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Abstract
The WiC-ITA shared task aims to determine whether a word appearing in two distinct sentences carries the same meaning.
The task consists of two subtasks: binary classification (Subtask 1) and ranking (Subtask 2). Each subtask is designed in both
a monolingual (Italian) and multilingual (Italian-English) setting. In this report, we present the results of our participation in
WiC-ITA. In our experiments, we leverage the condition number of the cosine similarity matrix between XLM-R embeddings
and demonstrate competitive performance, ranking among the top positions in both the monolingual and cross-lingual
setting. Our results indicate that semantic information is present not only in the last layers but also across the middle layers
of XLM-R and throughout the entire architecture. This suggests potential avenues for future research to explore the use of
the complete set of embeddings, rather than solely relying on the embeddings extracted from the last layer(s).
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1. Introduction
In the last decade, the use of Word Embedding tech-
niques has improved the modeling of lexical semantics.
Initially, static embedding models have been employed
to encode the dominant semantics of a word into a sin-
gle vector representation, i.e., word embedding (Mikolov
et al., 2013 [1]). However, understanding the meaning
of words in their specific contexts is a crucial task for
modeling language effectively. This motivated the recent
efforts to create contextualized models capable of gener-
ating different vector representations according to the
context in which the words occur (Devlin et al., 2019 [2]).

Despite the growing popularity of contextualized em-
beddings in research fields such as Word Sense Disam-
biguation or Lexical Semantic Shift Detection (Scarlini
et al., 2020 [3]; Montanelli and Periti, 2023 [4]), Word-
in-Context (WiC) benchmarks that specifically focus on
the dynamic of word semantics are relatively recent. The
first WiC benchmarks were limited to English (Pilehvar
et al., 2019 [5]; Loureiro et al., 2022 [6]). Their success
prompted the development of new WiC benchmarks
to cover a wider scope of languages (Raganato et al.,
2020 [7]; Liu et al., 2021 [8]), test the transfer learning
ability in cross-lingual settings (Martelli et al., 2021 [9]),
and evaluate graded word similarity in context (Armen-
dariz et al., 2020 [10]).

The WiC-ITA shared task at EVALITA 2023 provides a
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novel benchmark for evaluating WiC for both a monolin-
gual (L) setting in Italian and a cross-lingual (XL) setting
from Italian to English (Cassotti et al., 2023 [11]; Lai et
al., 2023 [12]). Inspired by the previous work, WiC-ITA
challenges its participants with two sub-tasks:

1. Binary Classification: to establish if a target word
𝑤 occurring in a pair of sentences ⟨𝑠1, 𝑠2⟩ has
the same meaning or not (Subtask 1);

2. Ranking: to rank the pair of sentences ⟨𝑠1, 𝑠2⟩
by the degree of similarity of the target word’s
meaning (Subtask 2).

We participated in both Subtask 1 and 2 as the The
Time-Embedding Travelers, alongside three other par-
ticipants and one baseline system. Each participant was
allowed to make three different submissions. In our ex-
periments, we investigated the potential of multilingual
pre-trained models in both the L- and XL-WiC setting.
Given a pair of sentences ⟨𝑠1, 𝑠2⟩ and a target word 𝑤,
our submitted systems compare the word semantics by
using the cosine similarity matrix between the XLM-R
word embeddings of 𝑤 extracted from different layers. In
particular, we use the condition number of the cosine sim-
ilarity matrix to assess the degree of semantic similarity
between two instances of the word.

