out for the HaSpeeDe 3 shared task, an Italian-language
Hate Speech (HS) detection task, at EVALITA 2023. Two BERT-based language models were selected: UmBERTo (cased)
and Italian BERT (cased). For the Textual task, the models were fine-tuned and cross-validated across 5 folds. For the
Contextual task, we adopted an ensemble approach: the additional features were added to the fine-tuned models through the
GradientBoosterClassifier algorithm. The models perform better than the baselines (DummyClassifier and LogisticRegression)
and above the average performance of participants in the shared task. While the addition of contextual features did not
improve the performance of UmBERTo, it significantly bettered the results obtained with Italian BERT.
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1. Introduction
The escalating issue of toxic language has been ampli-
fied by the rapid growth in social media usage over the
past decade [1]. Platforms such as Facebook and Twitter
have transformed the way individuals interact, making
it faster and often anonymous, thereby creating an ideal
environment for the propagation of harmful content [2].
Furthermore, previous studies have shown that this con-
tent can be targeted at and posted by both individuals
and groups, inciting and driving violent acts in the offline
world [2, 3, 4].

As such, countering the phenomenon of toxic language
has garnered significant attention from legal authorities,
social media platforms, and companies [5]. Platforms
like Facebook, Twitter, YouTube, and other websites have
taken measures to combat toxic language by implement-
ing bans. However, research has pointed out the limita-
tions of companies’ control systems and their heavy re-
liance on user reports to identify problematic comments
or posts [6]. The manual filtering of messages containing
toxic language has proven to be not only time-consuming
but also detrimental to human annotators [7]. Addition-
ally, studies have revealed that human-labeled data can
be influenced by individual annotators’ biases [8].

Such interest was reflected in the field of Natural Lan-
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guage Processing (NLP), which has witnessed a surge in
interest and popularity in automatic toxic language de-
tection [8]. Researchers aim to develop models that can
alleviate the harm caused by online HS [9]. Automating
the detection process not only overcomes the challenges
of manual filtering but also enables efficient analysis of
large volumes of data.

As a reminder, we here use the terms HS as an umbrella
term and do not distinguish between its subcategories
on a theoretical level. For a more extensive discussion of
HS hierarchies and definitions, refer to Zampieri [7] and
Caselli et al. [10]. It is worth noting that scholars often
do not agree on what constitutes HS and how it differs
from, e.g., offensive or aggressive language [11].

2. Related Work
As we have mentioned, the growing interest in addressing
toxic language is evident in the numerous tasks dedicated
to its detection and its various subcategories. These in-
clude Aggression Identification [12], Offensive Language
Identification [7], and HS detection in Italian Facebook
and Twitter messages [13], among others. Over time,
the quantity and quality of available models for toxic
language detection have significantly increased. Markov,
Gevers, and Daelemans (2021) note that the advent of
transformer-based pre-trained language models, coupled
with the abundance of user-generated content on social
media, has greatly improved detection accuracy.

Despite the overall improvement of the models, a se-
ries of challenges remain. For instance, it has been shown
how the lack of data in languages other than English [14]
has exacerbated already existing issues, such as the high
occurrence of code words and misspellings in HS text
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[9]. Furthermore, the often-low agreement between hu-
man annotators has also been reported to hinder models’
performance [15]. Finally, the biggest challenge to date
remains the generalisability of models for HS classifica-
tion: i.e., a model’s ability to perform in cross-domain
(i.e., coming from different domains, such as Facebook
and Twitter) and cross-genre (i.e., text belonging to differ-
ent genres, e.g., social media posts and journal articles)
tasks [15, 8].

To deal with these issues, scholars have adopted dif-
ferent approaches: machine learning algorithms have
been improved through the addition of linguistic fea-
tures [16, 17], word lists [18], and syntactic features [19].
In recent years, researchers have also experimented with
complex ensembles of both neural [17] and non-neural
[1] models.

In the latter case, they [17] leveraged the large amount
of data on which large language models are trained and
the increased availability of sentence and sub-word em-
beddings. In short, large language models possess numer-
ical representations for both smaller (sub-embeddings)
and larger (sentence-embeddings) language units. This
enables them to capture not only misspellings and rare
linguistic forms but also the overall meaning of sentences.
Furthermore, due to their pretraining process, these mod-
els already have an understanding of language structure,
enhancing their performance in capturing the nuances
of a text [9, 15]1.

3. Task and Method

3.1. Data

Data set ¬HS Tweets HS Tweets
Development 3456 2144

Test (in) 700 700
Test (out) 2513 487

Table 1
Count of Hate Speech labels in task data.

