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Abstract
Integer Programming (IP) is an essential class of combinatorial optimization problems (COPs). Its inherent NP-hardness has
fostered considerable efforts towards the development of heuristic strategies. An emerging approach involves leveraging
data-driven methods to automatically learn these heuristics. For example, using deep (reinforcement) learning to recurrently
reoptimize an initial solution with Large Neighborhood Search (LNS) has demonstrated exceptional performance across
numerous applications. A pivotal challenge within LNS lies in identifying an optimal subset of variables for reoptimization
at each stage. Existing methods typically learn a policy to select a subset, either by maintaining a fixed cardinality or
by decomposing the subset into independent binary decisions for each variable. However, such strategies overlook the
modeling of LNS’s sequential processes and fail to explore the correlations inherent in variable selection. To overcome
these shortcomings, we introduce IPGPT, an innovative model that reimagines policy learning as a sequence-to-multi-label
classification (MLC) problem. Our approach uniquely integrates a tailored Decision Transformer encoder, incorporating a
causal transformer (GPT2) to capture the sequential nature of LNS. Additionally, we employ an MLC decoder with contrastive
learning to exploit the correlations in variable selection. Our extensive experiments confirm that IPGPT significantly surpasses
the performance of current state-of-the-art baselines and exhibits excellent generalization to larger instances.
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1. Introduction
IP has found applications in production planning [1],
scheduling [2], scientific discovery [3], and telecommu-
nications networks [4], among many others. It is well-
known that IP is NP-complete [5] and many efforts have
been devoted to designing effective heuristics to find
near-optimal solutions [6]. Historically, such algorithms
were designed largely manually, requiring a careful un-
derstanding of the underlying structure within specific
classes of optimization problems.

Due to the recent success of deep learning (DL) and
reinforcement learning (RL), there has been an increas-
ing interest in automatically learning heuristics for COPs
from training data [7]. Existing works often leverage
machine learning (ML) to output solutions directly from
input instances, configure hyperparameters of COP algo-
rithms, or learn a local decision policy for search frame-
works such as branch&bound (B&B), local branching
(LB), or LNS. Among them, we are particularly interested
in learning to iteratively reoptimize an initial solution
with LNS [8, 9, 10, 11]. These approaches are attractive
because we can leverage existing state-of-the-art com-
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mercial IP solvers such as Gurobi or SCIP as a generic
black-box subroutine and thus benefits from the cutting-
edge technologies of such commercial IP solvers.

In this paper, we focus on boosting the performance of
LNS, though our method can also be applied to boost the
performance of other local search algorithms such as LB.
A key challenge of LNS is to select a promising variable
subset to reoptimize based on the current solution. Since
the selection choice is combinatorial, finding an optimal
subset is also computationally hard. Song et al. [9] learn
to select fixed, predefined variable subsets with imitation
learning and RL. Wu et al. [8] learn to select arbitrary
variable subsets with RL by factorizing the selection of a
variable subset into elementary selections on each vari-
able separately. Similarly, Sonnerat et al. [10] learn to
predict the probability of selecting a variable indepen-
dently of other variables using imitation learning and
Nair et al. [11] use RL to learn a policy that selects one
variable at a time. Nevertheless, all of these works miss
modeling the sequential processes of LNS and also do not
exploit correlations of variable selection 1. To address
these limitations, we propose to model the policy learn-
ing as a sequence to a multi-label classification problem,
which jointly models the selection of variables as well as
the sequential processes of LNS.

Our contributions are threefold: (1) we give a new an-

1We have reserved an in-depth discussion of the related work for
the appendix due to space constraints.
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gle of sequence to multi-label classification for learning
an effective local decision policy for LNS; (2) we materi-
alize this idea by providing a novel model to seamlessly
integrate a customized decision transformer encoder to
model the sequential processes of LNS and an MLC de-
coder with contrastive learning to exploit correlations
of variable selection; (3) we conduct extensive experi-
ments on various benchmarks and the results show that
our model significantly outperforms state-of-the-art base-
lines.

2. Preliminaries

2.1. Integer Program
An integer program (IP) is a problem of optimiz-
ing a linear function over points in a polyhedral set:
argmin𝑥{𝜇𝑇𝑥|𝑊𝑥 ≤ 𝑏;𝑥 ≥ 0;𝑥 ∈ Z𝑛}, where
𝑥 ∈ Z𝑛 is a vector of 𝑛 decision variables; 𝜇 ∈ R𝑛

denotes the vector of objective coefficients; the incidence
matrix 𝑊 ∈ R𝑚×𝑛 and vector 𝑏 ∈ R𝑚 together define
𝑚 linear constraints.

2.2. LNS and Its Markov Decision Process
Formulation

Given an initial assignment of values to the decision
variables in an IP instance, LNS iteratively refines this
assignment by selecting a subset of decision variables,
relaxing their values, and solving a subproblem that aims
to optimize the objective function while respecting the
instance’s constraints. LNS aims to explore a complex
solution neighborhood and gradually improve its cur-
rent solution until a certain termination condition is
met [12]. A key challenge of LNS is how to define a
good solution neighborhood, namely, one needs to de-
cide which variable subset to reoptimize given the current
solution. Obviously, such a decision problem is combina-
torial, and many works devote to constructing effective
heuristics for it [13, 14, 15]. In this work, we are partic-
ularly interested in the recent trend of learning-based
approaches, where data-driven methods are applied to
learn the heuristics automatically [9, 8, 10]. To this end,
the LNS framework can be formulated as a Markov Deci-
sion Process (MDP) (𝒮,𝒜, 𝑃,𝑅):

• 𝒮 is a set of states. A state 𝑠𝑡 ∈ 𝑆 describes
the current status of the LNS process in step 𝑡,
which normally includes the static IP instance
information (e.g., variables, constraints, and ob-
jectives) and the dynamic solving statistics (e.g.,
the incumbent solution);

• 𝒜 is a set of all candidate variable subsets for
reoptimization. A variable subset 𝑎𝑡 ∈ 𝒜 is also

called an action of an agent that is executed in
step 𝑡;

