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Abstract
A wide variety of literature has aimed to integrate the road network into spatial predictive tasks by utilising non-Euclidean
distance metrics. Many of these studies have concentrated solely on the length of the path between nodes in a pairwise
fashion, which disregards important topological properties and structure of the road network as a whole. Given the increasing
popularity of graph-based methodologies such as Graph Neural Networks, this work reflects on the conventional approaches
and proposes a graph-based perspective to incorporate road network information in the context of geospatial prediction.
Specifically, we propose a unified graph structure that incorporates both target nodes and road nodes and retains both
geospatial (location) and topological (structure) information. We then conduct a comparative experiment including statistical
models, machine learning techniques, and graph-specific models. The results of our experiment demonstrate that representing
road-topology in a graph-based manner extends the range of available techniques in contexts where roads play an important
role, i.e. real estate valuation modeling. Our approach is also highly interpretable and can be easily visualized to provide
insightful results.
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1. Introduction
For many decades, scholars have recognized the impor-
tance of spatial relationships amongst observations in
contexts where observations are associated with a partic-
ular location [1]. When tasked with the construction of a
predictive model for such observations, it is well known
that spatial relationships should be derived in a different
manner compared to conventional (non-spatial) settings.
That is, the assumption of independent and identically
distributed random variables typically does not apply, as
spatial information comes with dependency structures
that must be taken into account.
Throughout the past years, we have thus observed a

variety of specialized techniques being applied to pre-
dictive tasks in the geospatial domain, which typically
require the construction of a pairwise distance matrix be-
tween observation or the definition of a kernel function
to define a neighborhood around observations. Many
existing applications do so by expressing the notion of
proximity between observations in Euclidean terms (“as-
the-crow-flies”), based on an idealized Cartesian map.
Some works have challenged this assumption, and

have argued for using non-Euclidean distance [2]. Es-
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pecially in urban settings, it was observed that usage of
distance metrics based on travel times and road distances
could lead to a significant improvement in terms of pre-
dictive power [3, 4], for instance in the context of real
estate valuation (e.g. house price prediction) or rental
cost estimation, i.e. targets where the road topology is
understood to play an important role.
However, the usage of road-based distance measures

or road networks in general comes with particular chal-
lenges. That is, many statistical techniques make as-
sumptions in terms of covariance or variogram properties
which cannot be guaranteed with non-Euclidean distance
functions. As such, attempts to use such distance met-
rics typically apply Minkowski approximations to make
the resulting metric behave more properly. Another ap-
proach, commonly applied for kernel-based techniques,
is to add “barriers”: obstacles that influence the shortest
path between two points. However, correctly modeling
road networks would require adding in barriers around
every road, which negatively impacts commonly used
kernel functions such as the radial basis function.

In this work, we explore an alternative mechanism to
incorporate the road topology into a geospatial predic-
tive task, namely a graph-based representation where
a road network is converted into a graph consisting of
vertices and edges. We introduce here an adjusted graph
representation which also retains location information
for vertices based on which euclidean distances can still
be easily retrieved. We argue that this representation
offers a best of both worlds approach, based on which
both traditional statistical and machine learning meth-
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ods, as well as graph-centric approaches can be easily
applied. As such, our goal is to convey the following
contributions:

• We present a graph-based representation for
geospatial data which retains both location and
road topology information;

• We conduct a comparative experiment including
well-known statistical and machine learning tech-
niques together with novel graph-based models
adapted to our representation;

• We show how our representation leads to inter-
pretability benefits;

• An implementation of our work is made publicly
available1.

The remainder of this work is structured as follows:
Section 2 provides an overview of related work. Next,
Section 3 presents our methodology towards construct-
ing a graph-based representation for geospatial data and
describes graph-centric models that can be applied on
it. Section 4 then describes the experimental setup to
compare a number of geospatial models, including the
graph-centric models described previously. Section 5
discusses the results, and illustrates the interpretability
benefits of our approach. Finally, the paper is concluded
in Section 6.

