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Abstract
This paper presents a novel approach for evaluating road traffic usage using multi-type Geographical Cellular Traffic (GCT).
Working with a major telecom company, we propose a new prediction task for transportation traffic using GCT data. To
accurately tackle this task, we propose a model that effectively integrates multivariate relation exploration and spatio-temporal
modeling across multiple regions. Furthermore, we develop a new core as the foundation of each modeling component,
efficiently improving the incorporation of attention mechanisms in the CNN-based architecture. Extensive experiments
demonstrate the superior performance of our model in successfully handling the prediction task and reveal the influence
of various GCT combinations. It is worth noting that our proposed data and model can pave a new path for intelligent
transportation systems and urban planning.
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1. Introduction
Recently, traffic prediction has become increasingly im-
portant for intelligent transportation systems [1, 2]. Ac-
curate traffic prediction can help alleviate traffic conges-
tion [3] and optimize traffic signal control [4]. However,
traditional traffic prediction approaches rely on dedicated
sensors, which require costly maintenance and develop-
ment, have limited deployment coverage, and are suscep-
tible to insufficient usable information.

To tackle the limitations of traditional traffic predic-
tion, we leverage large-scale and widely-distributed mo-
bile user data integrated with road network information
to analyze traffic usage conditions. Collaborating with
Taiwan’s major telecom provider, Chunghwa Telecom,
we utilize geolocated cellular traffic, named Geographi-
cal Cellular Traffic (GCT), which is further classified into
vehicle, pedestrian, and stationary types. Accumulating
GCT at fixed intervals offers insights into human ac-
tivity patterns and road network usage, defined as GCT
flow. Consequently, we propose a new task of forecasting
specific vehicular GCT (V-GCT) flow in various regions,
which is highly related to road traffic conditions and
differs from predicting cellular traffic usage for mobile
networks in previous studies [5, 6, 7, 8]. Hence, our pro-
posed task and dataset using mobile user data offer new
insights into road network usage and traffic conditions.

To address this new task, we propose a model with
Multivariate, Temporal, and Spatial View Modelings that
integrates multi-type GCT and utilizes spatio-temporal
correlations to predict V-GCT flow accurately. Addition-
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ally, we present a novel core for each View Modeling,
designed to enhance the efficiency of the attention mech-
anism when processing convolution-encoded represen-
tations. Our experiments demonstrate the superior per-
formance of our model compared to representative and
state-of-the-art baselines, underscoring the importance
of incorporating multi-type GCT data. Overall, this work
makes the following key contributions:

• Novel data: We collected over 30 million GCT
records from diverse road segments, analyzing
spatial correlations, relationships among GCT
types, and their evolution over time.

• Prediction task and model: Our novel task
predicts V-GCT, which provides valuable trans-
portation insights for city authorities and is be-
ing employed in a proof-of-concept area. Mean-
while, our multivariate spatio-temporal model ef-
fectively captures dependencies and relationships
between GCT types for accurate predictions.

• Experiments and analysis: Extensive evalua-
tions demonstrate our model’s superior perfor-
mance against baselines for diverse prediction
intervals. Ablation and sensitivity analyses high-
light the importance of model components and
GCT flow combinations for adaptability and real-
world potential.

2. Data Processing
This section describes the definitions of geographical
cellular traffic (GCT), data preprocessing, analysis, and
potential applications.
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Table 1
Example of GCT with essential data fields.

IMEI* Latitude Longitude Time Type

gn...mE 24.78585 120.98825 09/25 17:59:58 vehicle
gn...GI 24.78601 120.98838 09/25 18:00:00 pedestrian
gn...mU 24.78608 120.98829 09/25 18:00:05 stationary

...
*IMEI numbers were hashed to protect privacy before processing.

2.1. Definitions
Multi-Type Geographical Cellular Traffic (GCT).
GCT is cellular traffic with estimated GPS coordinates
obtained from triangulation, indicating where the traf-
fic was generated. Each GCT is classified1 into three
categories: vehicle, pedestrian, and stationary.
GCT Flow. We define GCT flow as the total quantity of
GCT within a fixed interval (e.g., 5 min) as in previous
vehicular flow studies [9]. With multi-type GCT, there are
various GCT flows, including vehicle (V-GCT), pedestrian
(P-GCT), and stationary (S-GCT) flows.
Road Segments. Road segments are defined as 20m x
20m areas, based on the average road size in our proof-of-
concept (POC) area in Hsinchu, Taiwan. These segments
geographically interconnect, forming a road network.