• 𝑃 (𝑠𝑡, 𝑎𝑡) is the transition function to return the
next state. Let 𝑥𝑡 be the solution with state 𝑠𝑡, a
smaller sub-IP is first generated by keeping the
values of non-selected variables in 𝑥𝑡 and reopti-
mizing the remainder, and then the next state 𝑠𝑡+1

is obtained by updating 𝑠𝑡 with the new solution
to the sub-IP: 𝑥𝑡+1 = argmin𝑥{𝜇𝑇𝑥|𝑊𝑥 ≤
𝑏;𝑥 ≥ 0;𝑥 ∈ Z𝑛;𝑥𝑖 = 𝑥𝑖

𝑡, ∀𝑥𝑖 ̸∈ 𝑎𝑡};
• 𝑅(𝑠𝑡, 𝑎𝑡) is the reward function to return the

change of objective values, which is defined as
𝑟𝑡 = 𝑅(𝑠𝑡, 𝑎𝑡) = 𝜇𝑇 (𝑥𝑡 − 𝑥𝑡+1). Let 𝑇 be the
step limit, the cumulative rewards from step 𝑡 of
an episode is defined as𝑅𝑡 =

∑︀𝑇
𝑘=𝑡 𝛾

𝑘−𝑡𝑟𝑘 with
a discount factor 𝛾 ∈ [0, 1].

A policy is a (potentially probabilistic) mapping 𝜋 :
𝒮 → 𝒜. The goal of RL-based algorithms for solving IPs
is to find a policy function to maximize the expected cu-
mulative rewardE[𝑅1] over all episodes, i.e., the expected
improvement over initial solutions. However, existing
RL-based algorithms for IP solving train a policy by either
temporal difference (TD) learning [16], policy gradient
[17], or behavior cloning [18], all of which miss modeling
sequential processes of LNS explicitly. Furthermore, RL-
based algorithms may suffer from various issues, such as
the need for bootstrapping to propagate returns in TD-
learning can cause stability problems, the discounting
future rewards can induce undesirable short-sighted be-
haviors, policy gradient is known to be sample inefficient,
and behavior cloning can suffer from cascading errors
[19, 20, 21]. To circumvent these disadvantages, we pro-
pose to learn a policy with decision transformers, which
seeks to benefit from modeling sequential processes of
LNS and better generalization.

2.3. Decision Transformer
Decision transformer (DT) [21] abstracts the decision-
making process in RL as a sequence modeling prob-
lem and attempts to learn a return-conditioned state-
action mapping. The return-conditionality means that
given a history of return-state-action tokens, such that
the first token represents the desired return at the
current state, the DT predicts the action required to
achieve this desired return. In this paper, we fol-
low the convention of the original DT and define re-
turn, 𝑔𝑡, as the non-discounted rewards-to-go: 𝑔𝑡 =∑︀𝑇

𝑡 𝑟𝑡. DT takes as input a sequence of three-tokens:
(⟨𝑔𝑡−𝐾 , 𝑠𝑡−𝐾 , 𝑎𝑡−𝐾⟩, · · · , ⟨𝑔𝑡, 𝑠𝑡, 𝑎𝑡⟩), where 𝐾 ≤ 𝑇
is the context length. Each token is then encoded into
an embedding and added by a positional encoding. Let
(⟨𝑧𝑔𝑡−𝐾 , 𝑧𝑠𝑡−𝐾 , 𝑧𝑎𝑡−𝐾 ⟩, · · · , ⟨𝑧𝑔𝑡 , 𝑧𝑠𝑡 , 𝑧𝑎𝑡⟩) be the cor-
responding sequence of embeddings, and it is fed into a



causal transformer to produce another sequence of em-
beddings (⟨𝑧ℎ𝑔𝑡−𝐾

, 𝑧ℎ𝑠𝑡−𝐾
, 𝑧ℎ𝑎𝑡−𝐾

⟩, · · · , ⟨𝑧ℎ𝑔𝑡 , 𝑧
ℎ
𝑠𝑡 , 𝑧

ℎ
𝑎𝑡
⟩).

A decoder takes as input 𝑧ℎ𝑠𝑡 and outputs �̂�𝑡. During
training, a suitable loss function is applied to penalize
the difference between the prediction �̂�𝑡 and label 𝑎𝑡.
During inference, after specifying a target return based
on desired performance and the environment starting
state, DT generates actions autoregressively. The actions
are executed and the target return is subtracted by the
achieved rewards to obtain the next states. The process
of generating actions and applying them to obtain the
next return-to-go and state is repeated until episode ter-
mination.

3. Solving IPs with Sequence to
Contrastive Multi-Label
Classification

Instead of learning to select fixed, predefined variable
subsets [9], Wu et al. [8] factorizes the combinatorial ac-
tion space 𝒜 into elementary actions on each dimension
(i.e. variables), where 𝑎𝑖

𝑡 ∈ {1, 0} denotes the elemen-
tary action of whether selecting 𝑥𝑖 for reoptimization
in step 𝑡, and 𝑎𝑖

𝑡 is 1 if 𝑥𝑖 is selected and 0 otherwise.
Therefore, any action can be expressed as 𝑎𝑡 = ∪𝑛

𝑖=1𝑎
𝑖
𝑡

and the action selection problem can be converted into 𝑛
separated binary classification problems. The policy for
action selection is factorized by

𝜋(𝑎𝑡|𝑠𝑡) =
𝑛∏︁

𝑖=1

𝜋𝑖(𝑎𝑖
𝑡|𝑠𝑡), (1)

which expresses the probability of selecting an action
as the product of probabilities of selecting its elements.
However, such an action space factorization limits the
class of policies that can be learned and it also fails to
explore the correlations between elementary actions. To
address these limitations, we propose to model the policy
learning as a sequence to multi-label classification problem,
which jointly models the selection of multiple elementary
actions as well as the sequential processes of LNS, i.e.,

𝜋(𝑎𝑡|𝑠𝑡) = 𝑝𝜃(𝑎𝑡|ℎ𝜑(𝑄(𝑡,𝐾))), (2)

where 𝑄(𝑡,𝐾) denotes the function to return the last
𝐾 sequence of return-state-action tokens from steps 𝑡−
𝐾 to 𝑡, i.e., (⟨𝑔𝑡−𝐾 , 𝑠𝑡−𝐾 , 𝑎𝑡−𝐾⟩, · · · , ⟨𝑔𝑡, 𝑠𝑡, ·⟩); ℎ𝜑(·)
denotes the sequence encoder parameterized by 𝜑(NN);
and the MLC decoder parameterized by 𝜃(NN) takes as
input state embedding 𝑧ℎ𝑠𝑡 produced by ℎ𝜑 and outputs
action distribution 𝑝𝜃(𝑎𝑡|𝑧ℎ𝑠𝑡). Effective implementations
of the sequence encoder and MLC decoder are crucial to
this work.