In the official ranking, our evaluation phase sub-
mission ranked 2nd for the L-Subtask1, 1st for the XL-
Subtask1, 2nd for the L-Subtask2, and 1st for the XL-
Subtask2. In this paper, we extensively evaluate the
effectiveness of our systems on two different multilin-
gual models, namely multilingual BERT (mBERT) and
XLM-RoBERTa (XLM-R). Our code is available at https:
//github.com/FrancescoPeriti/WiC-ITA.
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2. Background and motivation
BERT is a powerful contextualized model that leverages
the Transformer encoder to capture the contextual se-
mantics of words (Devlin et al., 2019 [2]; Vaswani et al.,
2017 [13]). Typically, the success of BERT is attributed
to its multi-layer (e.g., 12) and multi-head (e.g., 12) self-
attention blocks. However, most of the SOTA work only
uses the outputs of the final layer(s) (i.e., word embed-
dings) as input for solving NLP tasks, while ignoring the
output of the earlier layers. As a result, the role of differ-
ent embedding layers for representing the semantics of
word occurrences is still unclear. Recently, a limited num-
ber of studies have been conducted to explore the nature
and characteristics of the BERT embeddings. In particu-
lar,Jawahar et al. (2019) [14] indicate that BERT’s lower
layers capture surface features pertaining to phrase-level
information, middle layers capture syntactic features,
and higher layers capture semantic features. Devlin et
al. (2019) [2] report that combining the last four hid-
den layers could be beneficial for mainstream tasks such
as Named Entitiy Recognition. Ethayarajh (2019) [15]
demonstrates that the geometry of the embedding space
exhibits anisotropy, meaning that the embeddings of all
layers occupy a narrow cone within the vector space.
Other work involves probing tasks, as proposed in He-
witt et al. (2019) [16]. These tasks consist of training an
auxiliary classifier on top of a model, where the contextu-
alized embeddings serve as features to predict syntactic
(e.g., part-of-speech tags) and semantic (e.g., word rela-
tions) properties of words. The idea is that if the auxiliary
classifier accurately predicts a linguistic property, we can
assume that the property is encoded in the tested model.
In line with this work, Coenen et al. (2019) [17] investi-
gate the capability of word sense prediction and indicate
that earlier-layer embeddings contain significantly more
semantic information than conventionally believed.

Thus, our experiments are motivated by the latter find-
ing and inspired by linguistic research that highlights
the influential role of morphology and syntax in shaping
word meanings (Wysocki and Jenkins, 1987 [18]). In this
paper, we challenge the hypothesis that word meanings
should be investigated by considering the full output of
pre-trained models to encompass not only semantic fea-
tures of the last layers but also the intricate interplay of
semantic, surface, and syntactic features present in the
middle and lower layers of the contextualized models.

3. System overview
Our system is a simple threshold-based classifier based
on the similarity of two sets of word vectors. In particu-
lar, given a pair of sentences ⟨𝑠1, 𝑠2⟩, and a target word
𝑤, we use the output embeddings of a contextualized

embedding model to compute a continuous similarity
score. This score indicates the extent to which the target
𝑤 carries the same meaning in the sentences 𝑠1 and 𝑠2.

More precisely, consider a sentence 𝑠 that contains
the word 𝑤. Given a contextualized model 𝑀 , a vector
representation of 𝑤 is extracted from every layer of the
model 𝑀 . This way, the word 𝑤 in the sentence 𝑠 is asso-
ciated with a set of contextualized embeddings denoted
by 𝐻 . It’s worth noting that 𝐻 ∈ R𝑛×𝑑, where 𝑛 is the
number of encoders of the model 𝑀 (e.g., 12) and 𝑑 is the
dimension of the embeddings (e.g., 768). As a result, we
denote as 𝐻1 and 𝐻2 the contextualized embeddings of
𝑤 extracted from the sentences 𝑠1 and 𝑠2, respectively.

In order to evaluate the similarity of the word 𝑤 in
the contexts 𝑠1 and 𝑠2, we collect the pairwise cosine
similarities between 𝐻1 and 𝐻2. We denote as 𝑆 the
similarity matrix between 𝐻1 and 𝐻2 (see Figure 3 as an
example 1) . Our hypothesis is that taking into account
information from all layers at once will provide a richer
and more comprehensive rapport of the nature of usage
similarities of a word between the two sentences. We
hypothesize that because many layers are known to cap-
ture relevant semantic information, we should consider
as many of them as possible together, as they may con-
tain more comprehensive information than a single layer
comparison approach.