2.2. Data Collection and Preprocessing
Data sourcing. We extracted essential data fields from
the telecom company’s Geographical Cellular Traffic Stor-
age Database to reduce storage and computational re-
quirements, as shown in Table 1. Each row represents one
GCT, comprising five data fields: International Mobile
Station Equipment Identity (IMEI, a unique mobile phone
identifier), latitude and longitude coordinates, recording
time, and GCT type.
Road Segment Selection for GCT Collection. We
selected geographically connected road segments as the
scope for GCT data collection to capture the mobility of
mobile users across different areas, as shown in Figure
1. We collaborated with transportation authorities to
identify 21 road segments for analysis, each with unique
functional locations nearby (e.g., universities, science
parks, and shopping areas). To ensure relevance to road
usage conditions, we extracted GCTs located within these
road segments and included them in Table 1.
Preprocessing for GCT Flow. We preprocessed the
data to ensure accuracy by eliminating inconsistencies,
outliers, and missing values. Next, we removed dupli-
cate GCT record with identical IMEI and timestamps
to prevent distortion and ensure reliability. Finally, we
calculated the total GCTs for every 5-minute interval

1The algorithm is the telecom company’s confidential trade secret.

Figure 1: The distribution of road segments in the POC area,
with their average V-GCT flows influenced by the functional-
ity of nearby regions.

to maintain consistency, and assigned unique V-GCT,
P-GCT, and S-GCT flows to each road segment.
Data Privacy Protection. In compliance with strict
personal data protection laws, we established a collabora-
tion agreement with the company to outline data sharing
terms and ensure adherence to privacy regulations. We
processed GCT data in a secure intranet environment
and hashed IMEI numbers to protect the privacy users.

2.3. Data Analysis
2.3.1. Time Evolving Spatial Correlations

Spatial Correlation. Building on the approach used in
[10, 11], we utilized the Pearson correlation coefficient
to assess the spatial correlation between road segments
in the POC area. Specifically, when using the historical
one-hour V-GCT as the series variable for each segment
in Figure 2, a Pearson correlation coefficient is assigned
to each road segment pair, ranging from -1 to 1. Road seg-
ments in closer proximity tend to exhibit similar V-GCT
flow patterns, leading to higher Pearson correlation coef-
ficients. This highlights the spatial correlation between
road segments based on V-GCT.
Time Evolving Correlation. We use the Pearson cor-
relation coefficient to explore spatial correlations over
time, as shown in Figure 2. Notable observations include:

- At 18:00, road segments near the Hsinchu Science
Park (ID: 57, 59, 62) exhibit high Pearson coefficients, in-
dicating similar movement patterns as commuting users
leave the workspace.

- At 19:00, highly correlated regions emerge along the
route (ID: 44, 35, 6, 30, 43, 45) from the work area to
residential areas.

- By 20:00, users gradually return home or dine out,
resulting in high Pearson coefficients for road segments
near residential-commercial mixed areas (ID: 1, 16, 41,
43) reflecting similar V-GCT patterns. Road segments
near the Hsinchu Science Park (ID: 54, 56, 57, 59, 62)



Figure 2: Pearson Correlation Coefficients are calculated between pairs of road segments based on their V-GCT flows from
the previous hour. As traffic conditions evolve over time, areas with high Pearson coefficients (highlighted with a blue frame)
shift among different segments, reflecting the movement of mobile users with vehicle drivers’ properties.

also exhibit high Pearson coefficients again, as users who
finish work later leave the area.

Overall, the time-evolving Pearson correlation analysis
not only reveals spatial correlations between road seg-
ments by V-GCT flow but also indicates changes in pop-
ulation activity patterns during different periods. Con-
centrated regions with high Pearson coefficients may
shift over time, providing a new insight for understand-
ing user flow and identifying congestion points in traffic
management over time.