3.1. A Novel Model IPGPT for Solving IPs
In this section, we propose a novel model IPGPT for
the problem given in equation (2) based on the causal
transformer and contrastive learning.

Figure 1: The architecture of our model IPGPT: it consists of
several token encoders to produce latent token embeddings,
a causal transformer to capture dependence between token
embeddings, and a contrastive MLC decoder to exploit corre-
lations between label categories. Here we use a small IP with
4 variables and 3 constraints to show the full pipeline of our
model. The problem is first translated into a factor graph 𝐺,
and 𝐺 is associated with dynamic factor-node features that
describe the states of MDP and are encoded into state embed-
dings in different steps. Similarly, returns 𝑔𝑡 and actions 𝑎𝑡 are
also encoded into latent embeddings. We use a GCN as state
encoder and two simple MLPs as return and action encoders
respectively. Each token embedding is further added with its
relative positional encoding. The sequence of embeddings is
fed into the causal transformer to produce another sequence
of embeddings. Finally, the contrastive MLC decoder takes as
inputs the state embeddings and outputs action predictions.

3.1.1. Factor Graph Representation

An IP instance can be represented by a factor graph [22]
which is a bipartitle grah 𝒢 = (𝒱, 𝒞, ℰ) consistring
of variable-nodes 𝒱 = {𝑣1, · · · , 𝑣𝑛} and factor-nodes
𝒞 = {𝑐1, · · · , 𝑐𝑚}. Variable nodes correspond to the
variables and factor nodes correspond to the constraints
in the IP. An edge 𝑒𝑖𝑗 ∈ ℰ between 𝑣𝑖 and 𝑐𝑗 is estab-
lished only if the 𝑗-th constraint contains the 𝑖-th variable.
The variable nodes are associated with a feature matrix
𝑉 ∈ Z𝑛×𝑑𝑣 , where 𝑑𝑣 is the number of features for
each variable node. The features of each variable-node
𝑣𝑖 include two parts: (1) static features: a one-hot vector
indicates the node type and the objective coefficient 𝜇𝑖

of 𝑥𝑖; (2) dynamic features: the current solution of 𝑥𝑖

in step 𝑡 and the incumbent solution of 𝑥𝑖. Note that



the dynamic features are used to describe the states of
MDP in different steps. The factor nodes are also associ-
ated with a feature matrix 𝐶 ∈ Z𝑚×𝑑𝑐 , where 𝑑𝑐 is the
number of features for each factor node. The features of
each factor-node 𝑐𝑖 only include static features: a one-
hot vector indicates the node type and the value 𝑏𝑖 at the
right-hand-side (RHS) of the 𝑖-th constraint. Finally, the
weight matrix of edges is exactly the incidence matrix.

3.1.2. Model Architecture

Fig. 1 gives the overall architecture of our IPGPT and it
consists of a customized DT encoder and a contrastive
MLC decoder. Our encoder is only composed of sev-
eral customized token encoders and a causal transformer
without the linear decoder of DT [21].

Token Encoders: Each token is first encoded into
an embedding and added by a positional encoding. For
return and action tokens, two simple multilayer percep-
trons (MLPs) are used as return and action encoders re-
spectively. Positional encodings are produced by another
simple MLP which takes as input a single scalar 𝑡. Each
state token 𝑠𝑡 is represented by a factor graph as intro-
duced in section 3.1.1, and we use a graph convolutional
network (GCN) [23] as the state encoder. A single graph
convolution layer is detailed below

𝐶(𝑘+1) = 𝐶(𝑘) + 𝜎
(︁

LN
(︁
𝑊𝑉 (𝑘)𝐻(𝑘)

𝑣

)︁)︁
,

𝑉 (𝑘+1) = 𝑉 (𝑘) + 𝜎
(︁

LN
(︁
𝑊𝑇𝐶(𝑘+1)𝐻(𝑘)

𝑐

)︁)︁
,

(3)

where 𝐻(𝑘)
𝑣 , 𝐻

(𝑘)
𝑐 ∈ R𝑑ℎ×𝑑ℎ are trainable weight matri-

ces in the 𝑘-th layer; 𝑉 (𝑘) ∈ R𝑛×𝑑ℎ and 𝐶(𝑘) ∈ R𝑚×𝑑ℎ

are embeddings for variable-nodes and factor-nodes re-
spectively in the 𝑘-th layer; LN and 𝜎(·) denote layer
normalization and Tanh activation function respectively.
The initial embeddings 𝑉 (0) and 𝐶(0) are linear projec-
tions of the raw feature matrices 𝑉 and 𝐶 respectively.
In this paper, all MLP encoders only have two layers, and
the embeddings’ dimensions 𝑑ℎ are set to be 128; the
GCN encoder consists of two convolution layers and a
mean pooling layer.

Causal Transformer: Causal transformer [24] is an
architecture to efficiently model sequences that consist
of stacked self-attention layers with residual connections.
In our model, each layer receives a sequence of 𝐿 = 3𝐾
token embeddings {𝑧𝑖}𝐿𝑖=1, and outputs 𝐿 embeddings
{𝑧ℎ𝑖 }𝐿𝑖=1, preserving the input dimensions. Specifically,
each token embedding 𝑧𝑖 is mapped to a key 𝑧𝑘𝑖 , a query
𝑧𝑞𝑖 , and a value 𝑧𝑣𝑖 via linear functions, and the output
𝑧ℎ𝑖 is given by

𝑧ℎ𝑖 =
𝑖∑︁

𝑗=1

𝛼𝑖𝑗𝑧
𝑣
𝑗 , 𝛼𝑖𝑗 =

exp(𝑧𝑞𝑖 · 𝑧𝑘𝑗 )∑︀𝑖
𝑗′=1 exp(𝑧

𝑞
𝑖 · 𝑧𝑘𝑗′)

. (4)

Figure 2: The architecture of our contrastive MLC decoder.
Firstly, a GCN takes as input an IP instance and learns em-
beddings for label categories respectively, and labels within
the same category share the same embedding. Secondly, we
use the state embedding in step 𝑡 as an input feature whose
inner products with label embeddings are used to produce
prediction �̂�𝑡. Lastly, a contrastive loss is designed to pull to-
gether the feature embedding and positive label embeddings,
while separating the feature embedding from the negative
label embeddings. Note that a label embedding is positive
only if its label is 1. An example with label [1, 0, 0, 1] is shown.

