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Abstract
Modeling dyadic conversation between speaker and listener is the technology that involves spatial/temporal facial motion
and language understanding. This has been a key area of interest for building complete conversational artificial intelligence
systems. In this work, we propose a generic approach to learn listening styles from multiple listeners and enable facial
animations to mimic the listening behavior of conversational avatars. Unlike existing methods which learns one model per
person, and cannot generate the listening style of new speakers, our work allows designers to generate new listening styles
without requiring any listener data. Furthermore, it is able to generate different listening styles and gives a unique facial
expressions and head movements to the listener. Instead of deploying different models for different listeners at runtime, our
approach deploys a single model that can generalize to new listeners to generate nonverbal facial responses.
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1. Introduction
Conversation with Artificial intelligence is still a long
way away from how a regular conversation between two
humans looks like. Art of expressing and listening is
what makes or breaks a high quality conversation, and
in a multi-turn human-to-human conversation, listener
behavior is crucial. In most use cases, the avatar acting as
listener can interact with the users both verbally as well
as nonverbally. During the verbal response, the avatar
talks and its facial expression can be synthesized using
conversational face and gesture models [1, 2, 3], as well
as the audio-driven expression models [4, 5]. The non-
verbal response is nondeterministic and hard to model.
There have been a few approaches [6, 7] that have at-
tempted to model dyadic conversations. Conversations
between people for a similar dialogue can be very differ-
ent for different listeners just because every person has
a unique style (e.g. expressions, head motions) to listen
to a conversation. Hence, we need to develop models
that can express this back-and-forth of nonverbal facial
expressions, eye gaze and head motions during dyadic
conversation. Only then, we can enable more natural
interactions, increase engagement and build a harmonic
user experience for the product that deploys this interac-
tive avatar.
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To address this issue, we propose a universal method to
learn listening styles from multiple listeners and enable
facial animations to mimic listening behavior of conver-
sational avatars. Unlike existing methods that learn one
model per person, and cannot generalize to new listen-
ing styles, our work allows designers to generate new
listening styles without needing any listener data. Ad-
ditionally, it is able to generate different listening styles
and produce unique facial expressions and head motions.
We first develop a style representation (embedding) for
each listener, and once the style embeddings are avail-
able, we sample new listening styles from this embedded
space to generate facial expressions and head motions
for different listeners. The key highlights of our work
are as follows:

• Instead of deploying different models for different
listeners at runtime, our approach deploys a sin-
gle model that can be generalized to new listeners
to generate listener facial response;

• Our approach allows users to choose their own lis-
tening style or sample the new listening style for
conversational avatars, enabling the fine-tuning
of the avatars’ behavior for specific applications;

• We also propose a novel style transfer aware train-
ing techniques to improve the performance of the
dyadic facial motion generation pipeline, where
the style representation, and the resulting facial
motion generation model are trained simultane-
ously.
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2. Related Work
Previous works focus on data-driven methods that can
predict the 2D motion of a person as a function of the
motion of the other person(s) he/she is conversing with
[8, 9]. There are some other works that simplify the task
of motion generation to predicting head nods [10] or
estimating head pose [11]. In contrast, in addition to
[12, 13], some recent works [6, 7] capture the natural
complexity of interactions by considering the full range
of facial expressions and head rotations. While [6] uses
a Glow-based model and ingests the full temporal con-
text of listener audio to predict the listener facial motion,
[7] proposes a transformer-based predictor and an auto-
regressive vector-quantized variational auto-encoder to
predict listener facial motion, given past motion and the
current speaker audio and facial motion. While [7] does
not require the listener audio which can facilitate real-
time and synchronized listener motion, it generates a
single model per listener ID, and hence, is not gener-
alizable to new/different listeners during runtime. We
propose a novel listening style-aware dyadic facial mo-
tion generation framework, that can encode the listening
style of any person, and generate facial motion corre-
sponding to the encoded style for a particular listener
audio and motion. We use the large-scale dyadic facial
dataset released by [7] to evaluate our approach.