2. Related Work
Traditional statistical approaches towards modeling re-
gression tasks in a geospatial setting are grounded on
exploring the correlation between geographical instances
using Euclidean distance as a basis [5]. Various interpo-
lation techniques, such as Kriging [6], geographically
weighted regression (GWR) [7], and inverse distance
weighting (IDW) [8] have been widely utilized in this
regard.
As was elaborated in the introductory section, it is

possible to utilize another distance metric (e.g. to calcu-
late pairwise distances in the case of Kriging) or kernel
function (in the case of geographically weighted regres-
sion), which in theory allows the user to break away
from the Euclidean assumption. For example, [9] investi-
gated this approach by applying a GWR model calibrated
with a non-Euclidean metric that included road network
distance and travel time metrics. In [3], similar metrics
where utilized and combined with a Kriging model. To
satisfy the underlying assumptions of this method, the
authors present a Minkowski approximation to make
the resulting metric well-behaved in terms of symme-
try and the triangular inequality property. In [10, 4],
similar adjustments were proposed, where the authors

1See: https://github.com/ArmonGo/knnroadgraph

rely on embedding approaches and dimensionality re-
duction techniques such as Isomap to tackle the issue
of the non-Euclidean distance metric leading to invalid
spatial covariance. Whilst rooted in solid statistical the-
ory, one drawback of this group of techniques is that
ultimately, such approximations do remove some more
intricate details resulting from the road network connect-
ing instances. Additionally, relying on pairwise distances
between observations does cause that a more global in-
sight in terms of the road topology (or road network) is
lost.
Other scholars have also focused towards exploring

a graph-oriented perspective for geospatial prediction.
Notably in [11], the authors argue towards an integra-
tion of network information with location information
by directly leveraging the road network as a graph rep-
resentation, which is most closely in line with what is
presented herein. Contrary to that work, our focus lies
more on fine-tuning the manner how the graph is utilized
to establish predictions rather than efficient query mech-
anisms. Recent work such as [12] has also confirmed the
viability of this approach.

Given the growing popularity of deep learning tech-
niques that work directly on graph-based data in recent
years, an increasing number of researchers are also ex-
ploring potential solutions for house price prediction by
applying related techniques. For example, [13] make use
of geometric learning and apply an attention mechanism
in the context of real estate appraisal. [14] uses a graph
neural network on a graph representation constructed us-
ing point of interest information. Nonetheless, these ap-
proaches suffer once more from a disconnect between the
geospatial and graph perspective: distance-based meth-
ods abstract away the road topology and have to rely
on approximations, whereas graph-based methods have
been mainly centered on incorporating the instances as
vertices and connecting them—likewise—based on Eu-
clidean or road distance and have seldomly considered
the notion that a direct graph structure follows from
a given road topology. Notably, this disconnect is also
apparent from an interpretability angle, e.g. when visu-
alizing results of a given predictive model, where most
displays exhibit e.g. predictions over distinct segments
on the road network without being able to provide more
granular predictions over, say, a long singular street seg-
ment.

In this work, we take a new look at the graph-oriented
perspective and propose an adjusted representation
which shows that both road topology as well as loca-
tion information can be easily incorporated in a singular
view. Based on this representation, we show that novel
graph-centric approaches can be easily applied by means
of a comparative experiment. We also show that our rep-
resentation leads to interpretability benefits by means of
naturally-understandable visualization and retaining the

https://github.com/ArmonGo/knnroadgraph


ability to make predictions on a point level rather than
street or street-segment level only.

3. Geospatial Graph Methodology
In this section, we describe the two key contributions of
this work. First, we detail our graph-based representa-
tion and how it can be constructed given a set of spatial
observations and a road network. Second, we describe an
adjusted k-Nearest Neighbor approach as a graph-centric
technique that leverages this representation.