2.3.2. Understanding Regional Functionality
through Multi-Type GCT Flows

Recognizing regional functionality can aid in prediction
tasks [12], but traditionally involves time-consuming
manual labeling. By analyzing variations between three
types of GCT flows, we can uncover hidden interactions
of user groups in different urban areas.
Implicit Interactions among Multi-Type GCT Flows.
Figure 3(a) and 3(b) reveal distinct patterns in different
urban areas, with commuting areas displaying dominant
V-GCT flow and residential-commercial areas showing
significant P-GCT and S-GCT flows. Inspired by [13],
we subtracted V-GCT from P-GCT and S-GCT to obtain
(V-P)-GCT and (V-S)-GCT, respectively, using one day of
data, and calculated the Pearson correlation coefficient
between V-GCT and these flows. The subtraction types,
capturing relative differences between the GCT flows,
exhibit higher correlations with V-GCT, highlighting dis-
tinct patterns with unique characteristics in different
areas. For instance, a high (V-P)-GCT value may indi-
cate a region with more vehicular traffic. These relative
differences better capture GCT flow interactions.
Deriving Insights into Model Design. The higher cor-
relations for subtraction types in multi-type GCT flows
provide valuable insights for our model. Incorporating
these relative differences improves capturing interactions,
and distinguishing area functionality.

ID:62 P S V-P V-S
V 0.78 0.75 0.98 0.99

ID:41 P S V-P V-S
V 0.56 0.61 0.91 0.92

(a) Near commuting route
(ID:62).

(b) Near residential-commercial
area (ID:41).

Figure 3: Functional areas exhibit varying multi-type GCT
flow patterns, with V-GCT flow prominent in the commuting
road (ID: 62), while P-GCT and S-GCT flows are relatively
higher in residential-commercial areas (ID:41). To explore the
latent relationships among multi-type GCT flows, we sub-
tracted V-GCT from P-GCT (V-P) and S-GCT (V-S) and cal-
culated the Pearson correlation between V-GCT and these
GCT types over one day, as shown in the table above. The sub-
tracted GCT types (V-P and V-S) flows, which exhibit higher
Pearson correlation coefficients with V-GCT, show more ro-
bust correlations than P-GCT and S-GCT, revealing implicit
correlations.

2.4. Potential Applications
Multi-type GCT flows provide new insights for urban
planning, with possible future applications including:
Transportation Management. GCT flow assists au-
thorities in developing effective traffic strategies, improv-
ing flow and reducing travel times.
Public Safety. Real-time monitoring systems using GCT
flow aid in understanding crowd density and mobility,
ensuring safety during critical incidents.
Urban Planning. Analyzing GCT flow helps planners
identify infrastructure needs and optimize city layouts
to accommodate growing populations.



3. Multi-View Modeling for V-GCT
Prediction

3.1. Definition of Prediction Task
Given 𝑁 road segments, we collect multi-type GCT flows
at fixed intervals. Each historical GCT flow is represented
by 𝑋𝑓 = {𝑋1

𝑓 , 𝑋
1
𝑓 , ..., 𝑋

𝑇𝑖𝑛
𝑓 }, where 𝑓 corresponds to

V-GCT, S-GCT, or P-GCT, and 𝑋𝑡
𝑓 ∈ R𝑁 denotes the val-

ues at time step 𝑡. Our objective is to predict V-GCT for
all segments over the next 𝑇𝑜𝑢𝑡 steps using one or multi-
ple GCT flows 𝑋𝑓 from the past 𝑇𝑖𝑛 steps. We denote the
predicted values as {𝑌 𝑇𝑖𝑛+1, 𝑌 𝑇𝑖𝑛+2, . . . , 𝑌 𝑇𝑖𝑛+𝑇𝑜𝑢𝑡},
where 𝑌 𝑇𝑖𝑛+𝑖 ∈ R𝑁 .