In this work, we adopt the causal transformer GPT2 [25]
to learn and reason about sequences and we defer the
other architecture details to the original paper.

Contrastive MLC Decoder: Recall that an elemen-
tary action 𝑎𝑖

𝑡 ∈ {0, 1} (a.k.a. a label) denotes whether
or not to select variable 𝑥𝑖 for reoptimization in step 𝑡.
A label vector 𝑎𝑡 = ∪𝑛

𝑖=1𝑎
𝑖
𝑡 ∈ {0, 1}𝑛 denotes the se-

lected action given state 𝑠𝑡. Different from eq. (1) which
approximates 𝜋(𝑎𝑡|𝑠𝑡) with 𝑛 separated binary classi-
fication problems, we propose to approximate 𝜋(𝑎𝑡|𝑠𝑡)
with an MLC decoder that finds a mapping from 𝑧ℎ𝑠𝑡
to 𝑎𝑡, where 𝑧ℎ𝑠𝑡 is a state embedding generated by the
causal transformer and served as an input feature for our
MLC decoder. A key aspect of learning a policy with an
MLC module is that we can exploit the correlations between
elementary actions, which is missing in those existing ML-
boosted IP solvers [8, 9, 10].

We propose to exploit category-level label correlation
with contrastive learning based on the MLC model GM-
VAE [26]. GMVAE assumes that the number of labels
is fixed and label embeddings are shared across all sam-
ples. This is not applicable to our case since different
instances may have a different number of decision vari-
ables, i.e., actions from different instances may have dif-
ferent cardinalities. Alternatively, we learn category-
level label embeddings for each IP instance with a shared
GCN, and the embeddings are only shared across sam-
ples within each instance. Fig. 2 gives the architecture
of our MLC decoder. We denote 𝑎𝑖 the 𝑖-th category of
labels {𝑎𝑖

𝑗}𝑡𝑗=𝑡−𝐾 collected from steps [𝑡 − 𝐾, 𝑡]. Our
idea is as follows: (1) we learn an embedding 𝑧𝑙𝑎𝑖 for



each label category 𝑎𝑖 such that labels within the same
category share the same embedding. Since the number
of label categories is exactly the number of variables
in an IP instance, we use the GCN described in equa-
tions (3) to take as input an IP instance and output node
embeddings, and we use the variable-node embeddings
as label category embeddings respectively; (2) we use the
state embedding 𝑧ℎ𝑠𝑡 of each LNS step as an input feature
whose inner products with label embeddings correspond
to feature-label similarity and can be used for prediction;
(3) we use contrastive learning to capture correlations
between label categories by pulling similar categories’
embeddings together. Sepcifically, let 𝐼 ≡ {1, · · · , 𝑛}
and we define the positive label set of 𝑎𝑡 as 𝑃 (𝑎𝑡) ≡
{𝑖 ∈ 𝐼|𝑎𝑖

𝑡 = 1}. Given a sequence of return-state-action
tokens (⟨𝑔𝑡−𝐾 , 𝑠𝑡−𝐾 , 𝑎𝑡−𝐾⟩, · · · , ⟨𝑔𝑡, 𝑠𝑡, 𝑎𝑡⟩), our de-
coder is designed to optimize the following contrastive
loss function:

ℒ𝐶𝐿 =
1

𝐾

𝑡∑︁
𝑗=𝑡−𝐾

1

|𝑃 (𝑎𝑗)|
∑︁

𝑖∈𝑃 (𝑎𝑗)

− log
𝑧ℎ𝑠𝑗 · 𝑧𝑙𝑎𝑖∑︀

𝑖′∈𝐼 𝑧
ℎ
𝑠𝑗 · 𝑧𝑙

𝑎𝑖′
,

(5)
where state embeddings 𝑧ℎ𝑠𝑗 for 𝑗 ∈ [𝑡−𝐾, 𝑡] are gener-
ated by the causal transformer and are computed as in
eq. (4).

For example, if in most of the actions 𝑎𝑡, labels 𝑎𝑖
𝑡

and 𝑎𝑗
𝑡 often appear together (i.e., they both equal 1),

contrastive learning will implicitly pull their embeddings
together. In other words, if two labels do co-appear often,
their label embeddings would become similar. On the
other hand, if they never co-occur or only co-appear
occasionally, their connections are not significant and
our decoder will not optimize for their similarity.

3.2. Training Algorithm
Our model will be trained with supervised learning.
Given a set of training IP instances, we first collect a
dataset of sequences of return-state-action tokens that
are generated by the MDP with some expert policy: 𝒟 =
{(⟨𝑔𝑡−𝐾 , 𝑠𝑡−𝐾 , 𝑎𝑡−𝐾⟩𝑗 , · · · , ⟨𝑔𝑡, 𝑠𝑡, 𝑎𝑡⟩𝑗)}𝑁𝑗=1, where
𝐾 ≤ 𝑇 is the length of each sequence. For each sequence
𝑞 ∈ 𝒟, our model will take as input 𝑞 and generate a
set of action predictions {�̂�𝑗}𝑡𝑗=𝑡−𝐾 , and we will also
collect the set of labels from 𝑞, {𝑎𝑗}𝑡𝑗=𝑡−𝐾 . A supervised
cross-entropy loss for each sequence is given by

ℒ𝐶𝐸 =
1

𝐾

𝑡∑︁
𝑗=𝑡−𝐾

1

𝑛

𝑛∑︁
𝑖=1

𝑎𝑖
𝑗 log �̂�

𝑖
𝑗+(1−𝑎𝑖

𝑗) log(1−�̂�𝑖
𝑗).

(6)
The final objective function to minimize is given by

ℒ = ℒ𝐶𝐿 − 𝛽ℒ𝐶𝐸 , (7)

where 𝛽 is a trade-off weight. The model is trained
with Adam [27] and optimized with ℒ. We sample mini-
batches of sequence length 𝐾 from the dataset 𝒟 and
the model is trained with GPUs in parallel. However,
similar to DT, our model will generate action predictions
autoregressively during testing. We refer the reader to
section 2.3 for more details.