3.1. Representation and Construction
A graph is a structure over a set of objects detailing how
pairs of objects are in some sense “related”. The objects
are typically denoted as vertices (or nodes) whereas the
pairs are denoted as edges (or links, arcs). Formally, a
graph is a pair 𝐺 = (𝑉 , 𝐸) with 𝑉 the vertices and 𝐸 ⊆
{(𝑣𝑖, 𝑣𝑗, 𝑤) ∈ 𝑉 2 × ℝ+0 ∧ 𝑣𝑖 ≠ 𝑣𝑗}, where 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 and 𝑤 is
the weight of the edge. Each element 𝑣 ∈ 𝑉 is defined
as a tuple (𝑥, 𝑦 , 𝑡 , 𝑝) with 𝑥 and 𝑦 spatial coordinates, 𝑡 ∈
{𝑟𝑜𝑎𝑑, 𝑡𝑎𝑟𝑔𝑒𝑡} indicating the vertex type (road segment
node or node carrying a target value) and 𝑝 ∈ ℝ the
target value (i.e. estate price). Only target nodes carry
target values, so ∀(𝑥, 𝑦 , 𝑡 , 𝑝) ∈ 𝑉 ∧ 𝑡 = 𝑟𝑜𝑎𝑑 ∶ 𝑝 = ∅,
and target nodes need to be connected to a road node, so
∀(𝑣𝑖, 𝑣𝑗, 𝑤) ∈ 𝐸 ∶ ¬(𝑡𝑦𝑝𝑒(𝑣𝑖) = 𝑡𝑎𝑟𝑔𝑒𝑡 ∧ 𝑡𝑦𝑝𝑒(𝑣𝑗) = 𝑡𝑎𝑟𝑔𝑒𝑡),
with 𝑡𝑦𝑝𝑒 a function returning the type of a vertex.

The end result is a graph structure with two node types,
geospatial coordinates for all nodes, target values for one
node type, and edges inter-connecting road nodes as well
as target nodes to the road structure. This structure is
sufficient to present a straightforward view of a graph
and geospatial representation. Note that traditional tech-
niques can simply utilize the geospatial coordinates and
targets the vertices. Also, we define 𝑑𝑖𝑗 to represent the
length of geodesic path between 𝑣𝑖, 𝑣𝑗 ∈ 𝑉, the geodesic
path being the shortest path between two vertices utiliz-
ing the edge weights, e.g. using Dijkstra’s algorithm [15].

We now detail the construction of such a graph given
a series of instances with coordinates and associated tar-
get values, e.g. house prices. We also assume access
to the road topology or geometry2. Common geospa-
tial notation describes roads as a set of “LineString” ob-
jects (a sequence of points) or “MultiLineString” objects
(a collection of the former though with no guarantees
on disjointedness amongst the members), i.e. through
the “Well-Known Text” (WKT) markup language for rep-
resenting vector geometry objects, a format originally
defined by the Open Geospatial Consortium (OGC) and
now by the ISO/IEC 13249-3:2016 standard [16]. For sake

2E.g. through OpenStreetMap as is provided in our reference
implementation.

Algorithm 1 Geospatial graph construction from road
lines and target points
Input: 𝑅 = {(𝑥1, 𝑦1, 𝑥2, 𝑦2)} set of road lines
Input: 𝐷𝑥, 𝐷𝑦, 𝑦𝑡 vectors of target coordinates and values
Output: 𝐺 = (𝑉 , 𝐸) a graph with road and target nodes

Add road nodes and edges
for (𝑥1, 𝑦1, 𝑥2, 𝑦2) ∈ 𝑅 do

𝑣𝑖 ∶= (𝑥1, 𝑦1, 𝑟𝑜𝑎𝑑, ∅)
𝑣𝑗 ∶= (𝑥2, 𝑦2, 𝑟𝑜𝑎𝑑, ∅)
𝑉 ∶= 𝑉 ∪ {𝑣𝑖, 𝑣𝑗}
𝐸 ∶= 𝐸 ∪ (𝑣𝑖, 𝑣𝑗, 𝑒𝑢𝑐𝑙(𝑣𝑖, 𝑣𝑗))