The task organizers [20] provided development data
consisting of 5,600 Italian-language tweets from the Pol-
icycorpus XL corpus, a manually-annotated HS corpus
[21]. The testing data consists of one subset of in-domain
data and one subset of out-of-domain data. The in-
domain data consists of 1,400 Italian-language tweets
from Policycorpus XL, and the out-of-domain data con-
sists of 3,000 Italian-language tweets from the Italian sub-
set of the ReligiousHate corpus, a manually-annotated
religious HS corpus [22].

1For an extensive explanation of how these factors have im-
proved the performance of HS detection systems, see Yin and Zubi-
aga 2021

The development data has been anonymized, with a
tweet’s identifying information and the user’s identify-
ing information both mapped to pseudo-random integers.
Placeholders have replaced all instances of URLs, and
hashtags have been preserved. The data is marginally
imbalanced, with a lesser presence of tweets annotated
as HS. The accompanying contextual information is com-
prised of attributes of Tweet objects and User objects
[23].

The structure and anonymization of both the in-
domain and out-of-domain testing data follows that of
the development data. Upon reconciliation with the gold
data, we can see that the in-domain subset is balanced,
whereas the out-of-domain subset is significantly unbal-
anced.

3.2. Task
The task proposal for HaSpeeDe 3 focuses on Italian-
language HS detection on Twitter and consists of two
tracks with two sub-tasks each. Both Task A and B are
binary classification problems to determine whether a
tweet contains HS or not. The two sub-tasks in Task A are:
(i) Textual, where participants can only use the provided
textual content of the tweets from Policycorpus XL for
development, and (ii) Contextual, where participants can
employ the textual content of the tweets along with the
accompanying contextual information.

Task B deals with test data from different domains.
The evaluation includes two sub-tasks: XPoliticalHate,
where the test set consists of tweets from Policycorpus
XL, and XReligiousHate, where the task focuses on recog-
nizing religious hate using tweets from the ReligiousHate
corpus. Participants are allowed to use external data, in-
cluding from other hate domains, and are not restricted to
the textual and contextual data provided in Policycorpus
XL for development.

The final results in the HaSpeeDe 3 task are evaluated
and ranked by computing the F1-score over each class to
arrive at an averaged F1-score.

3.3. Models
Fine-tuning, a common technique in NLP, is a form of
transfer learning that involves training a pre-trained
model on new data to adapt it for a specific downstream
task [24]. As mentioned in Section 2, there are notable
benefits in fine-tuning models when it comes to HS detec-
tion tasks. Furthermore, this approach has been widely
used in Italian HS detection, see, e.g., Eric et al. (2020),
Tamburini (2020), Nozza et al. (2022). Thus, we fine-tune
two large pre-trained language models:

• UmBERTo-commoncrawl-cased (Run 1) is a
RoBERTa-based model using the OSCAR (Open



Super-large Crawled ALMAnaCH coRpus) Italian
large corpus. The model is used for both Named
Entity Recognition (NER) and Part Of Speech
(POS) tagging and reached excellent performance
on different datasets.

• bert-base-italian-cased (Run 2) is a BERT-based
model which was trained on two million tokens
and over 13GB of data. The model was pre-trained
on a combination of data which includes the
OPUS corpus as well as a Wikipedia dump. Note
that for ease of readability, we will now refer to
this model as BERT-ita.

For the Textual tasks (both in- and out-of-domain) our
experimental setup consists of three stages: To begin
with, we apply two basic preprocessing steps, which
consist of substituting the pseudo-random user identifiers
(e.g., ’@12020569’) with ’@USER’ and removing the hash
symbol (i.e., ’#’) from hashtags. Such steps are applied to
avoid excessively long tweets2 and remove unnecessary
noise.
Then, both models are fine-tuned and cross-validated
across five epochs using PyTorch Trainer and the Trans-
formers library. The development data is shuffled and
divided into five folds. For each fold, the models are fine-
tuned on 80% of the development data and evaluated on
the remaining 20% across 10 epochs with an EarlyStop-
ping patience of 3. We employ cross-validation to ensure
that the obtained results are not dependent on a particu-
lar data split but rather generalize well across multiple
folds.

During this stage, we also tune the learning rate (1e-3,
2e-5, and 5e-05)3. We do not tune batch size as the test
data was not available at this stage and increasing batch
size may have improved development set performance
but worsened generalizability on unseen data (see He
et al., 2019). Once the stability of the results has been
established through cross-validation, the models are fine-
tuned on 85% of the training data4 (after shuffling) and the
resulting model is saved and used to output predictions
on both test sets.