3. Key Challenges
We identify the main challenges in a robust dyadic facial
motion generation pipeline as follows:
1. Indeterministic Listener Response: Modeling non-
verbal feedback during dyadic interaction is a difficult
problem, as listener responses are nondeterministic in
nature. This requires the use of probabilistic/generative
models, such as GAN, generative model with VQ-VAE,
etc., which have been shown to not generalize well to a
wide range of diverse, realistic, and indeterministic lis-
tening responses during runtime.
2. Multimodal Problem: In a dyadic conversational
setting, speakers are inherently multimodal, as they com-
municate both verbally via speech, and nonverbally via
face and body motion. This requires the near-perfect
alignment of these two modalities to accurately capture
the speaker-listener interaction.
3. Training Complexity & Instability: The nondeter-
ministic listener motion generation requires the use of
generative models such as VQ-VAE, while the multimodal
speaker inputs require the use of deep feature extractors,
such as cross-modal transformers. This requires the em-
beddings obtained from the two models to be aligned and
fused accurately for realistic facial motion generation,
which complicates the training process.

Figure 1: t-SNE projection of listening style. The listening
styles can be distinguished using first order moments for each
listener in the entire dataset. But there are significant overlaps
in the listening styles, which requires a deep learning model
to extract the listening style.

4. One Model Per Style: Existing works require differ-
ent models to generate the facial motion corresponding
to each style, which is impractical to generalize to new
styles during runtime. It is also not feasible to deploy
a large number of models to generate a wide range of
listening styles in resource-constrained edge devices.
5. Quantification of Motion Realism: Quantifying

the facial motion realism is a hard problem, as there is
no well-defined ground truth (The ground truth listener
response from the dataset is unique to a particular style,
and might not be the optimal response.) unlike image
classification/detection tasks. Naive metrics, such as L2
difference between the predicted and ground truth ex-
pression and pose parameters, might not capture realistic
listener-speaker interaction in the wild. This motivates
the use of other metrics, such as Frechet Inception Dis-
tance [14].

4. Methodology
To address these challenges and generate a nonverbal
response with facial motion and head movement, we pro-
pose a novel framework that extracts two different em-
beddings: the listening style embedding and motion em-
bedding. Our framework utilizes the popular encoder and
decoder architecture and includes a multi-modality pre-
dictor that can generate preliminary results and retrieve
the final result from pre-trained latent embeddings. By
decoding these embeddings, we can generate the avatar’s
responses that reflect the inherence of the training space.

4.1. Problem Formulation
The aim of dyadic facial generation is to take the
speaker’s temporal facial motion and audio as input and



Figure 2: Overview of the proposed listening style-aware framework. The dotted blue area is the main network that predicts
the motion embeddings. The model in the dotted green area is the motion encoder-decoder process to generate the latent
embedding and may be trained beforehand. The Style Extractor can be trained offline or trained with the prediction model.

generate the nonverbal response. The facial expression
and head movement can be extracted with DECA [15]
from the speaker’s images. We denote the facial expres-
sion input as 𝑒(𝑡) and head movement as ℎ(𝑡) at time
𝑡. The face motion is the combination of the expression
and head movement 𝑚(𝑡) = {𝑒(𝑡), ℎ(𝑡)}. The input
audio sequence is denoted as 𝑎(𝑡) and the listening style
is denoted as 𝑠(𝑡). 𝑠(𝑡) can be trained offline or together
with the predictor. If 𝑠(𝑡) is trained offline, the 𝑠(𝑡) con-
sists of the specific style. If the listener’s past 𝑛 steps
are considered, the predictor 𝑃 can predict the avatar’s
response at time 𝑡′ with the input audio, motion and
avatar’s previous motion:

𝑚𝑎(𝑡
′) = 𝑃 (𝑎𝑖(𝑡

′),𝑚𝑖(𝑡
′),𝑚𝑎(𝑡

′ − 𝑛 : 𝑡′), 𝑠(𝑡′)) (1)

4.2. Listening Style Analysis
The dataset used in [7] extracts facial features and motion
for 72 hours of video from 6 different Youtube channels
by using DECA [15], where each channel features a par-
ticular host and several interviewees from a variety of
backgrounds. Our goal is to extract the listening style
(facial expressions and head pose parameters) of the 6
hosts. In order to visualize the listening style of each host,
we generate their t-SNE embeddings from the training
data, as illustrated in Figure 1. The embeddings indicate
that the listening styles can probably be distinguished
using first order moments, such as mean of the facial ex-
pressions and head pose for each listener ID in the entire
dataset. However, we see significant overlaps in some
listening styles, such as listener 2 and 4 in Figure 1, and
hence, we need to design a model to extract an accurate
listener representation style.