3.2. Overview of the Proposed Model
As shown in Figure 4, our model is designed to explore
the implicit relationships within complex multivariate
spatio-temporal inputs from various view modeling per-
spectives, with each module presented as follows:
Multivariate View Modeling. This component ex-
plores hidden relationships among multivariate features.
With a verified robust correlation between V-GCT and
the relative difference of other GCT types, this module
delves into their relationship, incorporating implicit road
usage patterns for enhancing prediction capabilities.
Temporal and Spatial View Modelings. These com-
ponents explore the relationships among time steps
and road segments, forming an integrated TS-Module.
Stacked TS-Modules are executed sequentially to capture
dependencies across different time scales.
Skip connection and Output module. The skip con-
nection connects the output of temporal view modeling,
linking them to the output module. The output module is
composed of multiple layers of MLP [14], transforming
the connected outputs into multi-step predictions.

3.3. Graph Channel-Specific Attention
(GCSAT)

We present a novel core, GCSAT, as the fundamental
basis for the multivariate, spatial, and temporal modeling
components. This core aims to improve the efficiency
of attention mechanisms in handling the multi-channel
representation after CNN encoding.
Preliminary. Graph Convolutional Network(GCN)-
based models [15, 14, 16, 17] use a 1D CNN to encode
input into latent representations in the form of [𝐶 , 𝑁 , 𝑇 ],
where 𝐶 denotes channels, 𝑁 represents spatial nodes,
and 𝑇 signifies historical observation time steps. While
GCN-based methods yield promising spatio-temporal
prediction results, they assign equal weights to neighbor-
ing nodes, causing suboptimal performance [18]. Inte-
grating Graph Attention Network (GAT) [19] into GCN-

Figure 4: Proposed Multi-View Modeling Architecture. Mul-
tivariate View Modeling uncovers hidden functionality by
examining interconnections among V-GCT and variations be-
tween other GCT flows. A TS-Module comprises of Temporal
and Spatial View Modelings, operating on representations
for spatio-temporal modeling. Based on GCSAT, the three
components are enhanced in terms of attention mechanism
efficiency for handling CNN-encoded representations. Each
temporal view model links a skip connection to the output
layer for multi-step prediction.

based methods enables dynamic weight learning between
nodes. However, GAT overlooks channel-specific infor-
mation, crucial for channels with varying importance or
contributions to prediction tasks.
Channel-Specific Attention. To account for channel-
specific weights, we use 𝐶 independent GATs to ex-
amine correlations between each channel’s attribute
nodes. For the 𝑐-th channel representation, 𝐻𝑐 =
{ℎ𝑐

1, ℎ
𝑐
2, . . . , ℎ

𝑐
𝑍} ∈ R𝑍×𝐷 , where 𝑍 is the number of

attribute node (e.g., road segments or time steps) and 𝐷
is node’s dimension. We use the attention coefficient in
GAT [19], 𝑒(ℎ𝑐

𝑖 , ℎ
𝑐
𝑗), to determine node 𝑗’s importance

to node 𝑖.
We normalize these coefficients across all neighbors

of node 𝑖 based on 𝒢 using the attention function: 𝛼𝑐
𝑖𝑗 =

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒(ℎ𝑐
𝑖 , ℎ

𝑐
𝑗)). We then compute a weighted sum

of node 𝑖’s features and its neighbors and concatenate
the results of 𝐶 independent attention mechanisms:

�̂�𝑖 = ‖𝐶𝑐=1(𝜎(
∑︁
𝑗∈𝑁𝑖

𝛼𝑐
𝑖𝑗ℎ

𝑐
𝑗)), (1)

where 𝑖 ∈ {1, 2, . . . , 𝑍}, and 𝜎(·), and 𝜎(·) is a nonlin-
ear function. The final output is the concatenation of
the aggregated representations �̂�𝑖 with the addition of a
residual connection. We denote the function of GCSAT:

𝐺𝐶𝑆𝐴𝑇 (𝐻,𝒢) := {�̂�1, �̂�2, ..., �̂�𝑍}+𝐻, (2)

where adding the multichannel representation 𝐻 is con-
sidered a residual connection.