For the Contextual task, additional features are incor-
porated into the model using GradientBoostingClassifier.
This ensemble algorithm sequentially trains weak models,
resulting in a strong model that is a weighted combina-
tion of the weak models. Unlike other algorithms, Gra-
dientBoostingClassifier employs decision trees as weak
learners and is optimized through gradient descent. To

2The presence of multiple user tags in some of the tweets caused
a mismatch in Tensor size and consequently a RuntimeError.

3These learning rates are found in Nozza et al. (2022), Hugging-
Face’s fine-tuning guide, and in the standard training parameters,
respectively.

4Such a configuration is selected to mirror the task’s original
train-test split of 5600-1400, see Celli et al. (2021).

do so, the output labels for both BERT-based models
together with the additional features are used as input
features for GradientBoostingClassifier.

To further assess the performance of our models, we
build four baselines: one LogisticRegression and one
DummyClassifier for each task. For Textual and Con-
textual tasks, the models were trained on the textual data
and evaluated on the in-domain test data. For the cross-
domain task, they were trained on the same textual data
but evaluated on the out-of-domain test set instead. It
is worth mentioning that no additional data was used at
any stage of our experiments.

4. Results and Discussion
In this section, we describe the results obtained for
HaSpeeDe 2023. For each model, we report precision,
recall, and F1 score (for both classes). We submitted re-
sults for every sub-task except for Task B’s XpoliticalHate
sub-task. All results are compared with the respective
baselines.

4.1. Baselines
As a reference point, Table 2 first presents the baseline
results for both in- and out-of-domain tasks for each
class. The DummyClassifier performs slightly above ran-
dom chance for the in-domain task, with an average F1
score of 0.52. However, the out-of-domain results are—as
expected—poorer, reaching an average F1 score of 0.42.

LogisticRegression, on the other hand, achieves com-
petitive results, with average F1 scores of 0.86 for in-
domain data and 0.52 for out-of-domain data. However,
upon further inspection, we can observe how LogisticRe-
gression is fairly limited. With a precision of 0.80 for
the non-hate speech (¬HS) class, the model exhibits a
relatively high rate of false positives. Additionally, the
recall of 0.96 for ¬HS implies a high rate of true posi-
tive instances captured but at the expense of potentially
overlooking some true negatives. These results suggest
that the model may be overly biased towards predicting
instances as ¬HS, potentially missing some actual HS
instances. Similarly, while a high precision of 0.953 is
achieved for the HS class, the model showcases a fairly
low recall of 0.75. In turn, this pattern implies the model’s
inability to identify a significant portion of actual HS in-
stances, resulting in false negatives.

It is worth mentioning that the high performance of
LogisticRegression in the in-domain task is likely related
to the balanced nature of the data (700 HS v. 700 ¬HS).
When out-of-domain, unbalanced test data (see Table 1)
is used, performance drastically drops.



Class Precision Recall F1
In-domain

Dummy ¬HS 0.518 0.504 0.511
HS 0.517 0.530 0.523

LogReg ¬HS 0.800 0.963 0.874
HS 0.953 0.759 0.845

Out-of-domain

Dummy ¬HS 0.827 0.485 0.612
HS 0.152 0.474 0.230

LogReg ¬HS 0.844 0.926 0.883
HS 0.237 0.119 0.158

Table 2
Results for baseline models for in-domain data and out-of-
domain data.

4.2. Task A
Our models achieve competitive results in both Task A’s
sub-tasks5, as shown in Table 3 (Textual) and Table 4
(Contextual) for each class. Starting from the former, both
models perform above both baselines. However, there
seems to be a substantial difference between UmBERTo’s
(Run 1) and BERT-ita’s (Run 2) performance: while the
first reaches an F1 average of 0.89, the second reaches
0.86, with a difference between the scores of over .03.
Indeed, even if the second run’s results are close to the
LogisticRegression baseline, the model’s predictions (i.e.,
precision and recall) are more balanced across the two
classes. Thus, the F1 for the HS class is higher for BERT-
ita compared to the baseline.

The reason for the discrepancy between the two mod-
els’ performance is likely related to the size of the pre-
training data: UmBERTo was trained on over 70GB
(against the 13GB of BERT-ita). As such, the model likely
has more sub-embeddings and sentence-embeddings
available, which in turn allows for better results.