4.3. Proposed Model
To surmount the challenges addressed in Section 3, we
design a model to generate the natural and realistic non-
verbal response to the users (speakers). Therefore, we
propose a listening style-aware dyadic facial motion gen-
eration framework with a predictor, a style extractor and
a motion extractor, as illustrated in Figure 2.

The predictor consists of an encoder and decoder pair,
which can be either a Transformer [16], or U-Net [17]
based network. The predictor generates the avatar’s non-
verbal response to the input audio and facial motions.

The style extractor generates the listening style em-
bedding for the predictor. The style embeddings can be
fused to the predictor in two ways. We can either extract
the listening style embeddings offline, and fuse the em-
bedding corresponding to the desired listening style in
the model during runtime. Alternatively, we can train the
style extractor model end-to-end with motion prediction
pipeline with similar loss, where the style embeddings are
fused directly with the multi-modality encoder output.
The first approach can generate new listening styles dur-
ing runtime, and the second approach can better capture
the different listening styles with a single model.

The motion extractor is designed to generate the mo-
tion latent embedding while reducing the dimensionality.
VQ-VAE [18] is firstly used in the image generation model
and is being used in [7, 19] for motion generation. The
VQ-VAE learns a discrete codebook with multiple vectors
to quantize the latent space. Each of the vectors can be
looked as an embedding of the input motion.



Figure 3: Style extractor network. We use a 6-layer 1-D temporal convolutional neural network model, and each layer has a
stride of 2 in the temporal dimension. We can progressively reduce the temporal dimension to 1 in 6 layers. We increase the
number of channels from 56 in the input layer to 256 as the style embedding feature, and finally connect to the fully-connected
layer for classification.

4.3.1. Style Extractor

We design a 6-layer 1-D temporal convolutional neural
network, where each convolutional layer has a stride of
2 in the temporal dimension. Given 64 frames per input,
the model progressively reduces the temporal dimension
to 1 in 6 layers. We increase the number of channels from
56 (53 expression parameters and 3 head pose parameters)
in the input layer to 256, followed by a fully-connected
(FC) classifier layer consisting of 6 neurons to predict the
listen ID. Our proposed architecture, and the correspond-
ing style embedding output is illustrated in the Figure 3.
We employ cross-entropy loss ℒℰ on the ground truth
listener identity distribution 𝑄(𝑥).

ℒℰ = E𝑥∼𝑝 [−𝑙𝑜𝑔 𝑄(𝑥)] (2)

In addition, we employ the supervised contrastive
loss [20, 21] to achieve better performance with limited
amount of data:

ℒℰ =
∑︁
𝑖∈𝐼

−1

|𝑃 (𝑖)|
∑︁

𝑝∈𝑃 (𝑖))

𝑙𝑜𝑔
𝑒𝑥𝑝(𝑧𝑖 · 𝑧𝑝/𝜏)∑︀

𝑎∈𝐴(𝑖) 𝑒𝑥𝑝(𝑧𝑖 · 𝑧𝑎/𝜏)
,

(3)
where 𝑃 (𝑖) = {𝑝 ∈ 𝐴(𝑖) : ̃︀𝑦𝑝 = ̃︀𝑦𝑖} is the set of indices
of all positives in the multiview batch distinct from 𝑖,
and |𝑃 (𝑖)| is its cardinality. 𝜏 is a scalar temperature
parameter. 𝑧𝑖, 𝑧𝑝 and 𝑧𝑎 are the embeddings, which are
generated by representation learning, of anchor, positive
and negative samples respectively.