In order to tap into this pool of similarity scores en-
coded within𝑆 (that contains 144 times more information
than a single layer) we use a measure called the condition
number. The condition number of a matrix, which was
already successfully applied in other domains in NLP
(Dubossarsky et al., 2020 [19]), provides us with a unified
measure that takes into account the many similarities
scores between the representations of 𝑤 of the pair 𝑠1
and 𝑠2 throughout the different layers.

Originally, the condition number of a matrix was
used to measure its sensitivity to perturbations, or small
changes, in its input. A large condition number indicates
that the matrix is ill-conditioned, meaning it is sensitive
to small perturbations. On the other hand, a small condi-
tion number indicates that the matrix is well-conditioned,
meaning that small changes will not affect it much.

In the setting of the WiC task, we interpret the condi-
tion number of a similarity matrix as associated with the
stability of meaning between the two sentences. Higher
similarity scores in 𝑆 overall indicate two similar word
usage and are expected to produce lower (and better) con-
dition number. On the other hand, less similar and more

1Corresponding record.
Italian: E siccome mi lascia gps, ecoscandaglio, tutta l’attrezzatura
[...] è un affare. Fatto. / La rivista nordamericana segnala come
presunti sospetti [...] per gli Affari Latinoamericani.
English: And since he leaves me gps, depth sounder, all the equip-
ment [...] it’s a bargain. Done. / The North American magazine
lists as alleged suspects [...] for Latin American affairs.
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Figure 1: Pairwise similarity matrix (rounded to two decimal places) between the 12 XLM-R embeddings of the target word 𝑤
in an arbitrary pair ⟨𝑠1, 𝑠2⟩ (the two original sentences appear in footnote 1 above).

varied similarity scores indicate more unrelated usages
resulting in a higher (and worse) condition number.

The condition number of a matrix is defined as the
multiplication of the matrix’s norm by the norm of its
reciprocal (i.e., the inverse of the matrix). The norm
could be Euclidean norm, Max norm, Frobenius norm, etc.
In our experiments, we calculate the condition number
(COND) of the similarity matrix 𝑆 using the Frobenius
norm as follows:

COND (𝑆) = ‖𝑆‖𝐹 · ‖𝑆−1‖𝐹
When we compute the condition number from the

similarity matrix 𝑆, we assess the degree of semantic
similarity 𝑠𝑖𝑚 of a word 𝑤 in each pair ⟨𝑠1, 𝑠2⟩ as 𝑠𝑖𝑚 =
COND(𝑆) 2.

Furthermore, we also investigate the similarity 𝑠𝑖𝑚
by considering only a subset of 𝑆. We test COND𝐹 ,
COND𝑀 , and COND𝐿 based on the similarities collected
from the first, middle, and last four layers of the model
𝑀 , respectively.

For the sake of comparison, we set as reference base-
lines the cosine similarity (CS) of the 𝑤 embeddings ex-
tracted from all the layers of the model 𝑀 individually,
meaning that we compute 𝑛 different CS scores as

CS𝑖(𝐻1[𝑖], 𝐻2[𝑖]) =
𝐻1[𝑖] ·𝐻2[𝑖]

‖𝐻1[𝑖]‖‖𝐻2[𝑖]‖
,

2For ease of interpretation, in our experiment, we utilized the -
COND metric. We chose to associate smaller condition numbers
with unrelated usages (annotated as 1), while larger numbers with
identical usages (annotated as 4).

with 𝑖 ∈ 1, ..., 𝑛. Additionally, we compute the co-
sine similarity CS𝐴𝑉 𝐺 between the word embeddings
obtained by averaging the last four embeddings of 𝐻1

and 𝐻2, respectively.
In line with the WiC-ITA guidelines, we compute the

Spearman correlation between the estimated similarity
scores and the gold answers. This serves as the evaluation
metric for Subtask 2.