3.4. Multivariate View Modeling
The goal of Multivariate View Modeling is to investigate
the relationships among multi-type GCT flows before
the TS-Module, and extract implicit relations to enhance
V-GCT prediction. Although existing GAT-based models
have shown improved task accuracy by exploring fea-
ture relationships [20, 21], attention mechanisms may
not fully utilize the potential differences within various
features during a limited number of epochs [13].
Deriving Insights from Multi-type GCT Flows. We
have verified that there is a more robust correlation be-
tween V-GCT and the relative differences of P-GCT and
S-GCT, as shown by the Pearson coefficients displayed
in Figure 3. Inspired by anomaly detection [20, 13, 22],
we propose utilizing the magnitude differences between
V-GCT flow and P-GCT and S-GCT flows to gain deeper
insights into inherent regional functionality and mobility
user activity patterns. By learning from these differences,
we can effectively extract hidden relationships within
multi-type GCT and address the inefficiency of directly
modeling features.
Difference Representation. All multi-type GCT fea-
tures (V-GCT, P-GCT, and S-GCT) are encoded by a 1D
CNN into shape [𝐶 , 𝑁 , 𝑇 ]. To prevent aggregation of
unrelated information that might impact later training
results, we process the features at each time step individu-
ally. At time step 𝑡, the difference between V-GCT and dif-
ferent GCT flows is calculated as: ∆𝑓

𝑡 = 𝐻𝑉 −𝐺𝐶𝑇
𝑡 −𝐻𝑓

𝑡 ,
where 𝑓 represents P-GCT or S-GCT. Thus, the difference
representation at time 𝑡 is constituted as follows:
𝐻Δ

𝑡 = {𝐻𝑉 −𝐺𝐶𝑇
𝑡 ,∆𝑃−𝐺𝐶𝑇

𝑡 ,∆𝑆−𝐺𝐶𝑇
𝑡 } ∈ 𝑅𝐶×3×𝑁 ,

where 𝐻𝑉 −𝐺𝐶𝑇
𝑡 can be represented as: 𝐻Δ

𝑡 [:, 0, :].
GCSAT for Multivariate Difference Modeling. After
establishing the difference representation, 𝐻Δ

𝑡 is applied
to GCSAT in Equation 2, as follows:

𝐻Δ
𝑡
ˆ

= 𝐺𝐶𝑆𝐴𝑇 (𝐻Δ
𝑡 ,𝒢), (3)

where each element in 𝐻Δ
𝑡 is considered as the feature

node, 𝒢 is a complete graph, and GCSAT is stacked with
two layers for more detail extraction.

For the output of GCSAT at each time step, we only

extract the first node of 𝐻Δ
𝑡
ˆ , 𝐻Δ

𝑡
ˆ [:, 0, :], which is the

aggregated V-GCT representation with a shape [𝐶 , 1,
𝑁 ]. Then, we concatenate the outputs for each time step
in Equation 3 along the second dimension, resulting in a
shape [𝐶 , 𝑇 , 𝑁 ]:

𝐻𝑚𝑜𝑢𝑡 = ‖𝑇𝑡=1(𝐻
Δ
𝑡
ˆ

[:, 0, :]), (4)

By capturing complex interactions and relationships
between GCT flows, our approach can achieve more ac-
curate V-GCT flow predictions. The output is then for-
warded to the next Temporal View Modeling.

3.5. Temporal View Modeling
Temporal View Modeling, as shown in the TS-Module of
Figure 4, converts the multi-channel representation into
the shape [𝐶 , 𝑇 , 𝑆] for GCSAT processing. GCSAT treats
input as 𝑇 nodes with 𝑆 dimensions, and 𝒢 in Equation
2 represents a complete graph.

Time series data in practical scenarios often exhibit
both short-term and long-term dependencies. Simulta-
neously capturing these patterns using attention among
time nodes is challenging due to entangled dependencies,
making it difficult to identify valuable signals [23, 17].
Extracting Different Time Scales To address the above
issue, we adopt two kernels with different sizes, inspired
by [14, 17], to extract short-term and long-term tempo-
ral patterns. Applying two 2D CNNs with kernel sizes
(2,1) and (5,1) to the multi-channel representation H with
shape [𝐶 , 𝑇 , 𝑁] produces outputs 𝐻2 with shape [𝐶 ,
(𝑇 − 1), 𝑁 ] and 𝐻5 with shape [𝐶 , (𝑇 − 4), 𝑁 ], respec-
tively. The (2,1) kernel uncovers local temporal relation-
ships, revealing short-term patterns and dependencies
crucial for understanding rapid changes. In contrast, the
(5,1) kernel captures longer-range temporal relationships,
exposing hidden longer-term trends and dependencies
by encompassing a broader context of time steps.
GCSAT for Temporal Modeling. After extracting dif-
ferent scale representations 𝐻2 and 𝐻5, we use GCSAT
to explore temporal dependencies among them, feeding
them into Equation 2 as follows:

𝐻𝑐𝑎𝑡 = 𝐺𝐶𝑆𝐴𝑇 (𝐻2,𝒢) +𝐺𝐶𝑆𝐴𝑇 (𝐻5,𝒢), (5)

where the outputs for different time scale representations
in Equation 5 are truncated to match the temporal nodes
of the representation with the largest kernel size and
then concatenated accordingly.
Gating Mechanism. Leveraging the gating mecha-
nism’s benefits in [15, 17], which controls the amount of
information passed to the next module, we process the
outputs of two Equation 5 separately with distinct activa-
tion functions and perform element-wise multiplication:

𝐻𝑡𝑜𝑢𝑡 = 𝜎(𝐻1
𝑐𝑎𝑡)⊙ 𝜇(𝐻2

𝑐𝑎𝑡), (6)

where 𝐻1
𝑐𝑎𝑡 and 𝐻2

𝑐𝑎𝑡 are separately generated in Equa-
tion 5, 𝜎 denotes the sigmoid function, 𝜇 denotes
the tangent hyperbolic function, and ⊙ represents the
Hadamard product. 𝐻𝑜𝑢𝑡 is the output of the Gating
Mechanism and will be fed into the next modeling.

3.6. Spatial View Modeling
As the analysis in Figure 2 demonstrates the existence of
spatial correlations between V-GCT flows among road
segments. Thus, it is crucial to explore the relationships
between road segments. Spatial View Modeling, depicted



in the TS-Module of Figure 4, aims to model these rela-
tionships to improve our understanding and prediction
of V-GCT flow patterns.
GCSATs for modeling bidirectional flow. Leveraging
GCSAT’s flexibility, we extract spatial correlations among
road segments. First, we transform the representation
𝐻 from the previous temporal modeling output into a
shape of [𝐶 ,𝑆,𝑇 ], with 𝑆 road segments as nodes and 𝑇
features.

To account for bidirectional V-GCT flow among road
segments, we utilize two different GCSATs to explore
propagations in both directions. The adjacency matrix
𝐴 of road segments is constructed using road network
distance and a thresholded Gaussian kernel [24]. Fol-
lowing [15], we define the forward transition matrix
𝒢𝑓 = 𝐴/𝑟𝑜𝑤𝑠𝑢𝑚(𝐴) and the backward transition ma-
trix 𝒢𝑏 = 𝐴𝑇 /𝑟𝑜𝑤𝑠𝑢𝑚(𝐴𝑇 ). After inputting the two
transition matrices into their respective GCSATs, we com-
bine their outputs to obtain the final output 𝐻𝑠𝑜𝑢𝑡, as:

𝐻𝑠𝑜𝑢𝑡 = 𝐺𝐶𝑆𝐴𝑇 (𝐻,𝒢𝑓 ) +𝐺𝐶𝑆𝐴𝑇 (𝐻,𝒢𝑏) (7)

This approach allows us to capture spatial relation-
ships among road segments while considering their bidi-
rectional connections. Incorporating spatial correlation
information into our modeling process enables us to bet-
ter explore dependencies among road segments.

4. Experiments

4.1. Experimental Settings and Baselines
Evaluation Metrics. We use Mean Absolute Error
(MAE), Root Mean Squared Error (RMSE), and Mean Ab-
solute Percentage Error (MAPE).
Train/Valid/Test data processing. Each type of GCT
flow was processed in 5-minute intervals, from August 28,
2022, to September 29, 2022, across 21 road segments. We
followed [25], splitting data 70%-20%-10% for training,
testing, and validation. Each sequence sample had 24
time steps; the first 12 (𝑇𝑖𝑛) as historical input and the
remaining 12 (𝑇𝑜𝑢𝑡) as ground truth.
Baselines. We have selected seven representative traffic
prediction baselines for this task. These baselines are
categorized as follows, with overviews in Appendix A:

• Temporal Convolution (TCN) [26]
• GCN-based models: Graph Wavenet (GWNet)

[15], MTGNN [14], DMGCN [27]
• Attention-based models: Gman [28], MPNet [21]
• State-of-the-art GNN model: ESG [17]

Model Settings. We followed [15] by repeating each
model 10 times and reporting the average of the met-
rics. Our proposed model consists of one Multivari-
ate View Modeling component and three stacked TS-
Modules, with each module containing a Temporal View

Modeling and a Spatial View Modeling component. We
also followed [14] in using skip connection layers and
the output module.