We train the contrastive loss with a meta-learning
[22, 23] setup, for which we emulate by leaving out a
particular listening style, while training with the 𝑁 −
1 listening style data, where 𝑁 is the total number of
available listener identities in the dataset.

The contrastive supervision aims to learn the style
embedding corresponding to the new listener identity
better than the traditional cross-entropy loss, when the
number of available samples is limited.

To obtain the listening style embedding, we extract
the weights of the fully connected (FC) layer. The subset

of the weights connecting each listening style in the
output layer is determined to represent the listening style
embedding corresponding to that style.

With the style extractor, we can generate diverse lis-
tening styles by sampling from the embedding space. For
example, we can assume the listening styles to be Gaus-
sian, independently and identically distributed, where the
mean and standard deviation of the expression/pose pa-
rameters are computed empirically from the style embed-
ding space. Though we have limited number of listening
styles, they are quite diverse as can be visualized from the
Figure 1, and with more listener data, our approach can
be further improved to generate more listening styles.

4.3.2. Motion Predictor

The motion predictor is an encoder-decoder architecture,
and we use a Transformer network to better capture the
multi-modality feature of the users. The style embedding,
previous motion and the multi-modality embedding are
concatenated and fed to the decoder to predict the facial
motion. When training this model with style extractor
end-to-end, we follow the teacher-forcing scheme and
train the model with both motion predictor lossℒ𝒫 (same
as Equ. 2) on codebook index and the style extractor loss
ℒℰ (Equ. 2 and 3) on style ID. The overall loss for the
end-to-end training will be:

ℒ𝒯 = ℒ𝒫 + ℒℰ (4)

At inference step, the predictor predicts multinomial dis-
tribution of future facial motion, and by which, we re-
trieve the closest quantized embeddings from the code-
book generated by motion extractor, and send them to
the motion decoder to generate the avatar’s facial motion.

4.3.3. Motion Extractor

The motion extractor is implemented with VQ-VAE
to learn a disrcete codebook 𝑍 = (𝑧1, · · · , 𝑧𝑛) ∈



R256×𝑛to quantize the latent space of the motion. Given
an input of sequence with length 𝑇 of facial motion
𝑀1:𝑇 ∈ R56×𝑇 , the encoder will convert it into an em-
bedding 𝐸1:𝜏 = (𝑒1, · · · , 𝑒𝜏 ) ∈ R256×𝜏 , where 𝜏 = 𝑇

𝑤
,

and 𝑤 is the temporal window size. Then the embedding
will be mapped to the nearest code in the corresponding
codebook:

𝑧′ = 𝑎𝑟𝑔 min
𝑧𝑏
𝑘
∈𝑍𝑏

‖𝑒− 𝑧‖ ∈ R256 (5)

And we get the quantized features 𝑍1:𝜏 = (𝑧1, ..., 𝑧𝜏 ) ∈
R256×𝜏 .

The decoder takes these quantized features to recon-
struct the input motion. The encoder and decoder can be
trained simultaneously with the loss function:

ℒ𝑉 𝑄 = ℒ𝑟(𝑀, ̂︁𝑀)

+ ‖𝑠𝑔[𝐸]− 𝑍‖
+ 𝛽 ‖𝑍 − 𝑠𝑔[𝐸]‖ ,

(6)

where ℒ𝑟 is the MSE loss for the reconstruction, 𝑠𝑔[·]
is a stop gradient operation [18] to calculate the codebook
loss, and ‖𝑍 − 𝑠𝑔[𝐸]‖ is the “commitment" loss with the
tradeoff coefficient 𝛽 [24, 19].

5. Experiments
We conduct extensive experiments to demonstrate the
capability of our proposed framework. We implement
the framework based on the learning to listen model [7]
and evaluate our model on the same dataset. We employ
the same metrics to compare with the person agnostic
model in [7], which is taken as the baseline. Our method
shows significant improvement with both the L2 and the
Frechet Inception Distance (FID) [14] metrics.