4. Experiments
We conduct experiments on four diverse NP-hard COP
benchmarks, including minimum vertex cover (MVC),
maximum cut (MC), set covering (SC), and combinatorial
auction (CA). We follow the experimental settings of [9]
and [8].

4.1. Datasets and Experimental Setup
Datasets. MVC and MC are graph optimization prob-
lems; SC and CA are general IPs. For MVC, we use the
Erdős-Rényi (ER) model [28] to generate random graphs
with 1000 nodes and edge probability 0.15. For MC, we
use the Barabasi-Albert (BA) model [29] to generate ran-
dom graphs with 500 nodes and an average degree of 4.
For SC, we generate instances with matrices having 5000
rows and 1000 columns following the procedure in [30],
where each entry 𝐵𝑖𝑗 ∈ {0, 1} represents whether the
𝑖-th element in the universe belongs to the 𝑗-th set. For
CA, we use the Combinatorial Auction Test Suit (CATS)
[31] with arbitrary relationships to generate instances
with 2000 items and 4000 bids. For each problem type, we
generate 100, 20, and 50 instances for training, validation,
and testing, respectively. For each training instance, we
use LNS with a random policy to run on it for 100 steps
and set a time limit of 2s for solving the sub-IP in each
step with Gurobi. We run it 30 times and collect the tra-
jectory with the best objective values for training IPGPT,
and we randomly sample 20 sequences of return-state-
action tokens with length 𝐾 = 25 from each trajectory.
Therefore, our dataset for training IPGPT includes 2000
sequences of three tokens.

Initialization. LNS starts with a feasible initial solu-
tion. For MVC, MAXCUT, SC, and CATS, we initialize a
feasible solution by including all vertices in the cover set,
randomly partitioning all vertices into two complemen-
tary sets, including all sets in the set cover, and accepting
no bids, respectively. The initialization process does not
incur additional computational costs in our experiments.

Implementation and Hyperparameters. Return,
action, and position encoders are all simple MLPs with
2 layers and 128 hidden neurons. The state encoder is a
GCN with 2 convolution layers and a mean pooling layer.
We use the GPT2 as our casual transformer. Dimensions
of all hidden embeddings are set to 128. We set the batch



Methods
MVC-1000 MC-500 SC-1000 CA-2000

Obj.±Std.% Gap% Obj.±Std.% Gap% Obj.±Std.% Gap% Obj.±Std.% Gap%
Gurobi 482.2± 0.8 5.45 −863.9± 3.8 3.66 554.9± 8.3 3.10 −111668± 2.0 2.50
FT-LNS 470.0± 0.4 2.80 −866.2± 1.7 3.41 564.1± 8.4 4.81 −110041± 1.6 3.92
RL-LNS 469.0± 0.5 2.57 −878.0± 1.6 2.10 551.9± 8.3 2.55 −111787± 2.6 2.40

LB-SRMRL 472.4± 0.7 3.30 −859.1± 2.3 4.20 560.9± 7.3 4.22 −110741± 3.1 3.31
IPGPT 457.1± 0.8 0 −896.8± 1.4 0 538.2± 5.3 0 −114535± 1.8 0

Table 1
A comparison of IPGPT and the state-of-the-art baselines on 4 diverse benchmarks. The time limit is set to 200s. Each result is
averaged over 5 runs. The gap is the ratio of objective difference w.r.t. the best result. The best results are shown in bold.

Methods
MVC-2000 MC-1000 SC-2000 CA-4000

Obj.±Std.% Gap% Obj.±Std.% Gap% Obj.±Std.% Gap% Obj.±Std.% Gap%
Gurobi 392.5± 1.3 7.50 −1784.7± 1.0 4.23 295.7± 7.9 1.86 −212890± 1.8 4.90
FT-LNS 390.5± 1.1 6.96 −1767.8± 1.0 5.14 303.3± 8.0 4.48 −211324± 2.1 5.60
RL-LNS 375.8± 2.1 2.93 −1831.0± 0.9 1.74 295.4± 7.8 1.76 −216650± 1.7 3.23

LB-SRMRL 395.2± 1.9 8.24 −1765.6± 1.5 5.25 301.4± 7.2 3.82 −209420± 2.1 6.45
IPGPT 365.1± 1.1 0 −1863.5± 0.8 0 290.3± 7.1 0 −223870± 1.7 0

Table 2
Generalization to larger instances with a double number of variables. The time limit is set to 500s.

size and the number of training epochs to 128 and 100,
respectively, for all experiments. Our model was imple-
mented with the Pytorch deep learning framework and
the whole model was trained using the Adam optimizer
[27] with a learning rate of 0.0001 and a weight decay
ratio of 0.01 in an end-to-end fashion. All experiments
were carried out on a machine with a 4.2 GHz quad-core
Intel i7 CPU, 16 GB RAM, and an Nvidia RTX 3090 24GB
GPU card. Further implementation details can be found
in the appendix.

Baselines. We compare our method with four base-
lines: (1) Gurobi (version 9.5) with default settings: a
leading state-of-the-art IP solver; (2) FT-LNS: the best-
performing LNS version by [9], which applies imitation
learning to mimic the best demonstrations; (3) RL-LNS:
the current state-of-the-art learning-based LNS method
for solving IPs [8], which uses deep RL to learn LNS policy
via action factorization to represent all potential variable
subsets; (4) LB-SRMRL: the best-performing LB version
by [32], which uses a regression model and RL to learn
a hybrid model to predict and adapt the neighborhood
size for the LB heuristic. We follow the default settings
of these learning-based baselines and further fine-tune
them on our datasets to get the best hyperparameters.
For more details of the settings of these baselines, we
refer the reader to their original papers.

Evaluation Metrics. The performances of different
algorithms are compared in two measures: (1) the objec-

tive of solutions returned by different algorithms within
a time limit; (2) the gap between solutions, namely, the
ratio of objective difference w.r.t. the best result.

4.2. Experimental Results
A comparison of IPGPT and other state-of-the-art base-
lines on 4 diverse benchmarks is given in Table 6. All
learning-based algorithms, including our IPGPT, call
Gurobi to solve sub-IPs with a time limit of 2s at every
step. We can observe that LB-SRMRL is not comparable
to other algorithms. RL-LNS remains the most competi-
tive baseline and consistently outperforms both Gurobi
and FT-LNS. Our IPGPT consistently outperforms RL-
LNS and Gurobi on all benchmarks by averaged ratios
of 2.41% and 3.68%, respectively. Overall, these results
suggest that our approach can reliably offer substantial
improvements over state-of-the-art solvers.