4.2. V-GCT Prediction Evaluation
We evaluated our model and various baselines for predict-
ing future V-GCT flows at 15 (3 steps), 30 (6 steps), and
60-minute (12 steps) intervals, and the results are shown
in Table 2, including the average MAE, RMSE, and MAPE
over 10 repetitions for each method. Our observations
are as follows:
Performance comparison across prediction steps.
Our model consistently outperformed various baselines,
including TCN-based [26], GCN-based [15, 14, 27, 17],
and attention-based [28, 21] models, across all predic-
tion steps. This demonstrates our model’s superior abil-
ity to capture the underlying multivariate relationships
and complex spatio-temporal patterns. Although perfor-
mance decreased as prediction steps increased for all mod-
els, our model maintained its superior performance com-
pared to the baselines, even at longer prediction steps.
Performance and impact of multi-type GCT flow.
Table 2 shows that attention-based methods (2) outper-
form both TCN-based (0) and GCN-based (1) methods,
highlighting the effectiveness of attention mechanisms in
capturing complex relationships between road segments
and GCT flows. Moreover, our model further enhances
prediction accuracy by effectively capturing human ac-
tivity patterns and road network usage through the ex-
ploration of hidden relationships among multi-type GCT
flows. The combination of attention-based mechanisms
and multi-type GCT flows improves the model’s ability
to understand and forecast complex flow patterns.

4.3. Ablation Study of Proposed Model
We conducted an ablation study to assess the impact of
our model’s components on traffic prediction tasks. Av-
erage prediction metrics were calculated for prediction
steps 1 (5 min.) through 12 (60 min.). Table 3 compares
the full model with three ablated versions: without Spa-
tial View Modeling (w/o S), without Temporal View Mod-
eling (w/o T), and without Multivariate View Modeling
(w/o M). Our observations are as follows:
Impact of w/o S. Omitting Spatial View Modeling had
the most significant impact on the model’s performance,
resulting in a decrease in all metrics. This observation
emphasizes the high spatial correlations between road
segments in V-GCT and suggests that Spatial View Mod-
eling effectively captures these dependencies, leading to
improved performance.
Impact of w/o M. The model without Multivariate View
Modeling exhibited the second-lowest performance com-
pared to the full model, indicating the importance of



Table 2
Performance comparisons for short-term to long-term V-GCT predictions

15 min. 30 min. 60 min.
Baselines MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
TCN0 5.55±0.02 8.82±0.04 34.5%±0.6 5.74±0.02 9.38±0.06 36.9%±0.9 6.58±0.05 11.22±0.13 38.7%±1.4
GWNet1 5.46±0.01 8.72±0.04 32.5%±1.3 5.62±0.03 9.08±0.11 32.9%±1.3 6.08±0.06 10.31±0.19 34.6%±1.6
Gman2 5.37±0.01 8.61±0.05 32.6%±1.7 5.51±0.04 8.99±0.14 34.1%±1.2 5.77±0.02 9.68±0.11 34.4%±1.0
MTGNN1 5.29±0.02 8.52±0.03 32.2%±1.4 5.45±0.01 8.86±0.01 34.2%±1.6 5.74±0.03 9.66±0.13 35.3%±1.9
MPNet2 5.30±0.01 8.46±0.04 32.9%±2.0 5.44±0.03 8.84±0.09 34.7%±1.6 5.73±0.03 9.68±0.06 34.8%±2.1
DMGCN1 5.28±0.04 8.48±0.11 31.8%±1.7 5.46±0.01 8.81±0.03 33.6%±1.9 5.82±0.02 9.56±0.08 34.6%±1.1
ESG1 5.26± 0.03 8.43±0.03 31.1%±1.1 5.40±0.02 8.76±0.06 31.8%±1.3 5.65±0.02 9.46±0.09 32.9%±1.9
Our2 5.23±0.01 8.27±0.06 29.8%±0.7 5.33±0.02 8.54±0.06 30.5%±0.8 5.54±0.03 9.25±0.07 31.8%±0.7

0 denotes the TCN-based methods, 1 denotes the GCN-based methods, and 2 denotes the attention-based methods.