5.1. Experiment Details
Data We use the dataset released by [7], which con-
tains facial features and head motion for 72 hours of
video from 6 different Youtube channels by using DECA
[15], where each channel features a particular host and
several interviewees from a variety of backgrounds. The
corresponding audio melspectrogram features are also
generated by audio processing library, librosa [25]. The
original videos contain the views of both the host and
the guest in a split-screen format. The irrelevant seg-
ments have been removed and only the segments that
contain the hosts’ nonverbal response are kept to extract
the pseudo-ground truth.

Motion Extractor Our motion extractor is imple-
mented with VQ-VAE[18]. Similar to the baseline model
[7], the motion extractor is composed of 3 convolutional

layers of kernel size 5, stride 1, padding 2. Each convolu-
tional layer is followed by a max pooling operation. We
pass this bottlenecked sequence through a Transformer
of 512 hidden layers, 8 attention heads, 12 attention lay-
ers. We train the VQ-VAE on sequences of length 32 for
1000 epochs ( 1 day on 4 V100 GPUs) with a learning
rate of 2.0 with 4,000 warm-up steps. We optimize us-
ing Adam with a batch size of 32. Train/val/test split is
70/20/10. We then use the frozen model downstream to
quantize the listener inputs to the Predictor.

Multi-Modality Encoder The multi-modality en-
coder consist of linear layers and a Transformer encoder
takes the raw motion representation as input [16]. We
feed the audio and the motion independently through
a linear layer for each modality to obtain their respec-
tive projected embeddings, then send them to the Trans-
former encoder for cross attention. The Transformer
encoder is composed of 1024 hidden layers , 8 attention
heads and 12 attention layers. Following the transformer
there are 3 convolutional layers of kernel size 5, stride
1, padding 2. Each convolutional layer is followed by a
max pooling operation that temporally downsamples the
speaker embedding of length 32 to match the size of the
listener embedding.

Multi-Modality Decoder The multi-modality de-
coder is composed of a Transformer decoder with hidden
size 200, number of heads 10, and number of layers 5. We
concatenate the output of the multi-modality embedding
with the listener embedding and previous motion to get
a sequence, which serves as input to the multi-modality
decoder. During training we take the first 4 indices of the
output and discard the remainder. We train the predictor
for 1000 epochs ( 12 hours on 8 GPUs) with a learning
rate of 0.01 with 4,000 warm-up steps.

Baseline
(L2L)

Style-Aware
(Ours-1)

Style-Aware
(Ours-2)

Style-Aware
(Ours-3)

FID
(*1e3)

L2
Error

FID
(*1e3)

L2
Error

FID
(*1e3)

L2
Error

FID
(*1e3)

L2
Error

33.5

47.04

24.7

43.22

22.2

42.36

20.3

40.28
47.28 43.43 42.44 40.18
47.33 43.45 42.28 40.50
47.21 43.37 42.04 40.53
47.13 43.20 42.19 40.41

Table 1
Experiment results. Comparison to the baseline[7]. Ours-1
(Train the style representation separately with cross entropy
loss) improves the FID by 25% to 24. Ours-2 (Train the style
representation separately with contrastive loss) improves the
FID by 30% to 22. Ours-3 (Train the style representation model
end-to-end) further improves the FID to 20.3.

Evaluation Metrics We employ the L2 and the Frechet
Inception Distance (FID) [14] metrics the compare with



100% holdoff 0% holdoff 95% holdoff 85% holdoff 70% holdoff 50% holdoff 20% holdoff
FID

(*1e3)
L2

Error
FID

(*1e3)
L2

Error FID
L2

Error
FID

(*1e3)
L2

Error
FID

(*1e3)
L2

Error
FID

(*1e3)
L2

Error
FID

(*1e3)
L2

Error

39.8

54.94

22.2

42.36

28.4

48.92

25.1

47.14

24.2

44.75

22.9

43.67

22.7

42.49
54.25 42.44 48.75 47.29 44.32 43.60 42.10
54.83 42.28 48.74 47.19 44.56 43.29 42.56
54.98 42.04 48.90 47.10 44.68 43.40 42.02
55.16 42.19 48.79 47.53 47.53 44.41 42.16

Table 2
Exploratory study for different holdoff rate. The FID can be dramatically improved (to 28.4) even by using only 5% of that
host’s data. With holdoff rate decreasing, the FID is improved gradually.