We also compare the generalization ability of all al-
gorithms to solve large IPs. To this end, we generate
two sets of testing instances following the same settings
as in section 4.1 but double and quadruple the number
of variables respectively. Note that we only generate
50 testing instances for each problem type without con-
sidering training and validation. We test all (trained)
models on these new instances and summarize results
in Tables 7 and 3. We can observe that the advantage
of our IPGPT still preserves on larger problem instances

Methods
MVC-4000 MC-2000 SC-4000 CA-8000

Obj.±Std.% Gap% Obj.±Std.% Gap% Obj.±Std.% Gap% Obj.±Std.% Gap%
Gurobi 278.3± 0.9 3.34 −3574.4± 0.8 3.42 175.4± 7.0 1.74 −422291± 1.2 3.61
FT-LNS 279.2± 1.7 3.68 −3526.2± 0.8 4.72 175.2± 6.6 1.62 −431234± 0.9 1.57
RL-LNS 273.6± 2.1 1.60 −3612.5± 0.7 2.39 172.4± 7.1 0 −432980± 0.7 1.17

LB-SRMRL 275.6± 2.2 2.34 −3505.1± 0.9 5.29 177.1± 7.2 2.73 −415631± 0.5 5.13
IPGPT 269.3± 1.9 0 −3700.9± 1.0 0 173.6± 6.1 0.70 −438091± 0.6 0

Table 3
Generalization to larger instances with a quadruple number of variables. The time limit is set to 500s.



(a) MVC-1000 (b) MC-500

(c) SC-1000 (d) CA-2000

Figure 3: Anytime Performance Comparison of Gurobi, FT-LNS, RL-LNS, LB-SRMRL, and IPGPT on Four IP benchmarks.
Runtimes are up to 30 minutes.

compared to baselines. Specifically, Table 7 shows that
IPGPT still consistently outperforms all baselines on the
4 benchmarks when the instance size is doubled; IPGPT
outperforms RL-LNS and Gurobi by averaged ratios of
2.06% and 4.56% respectively. On the other hand, Table 3
shows that IPGPT outperforms all baselines on 3 out of 4
benchmarks when the instance size is quadrupled; IPGPT
outperforms RL-LNS and Gurobi by averaged ratios of
1.12% and 3.03% respectively. In summary, our IPGPT
learned on small instances generalizes well to larger in-
stances, with a persistent advantage over other methods.

4.3. Anytime Performance
We further showcase the anytime performance of various
algorithms, including random LNS in this experiment, to
facilitate an easier comparison between random LNS and
IPGPT across four benchmarks, as illustrated in Figure 3.
Our observations indicate that: (1) IPGPT significantly
outperforms other baselines with a noteworthy margin.
(2) Even with extended time limits, IPGPT’s advantage
persists. (3) Interestingly, even though IPGPT is trained
on trajectories derived from random LNS, it can generate
remarkably superior trajectories during testing, leading
to substantially improved performance compared to ran-
dom LNS. This mirrors the findings in [21], where the
Decision Transformer (DT) can generate optimal trajec-

tories during test time, even when trained on random
walk data for the shortest pathfinding problem.

4.4. Additional Experiments with SCIP
Our framework can integrate any ILP solver to enhance
incumbent solutions. We primarily conducted exper-
iments with Gurobi, given its status as a leading ILP
solver. Additionally, we also present results utilizing
SCIP (v6.0.1) as an alternative ILP solver. By employing
the same settings as detailed in Section 5.1 and applying
them to the four benchmarks, we display the results in
Table 6. These outcomes align with those observed when
using Gurobi as the ILP solver, albeit with SCIP exhibiting
a notably lower performance compared to Gurobi.

4.5. Testing on Real-World Instances in
MIPLIB

We follow the experimental settings for real-world in-
stances in MIPLIB as described in [8]. We exclude “easy”
instances with relatively small sizes, as well as instances
where Gurobi cannot find any feasible solutions within a
3600-second time limit. Consequently, we choose 35 rep-
resentative “hard” or “open” instances containing only
integer variables. Within these instances, the number of
variables ranges from 150 to 393,800 (averaging 49,563),



Methods
MVC-1000 MC-500 SC-1000 CA-2000

Obj.±Std.% Gap% Obj.±Std.% Gap% Obj.±Std.% Gap% Obj.±Std.% Gap%
SCIP 552.2± 0.5 18.98 −793.9± 2.8 9.39 604.3± 3.2 9.40 −100514± 2.1 10.75

FT-LNS 490.2± 0.6 5.62 −836.3± 1.2 4.55 585.2± 6.4 5.96 −107141± 1.7 4.87
RL-LNS 480.0± 0.5 3.43 −847.5± 1.3 3.27 575.6± 6.2 4.22 −108787± 2.2 3.41

LB-SRMRL 492.4± 0.9 6.10 −820.3± 1.9 6.38 580.8± 5.3 5.16 −107741± 3.0 4.34
IPGPT 464.1± 0.7 0 −876.2± 1.2 0 552.3± 5.3 0 −112626± 1.5 0

Table 4
Results with SCIP. The time limit is set to 200s. Each result is averaged over 5 runs. The gap is the ratio of objective difference
w.r.t. the best result. The best results are shown in bold.

and the number of constraints varies from 301 to 850,513
(averaging 96,778). We use the datasets in section 4.1 to
train our model and evaluate our model (with Gurobi as
the repair solver) on this realistic dataset, in the style of
active search [33, 8, 34] on each instance. Our findings
indicate that, with a 3600-second time limit, IPGPT sur-
passes both solvers on 20 of the 35 instances and exhibits
comparable performance on 10 of the 35 instances. More
details are provided in the appendix.