Table 3
The average predicted metrics for steps 1 through 12

Baselines MAE RMSE MAPE

w/o S 5.47±0.04 8.84±0.09 32.4%±0.4
w/o M 5.45±0.03 8.76±0.02 31.7%±0.5
w/o T 5.41±0.03 8.75±0.09 31.6%±0.4
Full 5.37±0.07 8.66±0.02 31.3±0.5

accounting for the differences in magnitude between
pedestrian, vehicular, and stationary GCT flows to make
accurate traffic predictions.
Impact of w/o T. The model’s performance significantly
decreased when Temporal View Modeling was removed,
as evidenced by lower metrics across all prediction steps.
This result highlights the crucial role of Temporal View
Modeling in capturing temporal patterns and dependen-
cies, which contribute to enhanced prediction accuracy.

The complete model consistently outperforms ablated
versions, emphasizing the significance of Spatial, Tempo-
ral, and Multivariate View Modeling. Each component
plays a critical role, and their integration leads to en-
hanced V-GCT flow predictions.

4.4. Sensitivity Analysis of Multi-Type
GCT Feature Combinations

Our model can explore the relationships between mul-
tivariate features, namely V-GCT, (V-S)-GCT, and (V-P)-
GCT. Thus, we conducted a parameter sensitivity analy-
sis for different combinations of V-GCT and subtraction
types to assess their impact on prediction performance.
Figure 5 shows the MAE for three feature combination
models across 12 prediction steps: V-GCT with (V-S)-
GCT, V-GCT with (V-P)-GCT, and a combination of all
types including V-GCT, (V-P)-GCT, and (V-S)-GCT. Key
observations are:
Impact on Prediction Step: For prediction steps 1 to
4, the model with V-GCT and (V-P)-GCT outperforms
the one with V-GCT and (V-S)-GCT. Beyond step 4, the

Figure 5: The combinations of V-GCT with all subtraction
types consistently yields the lowest prediction error for multi-
step predictions.

V-GCT and (V-S)-GCT model performs better, indicating
that the relative differences between vehicle and pedes-
trian or stationary GCT flows may vary in importance
with the prediction horizon.
Performance of model with V-GCT and all subtrac-
tion types. The model incorporating V-GCT and all
subtraction types consistently achieves the lowest MAE
error over all prediction steps, demonstrating the effec-
tiveness of improving prediction by exploring hidden
relative differences among multi-type GCT flows, and
our model’s capability in modeling complex relations.

5. Conclusion
We proposed and analyzed a multi-type GCT approach
that overcomes limitations in traffic prediction. Our pre-
dictive model effectively combined multivariate spatio-
temporal modeling for V-GCT prediction across multiple
road segments, outperforming the baselines. Our experi-
ments highlighted the importance of model components
and GCT flow combinations for prediction accuracy. By
initially validating the effectiveness of predicting V-GCT,
we can further explore other types of GCT predictive
results, offering potential applications for improving in-
telligent transportation.
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A. APPENDIX: Overview of
baselines

We evaluate our proposed model with the following base-
lines:

• TCN [26]: A convolutional-based method for time
seier modeling.

• GWNet (Graph WaveNet) [15]: A graph-based
Wavenet architecture with a spatial diffusion
mechanism.

• MTGNN [14]: A graph-based convolutional
model with dynamically learned graph structures.

• DMGCN [27]: A model incorporating time-
specific spatial dependencies, dynamic graph con-
volution, and multi-faceted fusion.

• MPNet [21]: A GNN model with propagation at-
tention mechimism.

• Gman [28]: A graph multi-attention model utiliz-
ing an encoder-decoder architecture.

• ESG [17]: A model for capturing interactions in
time series using evolutionary graph structures.
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