Figure 4: Visual comparison of different listening styles. We sample images from the generated sequences at intervals of 40
frames. Each row of the resulting image sequence represents a distinct listening style, with accompanying facial expression
and head pose responding to the same talking video. From the comparison we can see that the proposed method can generate
diverse nonverbal response with different listening style.

the baseline model.

• L2: L2 distance between ground truth 𝑦 and the
generated facial parameter 𝑦. Here, the ground
truth is extracted from listener in the video.

𝐿2 = ‖𝑦 − 𝑦‖ (7)

• Frechet Inception Distance: FID is a standard met-
ric for assessing the quality of generative models.
For two multidimensional Gaussian distributions
𝒩 (𝜇,Σ) and 𝒩 (𝜇′,Σ′), it is explicitly solvable
as:

𝑑𝐹 (𝒩 (𝜇,Σ),𝒩 (𝜇′,Σ′))2 =
⃦⃦
𝜇− 𝜇′⃦⃦2

2

+ 𝑡𝑟(Σ + Σ′ − 2(Σ
1
2 · Σ′ · Σ

1
2 )

1
2 ),

(8)

where 𝑡𝑟(·) is the trace of the matrix, i.e. the sum
of elements on the main diagonal.

5.2. Experiment Results
We conduct extensive experiment and generate predic-
tions for different listening styles. The metrics compar-
ison is shown in Table 1. Our style-aware model that
trains the style representation separately with cross en-
tropy loss (denoted as Ours-1) and with contrastive loss

(denoted as Ours-2), improves the FID of the listener-
agnostic model by 25% to 24, and 30% to 22 respec-
tively. Training the style representation model end-to-
end where it is co-optimized with the main model (de-
noted as Ours-3) further improves the FID to 20.3. Since
our model leads to probabilistic output for realistic lis-
tener facial motion, we sample the L2 error of each model
5 times.

We also render the prediction result of different listen-
ing style from the ours-2 method to visually compare the
result as shown in Figure 4. To facilitate the visual com-
parison, we sample images from the generated sequences
at intervals of 40 frames. Each row of the resulting image
sequence represents a distinct listening style, with ac-
companying facial expression and head pose responding
to the same talking video. From the comparison we can
see that the proposed method is capable of generating
diverse nonverbal response with different listening style.

5.3. Exploratory Study
We also perform exploratory studies to better demon-
strate the generalizability of our model with the con-
trastive loss to learn the listening style, especially when
the data is not sufficient. Specifically, we hold out the lis-
tener data of one host to train our style extractor model,
and extract the mean of the final convolutional layer out-



put of the trained model for the particular listener data in
the test set, and use this mean as the listener embedding
input to our predictor model. And we train our motion
extraction model without the particular listener data. We
observed a drop of 80% to 39.8 in the FID by removing
the complete data as shown in Table 2 for the listening
data of that host. However, we notice that even by using
only 5% of that host’s data, we were able to recover the
FID to 28.4. This was mainly because of the supervised
contrastive loss instead of the traditional cross-entropy
loss that helps to generalize our model.

6. Conclusion
In this paper, we propose a novel framework and training
technique to develop a dyadic facial motion generation
pipeline. The goal is to generate the accurate, realistic,
and diverse avatar responses for a particular speaker
audio and facial motion. We use the open-source, in-
the-wild, dyadic conversational dataset released in [7]
to evaluate our approach. We conduct extensive experi-
ment to generate the facial response, compare the metrics
and visualize the responses. Our method significantly
improves the L2 error and FID between the predicted
and ground truth facial motion, compared to the listener-
agnostic model proposed in [7]. Unlike any other existing
approach, our approach can also generate listening re-
sponse corresponding to a wide range of styles during
runtime by sampling in the style embedding space. We
will experiment with more modalities and deploy our
work to the conversational AI system.
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