5. Conclusion
Addressing large-scale IP problems presents a formidable
challenge. An increasingly prevalent approach for the
automated design and tuning of IP solvers leverages
data-driven methodologies. This paper concentrates on
enhancing learning-based LNS approaches, given their
ability to conveniently utilize any existing solver as a
subroutine. We introduce IPGPT, a novel approach that
models policy learning as a sequence to an MLC prob-
lem. It seamlessly integrates a customized decision trans-
former encoder, encompassing a causal transformer, to
model the sequential processes of LNS, and an MLC de-
coder with contrastive learning to exploit correlations
in variable selection. Furthermore, we carry out com-
prehensive experiments on four diverse benchmarks and
real-world instances. The results suggest that our IPGPT
approach consistently delivers substantial improvements
over state-of-the-art solvers and exhibits excellent gener-
alization capabilities for larger instances.
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A. Ablation Study
To demonstrate the strength of IPGPT, we compare it
with two variants: (1) IPGPT⊖MLC: a modified IPGPT
where its MLC decoder is replaced with a linear decoder;
(2)IPGPT⊖DT: a modified IPGPT where its casual trans-
former component is removed. The results are summa-
rized in Table 5. We can observe that IPGPT outperforms
the two variants consistently; our model’s performance
drop significantly if we do not consider modeling the
sequential process of LNS (drop by 7.69% on average) or
exploit correlations of variable selection (drop by 3.08%
on average).

B. Additional Experiments with
SCIP

Our framework can integrate any ILP solver to enhance
incumbent solutions. We primarily conducted exper-
iments with Gurobi, given its status as a leading ILP
solver. Additionally, we also present results utilizing
SCIP (v6.0.1) as an alternative ILP solver. By employing
the same settings as detailed in Section 5.1 and applying
them to the four benchmarks, we display the results in
Table 6. These outcomes align with those observed when
using Gurobi as the ILP solver, albeit with SCIP exhibiting
a notably lower performance compared to Gurobi.

C. Testing on Real-World Instances
in MIPLIB

We follow the experimental settings for real-world in-
stances in MIPLIB as described in [8]. We exclude “easy”
instances with relatively small sizes, as well as instances
where Gurobi cannot find any feasible solutions within a
3600-second time limit. Consequently, we choose 35 rep-
resentative “hard” or “open” instances containing only
integer variables. Within these instances, the number of
variables ranges from 150 to 393,800 (averaging 49,563),
and the number of constraints varies from 301 to 850,513
(averaging 96,778). For each instance, we employ Gurobi
to generate trajectories and train IPGPT using these tra-
jectories. The trained IPGPT is then evaluated on the
35 instances, with expected returns set to be 10% lower
than the best results returned by Gurobi and RL-LNS.
The results are shown in Table 7. Our findings indicate
that, with a 3600-second time limit, IPGPT surpasses both
solvers on 20 of the 35 instances and exhibits comparable
performance on 10 of the 35 instances.



Methods
MVC-1000 MC-500 SC-1000

Obj.±Std.% Gap% Obj.±Std.% Gap% Obj.±Std.% Gap%
IPGPT⊖MLC 465.5± 0.6 1.84 −872.0± 1.5 2.77 550.2± 8.3 2.23
IPGPT⊖DT 472.6± 1.1 3.39 −879.1± 0.8 1.97 546.9± 6.3 1.62

IPGPT 457.1± 0.8 0 −896.8± 1.4 0 538.2± 5.3 0

Table 5
An ablation study on the casual transformer and MLC decoder components of IPGPT. Note that the experimental settings
here follow that of Table 6.

Methods
MVC-1000 MC-500 SC-1000 CA-2000

Obj.±Std.% Gap% Obj.±Std.% Gap% Obj.±Std.% Gap% Obj.±Std.% Gap%
SCIP 552.2± 0.5 18.98 −793.9± 2.8 9.39 604.3± 3.2 9.40 −100514± 2.1 10.75

FT-LNS 490.2± 0.6 5.62 −836.3± 1.2 4.55 585.2± 6.4 5.96 −107141± 1.7 4.87
RL-LNS 480.0± 0.5 3.43 −847.5± 1.3 3.27 575.6± 6.2 4.22 −108787± 2.2 3.41

LB-SRMRL 492.4± 0.9 6.10 −820.3± 1.9 6.38 580.8± 5.3 5.16 −107741± 3.0 4.34
IPGPT 464.1± 0.7 0 −876.2± 1.2 0 552.3± 5.3 0 −112626± 1.5 0

Table 6
Results with SCIP. The time limit is set to 200s. Each result is averaged over 5 runs. The gap is the ratio of objective difference
w.r.t. the best result. The best results are shown in bold.

Instance Gurobi RL-LNS IPGPT
a2864-99blp -72 -72 -85

bab3 -655388.1120 -654912.9204 -655412.3501
bley-xs1noM 3938322.37 3975481.35 3958310.21

cdc7-4-3-2 -257 -276 -280
comp12-2idx 380 363 352

ds 177 319 189
ex1010-pi 239 238 238

graph20-80-1rand -6 -6 -6
graph40-20-1rand -15 -14 -14

neos-3426085-ticino 226 226 226
neos-3594536-henty 401948 402426 401896

neos-3682128-sandon 34666770.0 34666765.12338 34666770
ns1828997 133 128 98

nursesched-medium-hint03 115 131 115
opm2-z12-s8 -33269 -53379 -55269
pb-grow22 -46217.0 -46881.0 -56782

proteindesign121hz512p9 1499 1489 1481
queens-30 -39 -39 -39

ramos3 245 248 216
rmine13 -3493.781904 -3487.807859 -3493.79821
rmine15 -1979.559046 -5001.279118 -5002.129874

rococoC12-010001 34673 35443 35467
s1234 29 41 29

scpj4scip 133 134 131
scpk4 330 329 325
scpl4 279 281 269

sorrell3 -16 -16 -16
sorrell4 -23 -23 -23
sorrell7 -187 -188 -190

supportcase2 397 397 397
t1717 201342 195894 185241
t1722 117171 117978 115983

tokyometro 8479.5 8582.70 8456.7
v150d30-2hopcds 41 41 41

z26 -1083 -1171 -1176

Table 7
Results on MIPLIB. The best results are shown in bold. The time limit is set to 3600s.