In Subtask1, our binary predictions are derived from
the similarity scores obtained in Subtask 2. We employ a
threshold-based classifier, selecting the threshold value
that optimizes the F1 score on the set of sentence pairs
used as training set.

4. Experimental setup
In this task, we compared two different contextual-
ized multilingual models, namely mBERT (Devlin et al.,
2019 [2]), and XLM-R (Conneau et al., 2020 [20]). We
use the Transformers library by HuggingFace to extract
contextual word embeddings from mBERT and XLM-R
models without performing any fine-tuning stage (Wolf
et al., 2020 [21]). We use the base versions, with 12 layers
and 768 hidden dimensions: bert-base-multilingual-cased,
and xlm-roberta-base, respectively.

Given a target word 𝑤 and a pair ⟨𝑠1, 𝑠2⟩. The acqui-
sition of contextual embeddings is done by feeding the
models with the sentences 𝑠1 and 𝑠2 individually. For
every sentence, we extract the token embedding for the
target word 𝑤 from each layer of the model. Due to the

3
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Spearman Precision Recall F1 score Threshold
Measures Train Test Train Test Train Test Train Test Train

COND 0.520 0.519 0.741 0.734 0.742 0.735 0.741 0.734 -6973.703
COND𝑀 0.514 0.513 0.747 0.743 0.746 0.742 0.747 0.742 -1195.522
COND𝐿 0.493 0.493 0.733 0.730 0.736 0.732 0.734 0.730 -972.068

CS10 0.408 0.406 0.707 0.701 0.721 0.715 0.708 0.702 0.860
CS11 0.404 0.403 0.704 0.698 0.709 0.703 0.706 0.700 0.895

CS𝐴𝑉 𝐺 0.397 0.395 0.701 0.694 0.714 0.707 0.702 0.694 0.897
CS9 0.395 0.393 0.699 0.693 0.712 0.705 0.701 0.694 0.853
CS8 0.390 0.388 0.694 0.687 0.703 0.695 0.697 0.690 0.839
CS7 0.370 0.367 0.695 0.690 0.698 0.693 0.696 0.691 0.839
CS6 0.369 0.366 0.684 0.676 0.691 0.682 0.686 0.678 0.819
CS12 0.342 0.339 0.683 0.679 0.701 0.697 0.686 0.682 0.987
CS5 0.325 0.322 0.666 0.661 0.680 0.675 0.670 0.665 0.816
CS4 0.254 0.252 0.633 0.630 0.657 0.654 0.639 0.636 0.799

COND𝐹 0.226 0.228 0.638 0.634 0.652 0.648 0.643 0.638 -548.832
CS3 0.193 0.191 0.615 0.607 0.652 0.644 0.621 0.614 0.781
CS2 0.156 0.153 0.606 0.597 0.639 0.630 0.613 0.605 0.694
CS1 0.125 0.122 0.605 0.597 0.627 0.618 0.612 0.604 0.503

Table 1
Cross-validation analysis: average scores of WiC-ITA evaluation metrics across 100 different train-test splits. We report in bold
the best result for each metric and data set.

byte-pair input encoding scheme employed by BERT-like
models, some tokens may not correspond to complete
words but rather to word pieces. In such cases, when
a word is split into multiple tokens, we build a single
word embedding by averaging the embeddings of its con-
stituent word pieces.

Finally, to assess the graded word similarity in the
context of a pair of sentences, we calculate similarity
scores between the contextualized embeddings of the
target word under consideration (See Section 3).

5. Experimental results
In our submissions, we rely on XLM-R as it proved to
be more effective than mBERT. To maximize the perfor-
mance of our system, we leverage the available train
and dev set as a whole. In particular, we randomly gen-
erate 100 different train-test splits, with sizes of 2000
and 1305 respectively (equivalent to 60% and 40% of the
full dataset). We conduct cross-validation on these 100
splits to validate the use of COND for Subtask2. Addi-
tionally, we leverage cross-validation to determine the
optimal threshold for Subtask1, meaning that we rely on
the average of the 100 best thresholds obtained during
cross-validation. The average scores of Spearman cor-
relation, Precision, Recall, and F1 score are presented
in Table 1 for each tested measure. For Subtask1 and 2
and for both the L and XL setting, our three submissions
correspond to the top three measures based on the F1
score and Spearman correlation, respectively (i.e., COND,
COND𝑀 , COND𝐿).