For the Contextual sub-task (Table 4), we included a set
of extra features (i.e., ’anonymized description’, ’retweet
count’, ’favorite count’, ’is reply’, ’is retweet’, ’is quote’,
’statuses count’, ’followers count’, and ’friends count’)
to the output labels through GradientBoostingClassifier.
Both models once again reach competitive results. While
the first run’s results are not affected by the inclusion of
contextual features, BERT-ita (Run 2) significantly bene-
fits from their addition. The model performs on the same
level as UmBERTo, with an F1 of 0.902 for ¬HS and 0.892
for HS. The inclusion of contextual information during
the training stage likely enables BERT-ita to capture more
diverse linguistic patterns and generalize better to the
classification task.

5Note that the overall F1 average for each model and sub-task
can be found in Table 7 below.

Class Precision Recall F1

Run 1 ¬HS 0.861 0.949 0.903
HS 0.943 0.847 0.892

Run 2 ¬HS 0.824 0.930 0.874
HS 0.920 0.801 0.856

Table 3
Results for Task A Textual sub-task.

Class Precision Recall F1

Run 1 ¬HS 0.861 0.949 0.903
HS 0.943 0.847 0.892

Run 2 ¬HS 0.860 0.949 0.902
HS 0.943 0.846 0.892

Table 4
Results for Task A Contextual sub-task and Task B in-domain
sub-task.

4.3. Task B
Though we did not formally submit results to Task B’s
sub-task XPoliticalHate, we met the requirements of the
task by submitting results for the Contextual sub-task
of Task A, for which the same test data was used. We
will thus report results for both sub-tasks of Task B, re-
ferring to Table 4 for the results of Task B’s sub-task
XPoliticalHate.

Our model performs competitively in the XPolitical-
Hate sub-task, which made use of in-domain test data,
while our model for the sub-task XReligiousHate per-
formed poorly in the context of out-of-domain test data.
We made no consideration regarding the XPoliticalHate
sub-task, as we did not take any additional steps.

The models’ performance on out-of-domain data (Ta-
ble 5) is much lower than the average F1 score (0.57) but
still higher than the baseline (0.52). Such low scores may
relate to the imbalance between the two classes in the test
data and to limitations in transfer learning. As noted by
Ada et al. (2019), performance on the source task may not
reflect performance on the target task. Also, the model
may overfit on the data on which it was fine-tuned [30].

Class Precision Recall F1

Run 1 ¬HS 0.849 0.950 0.897
HS 0.330 0.127 0.184

Run 2 ¬HS 0.848 0.942 0.893
HS 0.306 0.131 0.184

Table 5
Results for Task B out-of-domain sub-task.

Overall, our models have consistently outperformed
the baselines, demonstrating significant improvements
across the board. However, it is worth noting that Table
6 reveals that some runs were below the competition’s
averages. In particular, Run 2 in Task A (Textual) and



Task B (XReligiousHate) failed to meet our expectations,
as discussed in detail in Sections 4.2 and 4.3. These un-
derperforming results can be attributed to the previously
highlighted factors.

Task Sub-task Model F1 avg

A

Textual
Run 1 0.89759
Run 2 0.86516
Avg 0.88263

Contextual
Run 1 0.89759
Run 2 0.89687
Avg 0.88616

B

XPoliticalHate
Run 1 0.89759
Run 2 0.89687
Avg 0.88866

XReligiousHate
Run 1 0.54011
Run 2 0.53841
Avg 0.57439

Table 6
F1 averages for our models and the average for all models
submitted to the task.

5. Conclusion
In this paper, we introduced two fine-tuning techniques
to detect Italian-language HS in Twitter’s posts and
replies. We were asked to address the issue in two dif-
ferent tasks with two sub-tasks each. Two models were
fine-tuned and 5-cross-validated: UmBERTo and BERT-
ita. Task A was comprised of a Textual and a Contextual
sub-task: here, UmBERTo performed competitively in
both sub-tasks, reaching above the baseline and competi-
tion average. However, the model did not benefit from the
addition of contextual features. BERT-ita, on the other
hand, performed above the baselines but significantly
lower than the task average. In contrast to UmBERTo,
BERT-ita’s results improved significantly, reaching the
first model’s performance.

For Task B, we did not submit any results for the XPolit-
icalHate sub-task. As such, the results obtained for Task
A (Contextual) were assumed to be valid for this sub-task
given the test data was the same. Finally, both our models
performed well below the competition average for the
out-of-domain task.

Future work should look at the potential benefits of
including additional training data for the out-of-domain
task. Also, the addition of contextual features could be
tested in combination with different language models.
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