D. Other Related Work
Learning to Optimize. Recently, there has been an in-
creasing interest in applying ML to learn solving COPs.
Broadly speaking, there are three categories of learning
to optimize algorithms: (1) Learning to predict solutions
from inputs. Larsen et al. [35] train a deep neural net-
work (DNN) to predict the solution of a stochastic load
planning problem. Nair et al. [36] propose neural diving
to learn a DNN to generate multiple partial assignments
for its integer variables, and the resulting smaller mixed
integer programs (MIPs) for un-assigned variables are
solved with an off-the-shelf MIP solver to construct high-
quality joint assignments. Joshi et al. [37] learn a DNN
by supervision to predict the probability of an edge to be
in the traveling salesman problem (TSP) tour. A feasible
tour is then generated by beam search. (2) Learning to
configure COP algorithms. Liu et al. [32] learn to con-
figure the search neighborhood size of LB in each step
by using RL. Deng et al. [38] integrate belief propagation
(BP), gated recurrent units (GRUs), and graph attention
networks (GATs) within the message-passing framework
to reason about dynamic weights and damping factors
for composing new BP messages. (3) Learning along-
side COP algorithms. Nair et al. [11] learn a DNN to
make variable selection decisions in B&B to bound the
objective value gap with a small tree. Deep Bucket Elimi-
nation (DBE) [39] uses DNNs to approximate the large
bucket functions. Deng et al. [40] propose a pretrained
cost model which predicts the optimal cost of a given par-
tially instantiated COP. The predicted cost is then used
to construct heuristics for various COP algorithms such
as LNS and B&B. Our work belongs to the third category.

Sequence Learning. The recent rapid development
of sequence modeling is largely due to the successful
applications of DNNs, from LSTMs [41] and sequence-to-
sequence models [42] to transformer architectures with
self-attention [24]. Sequence learning aims to capture
the temporal dependence of sequential data (text, speech,
video, etc.), and it is widely used in NLP [43, 44]. There
is also a recent attempt to apply sequence learning in
scientific discovery such as using a causal transformer to
model material property with sequential structures [45].
In light of this, it is also tempting to consider how such se-
quence models can lead to improved performance in LNS,
which is also concerned with sequential processes. A
causal transformer is an architecture to efficiently model
sequences, which is the cornerstone of a decision trans-
former in RL [21]. However, little has been done to model
the sequential processes of LNS with transformers; we
will address this limitation by adopting a causal trans-
former (GPT2).

Multi-Label Classification. Multi-label classification
(MLC) is a prediction task where each sample can have
more than one labels. Unlike the single-label scenario,

label correlations are prevalent in MLC. Early works
capture the correlations through classifier chains [46],
Bayesian inference [47], and dimensionality reduction
[48]. Thanks to the huge capacity of DNNs, one can alle-
viate the laborious feature mapping and therefore focus
on the loss function, feature-label and label-label correla-
tion modeling [49, 50, 51]. It has been shown that con-
trastive learning can exploit label information effectively
in a data-driven manner, and learn meaningful feature
and label embeddings that capture the label correlations
and enhance the predictive power [26]. However, current
LNS algorithms fail to explore the correlations of variable
selection in each step. In this work, we will formulate the
policy learning of variable selection as an MLC problem
and adopt contrastive learning to model category-level
label correlations. To the best of our knowledge, we are
the first to use sequence to multi-label learning to im-
prove the performance of LNS, and thus enable us to
benefit from modeling long sequences of LNS behaviors
and exploiting correlations between variable selection
simultaneously.

Primal Heuristics. Numerous primal heuristic al-
gorithms have been proposed to enhance the efficiency
of solving ILPs [52]. Primal heuristics span from sim-
pler rounding heuristics [53] to more computationally
demanding diving and large neighborhood search (LNS)
heuristics, such as Relaxation Induced Neighborhood
Search (RINS) [54]. LNS heuristics are improvement
heuristics that solve auxiliary problems using the branch-
and-bound technique.

RINS, a prominent LNS meta-heuristic, seeks to im-
prove a given feasible MIP solution. By comparing the
feasible solution with one obtained from relaxing integer
variables, it identifies and eliminates variables with dif-
fering values between the two. The resulting sub-MIP is
then solved using a MIP solver.

The solution-polishing heuristic [55] employs a
variable-fixing neighborhood similar to RINS, while also
integrating an evolutionary algorithm approach. Unlike
RINS, this heuristic uses crossover and mutation opera-
tions to combine multiple solutions chosen from a pool of
available feasible solutions. The crossover process fixes
variables that have identical values across all selected
solutions, while mutation is introduced by randomly fix-
ing additional variables to refine already high-quality
solutions.

Adaptive LNS [56] capitalizes on an ensemble of LNS
algorithms for MIPs and employs a multi-armed bandit
to adaptively switch among them during a MIP solve.
Although our work does not focus on an ensemble ap-
proach, it could be incorporated as another ensemble
member to enhance performance.

In contrast, learning-based LNS approaches, such as
IPGPT, can be regarded as primal heuristics automatically
learned through machine learning. These approaches



showcase significant potential by exploiting data-driven
techniques, which ultimately result in improved perfor-
mance and adaptability across a wide range of problem
instances. This work is particularly interested in advanc-
ing the capabilities of learning-based LNS approaches.

E. Further Implementation Details
We implemented our GPT-2 using the Huggingface Trans-
formers library. The hyperparameters we employed are
as follows: (1) Number of layers: 3; (2) Number of atten-
tion heads: 1; (3) Embedding dimension: 128; (4) Non-
linearity function: ReLU; (5) Batch size: 128; (6) Context
length K: 25; (7) Dropout ratio: 0.1; (8) Learning rate:
1e-4; (9) Gradient norm clipping: 0.25. We maintained
other parameters at their default values. We trained the
model from scratch and did not utilize any pre-trained
weights.

Grid search is adopted for tuning. We tune learning
rate from 0.00005 to 0.002with interval 0.00005, dropout
ratio from [0.05, 0.1, 0.3, 0.5], weight decay from
[0, 0.01, 0.0001], 𝛽 from [0.1, 0.5, 1, 1.5, 2.0], token em-
bedding size from [64, 128, 256, 512], context length 𝐾
from [15, 20, 25, 30], batch size from [64, 128, 256], Gra-
dient norm clipping from [0.15, 0.2, 0.25, 0.3, 0.35].

In the data collection process, we utilize random LNS
with adaptive neighborhood size. The neighborhood size
is initially set to 10% of the number of variables in the
input problem instance. It is then adapted following the
approach described in the paper by [10].

During testing, at each step 𝑡, the model generates
action distributions 𝑎𝑡,𝑖 for each dimension 𝑖 autoregres-
sively. We apply a threshold of 0.5 to convert these values
into 1 or 0, representing the selection or non-selection of
the corresponding variable 𝑥𝑖 in step 𝑡.
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