For the sake of comparison, Table 2 presents the pre-
liminary performance achieved during the development
phase with both XLM-R and mBERT over the Dev and

Train sets.
Motivated by the superior results achieved during the

development phase, we relied on XLM-R for our final
submissions. In particular, we submit the predictions
obtained with COND, COND𝑀 , COND𝐻 . However, in
Table 2, it is worth noting that COND also emerged as the
leading measure for the mBERT model, proving its con-
sistency. Moreover, we note that for the WiC-ITA task,
the embeddings from the last layer of both XLM-R and
BERT, as well the embeddings derived by the aggregation
of the last four layers, are not as effective as those from
other layers. For instance, it is interesting to observe that
layer 8 seems to be effective for Subtask1.

In the final evaluation leaderboard for the WiC-ITA
task, we ranked 2nd for L-Subtask1, 1st for XL-Subtask1,
2nd for L-Subtask2, and 1st for XL-Subtask2. The leader-
board is reported in Table 3.

Our final results at WiC-ITa demonstrate that COND
effectively captures semantic features of word meanings
and can be successfully applied to tasks like WiC. Based
on our development results, we assert that COND con-
sistently outperforms the CS measure computed over
individual contextualized embeddings, for Subtask 1 and
2 in both in L and XL setting. This is particularly inter-
esting considering that CS is commonly utilized in NLP
tasks to capture contextual semantics in contextualized
embeddings.

Finally, COND𝑀 consistently achieves good results
by considering medium layers alone. These results are
in line with the findings of Coenen et al. (2019) [17],
and suggest that the middle layers of BERT-like models
contain valuable information for effectively representing
meaning. Therefore, future work should explore the ap-
plication of COND for WiC and other related NLP tasks
such as Lexical Semantic Change Detection (Montanelli
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Development Phase
Spearman Precision Recall F1 score

XLM-R mBERT XLM-R mBERT XLM-R mBERT XLM-R mBERT
Measures Dev Train Dev Train Dev Train Dev Train Dev Train Dev Train Dev Train Dev Train

COND 0.557 0.509 0.413 0.406 0.719 0.748 0.663 0.702 0.698 0.745 0.642 0.702 0.691 0.747 0.630 0.702
COND𝑀 0.543 0.501 0.365 0.390 0.725 0.759 0.635 0.696 0.710 0.752 0.618 0.702 0.705 0.755 0.606 0.699
COND𝐿 0.502 0.489 0.275 0.241 0.712 0.744 0.619 0.641 0.688 0.741 0.584 0.663 0.679 0.743 0.551 0.650

CS10 0.459 0.394 0.392 0.340 0.660 0.716 0.666 0.690 0.626 0.730 0.624 0.706 0.605 0.721 0.599 0.695
CS11 0.439 0.392 0.389 0.331 0.654 0.716 0.666 0.688 0.636 0.716 0.636 0.695 0.625 0.716 0.619 0.691

CS𝐴𝑉 𝐺 0.447 0.383 0.414 0.360 0.656 0.713 0.674 0.704 0.626 0.726 0.660 0.692 0.607 0.717 0.653 0.697
CS9 0.439 0.382 0.420 0.366 0.666 0.710 0.682 0.708 0.636 0.720 0.662 0.699 0.619 0.714 0.652 0.703
CS8 0.435 0.378 0.429 0.385 0.667 0.708 0.679 0.714 0.640 0.710 0.664 0.704 0.625 0.709 0.657 0.708
CS6 0.425 0.355 0.408 0.337 0.656 0.696 0.679 0.687 0.632 0.697 0.648 0.694 0.617 0.696 0.632 0.691
CS7 0.432 0.354 0.424 0.365 0.686 0.707 0.675 0.702 0.664 0.702 0.658 0.696 0.654 0.704 0.650 0.699
CS12 0.387 0.329 0.405 0.353 0.642 0.696 0.670 0.680 0.614 0.710 0.648 0.683 0.594 0.701 0.636 0.682
CS5 0.383 0.312 0.377 0.304 0.643 0.681 0.652 0.674 0.612 0.691 0.622 0.683 0.590 0.685 0.602 0.678
CS4 0.324 0.241 0.329 0.256 0.613 0.648 0.621 0.640 0.578 0.667 0.586 0.661 0.543 0.656 0.553 0.648

COND𝐹 0.180 0.233 0.286 0.245 0.591 0.654 0.617 0.669 0.570 0.661 0.598 0.678 0.544 0.658 0.581 0.673
CS3 0.266 0.182 0.281 0.224 0.602 0.629 0.606 0.631 0.562 0.664 0.578 0.650 0.514 0.640 0.548 0.639
CS2 0.188 0.152 0.212 0.183 0.578 0.618 0.582 0.631 0.552 0.650 0.558 0.653 0.511 0.629 0.523 0.640
CS1 0.138 0.125 0.157 0.166 0.555 0.625 0.591 0.627 0.540 0.636 0.564 0.654 0.506 0.630 0.529 0.637

Table 2
Preliminary performance achieved during the development phase with both XLM-R and mBERT over the Dev and Train sets.
We report in bold the best result for each metric, model, and data set.

Evaluation Phase
Subtask1 Subtask2

Teams Run L-WiC XL-WiC L-WiC XL-WiC
BERT 4EVER run1 0.530 0.490 0.340 0.160
BERT 4EVER run2 0.560 0.520 0.300 0.150
BERT 4EVER run3 0.560 0.490 - -

LG LG 0.730 - 0.490 -
The Time-Embedding Travelers COND𝑀 0.660 0.720 0.520 0.550
The Time-Embedding Travelers COND𝐿 0.620 0.740 0.490 0.530
The Time-Embedding Travelers COND 0.670 0.730 0.550 0.540

extremITA camoscio lora 0.510 0.540 - -
extremITA it5 0.610 0.620 - -
Baseline - 0.590 0.560 0.570 0.410

Table 3
Final evaluation leaderboard for the WiC-ITA task. The best results are highlighted in bold. Our rankings are as follows: 2nd

for L-Subtask1, 1st for XL-Subtask1, 2nd for L-Subtask2, and 1st for XL-Subtask2.

and Periti, 2023 [4]; Tahmasebi et al., 2023 [22]).
Additionally, we observe that the lower layers of XLM-

R struggle to distinguish between different meanings
when considered individually. However, when incorpo-
rated into the standard COND framework, their inclusion
leads to improved results compared to COND𝑀 . This
suggests that our original intuition was correct and that
the embedding layers should be considered as a whole,
rather than solely focusing on the last layers.

6. Conclusion
Our experiments for the WiC-ITA shared task ranked 2nd

for L-Subtask1, 1st for XL-Subtask1, 2nd for L-Subtask2,
and 1st for XL-Subtask2. In our submissions, we use the
condition number of the cosine similarity matrix between
XLM-R embeddings extracted from different layers. Our
results support our initial hypothesis that leveraging all
the information provided by the pre-trained model can

significantly enhance performance on mainstream tasks
such as WiC. Specifically, our research suggests that the
embedding layers should be considered as a whole, rather
than solely focusing on the last layers of the model, which
is the conventional practice. This motivates further ex-
ploration of alternative measures that can effectively rep-
resent word meanings by considering sets of embeddings
as input, rather than just individual vectors. Thus, we
plan to integrate the condition number into our recently
developed approach for Semantic Change Detection [23].
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