end for

Merge road nodes
for 𝑣𝑖 ∈ 𝑉 do

𝐶 ∶= {𝑣𝑗 ∈ 𝑉 |𝑣𝑖 ≠ 𝑣𝑗 ∧ 𝑒𝑢𝑐𝑙(𝑣𝑖, 𝑣𝑗) < 𝜖}
Remove edges from 𝐸 between 𝑣𝑖 and a 𝑣𝑗 ∈ 𝐶
Reconnect edges in 𝐸: replace endpoint 𝑣𝑗 ∈ 𝐶 with 𝑣𝑖
𝑉 ∶= 𝑉 ⧵ 𝐶

end for

Add target nodes and edges
for (𝑥, 𝑦 , 𝑝) ∈ ((𝐷𝑥, 𝐷𝑦) × 𝑦𝑡) do

𝑣𝑡 ∶= (𝑥, 𝑦 , 𝑡𝑎𝑟𝑔𝑒𝑡, 𝑝)
Find closest edge 𝑒𝑐 = (𝑣𝑖, 𝑣𝑗, 𝑤) ∈ 𝐸 to 𝑣𝑡 with both

endpoints road nodes
Find closest point (𝑥𝑐, 𝑦𝑐) along line of edge 𝑒𝑐 to 𝑣𝑡
𝑣𝑐 ∶= (𝑥𝑐, 𝑦𝑐, 𝑟𝑜𝑎𝑑, ∅)
𝑉 ∶= 𝑉 ∪ {𝑣𝑡, 𝑣𝑐}
𝐸 ∶= 𝐸 ∪ {(𝑣𝑖, 𝑣𝑐, 𝑒𝑢𝑐𝑙(𝑣𝑖, 𝑣𝑐)), (𝑣𝑐, 𝑣𝑗, 𝑒𝑢𝑐𝑙(𝑣𝑐, 𝑣𝑗))}
𝐸 ∶= 𝐸 ∪ {(𝑣𝑡, 𝑣𝑐, 𝑒𝑢𝑐𝑙(𝑣𝑡, 𝑣𝑐))}
𝐸 ∶= 𝐸 ⧵ {𝑒𝑐}

end for

of brevity, we do not formalise these objects in detail, but
will assume simply a set of roads segments as a set of
𝑅 = {(𝑥1, 𝑦1, 𝑥2, 𝑦2)} lines, where (𝑥1, 𝑦1), (𝑥2, 𝑦2) are the
corresponding coordinates for the two points defining
the line.
The construction of the graph representation is out-

lined in Figure 1 and further detailed in Algorithm 1. The
first step consists of defining the main road topology by
adding in road nodes and edges (𝑒𝑢𝑐𝑙 is returns the Eu-
clidean distance between two vertices using their spatial
location). This is, in practical terms, not directly ready
for use, i.e. numerical stability inconsistencies as well
as measurement errors typically lead to a graph with
many disconnected edges. Hence, the set of road vertices
are merged based on their spatial location as described
in [17] (𝜖 here is a small threshold value). Next, target
nodes are added in and connected to the road graph. For
the sake of computational efficiency, one could opt here
to add in edges so that each target node is connected to
their closest road node directly. Given the distance-based
edge weights which are used to derive geodesics, it is
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Figure 1: Overview of the graph construction procedure given a set of target nodes and road segments

more appropriate to connect target nodes based on spa-
tial closeness to the road network, as we cannot make
strong assumptions in terms of granularity of road seg-
mentation. Hence, we connect each target node to their
nearest found points on the road network (spatially) by
creating a road node at that nearest location, add in an
edge to the target node, add in two edges from that road
node to the original endpoints of the nearest edge (also
road nodes), and remove the original edge.

3.2. Models
To emphasize the efficacy our graph-centric represen-
tation, we present a series of modifications for the well
known k-Nearest Neighbor (K-NN) algorithm [18] to con-
struct four different variations that will be contrasted to
alternative techniques in the next section.

In general, K-NN works as follows: given a set of train-
ing instances (𝑋1, 𝑦1), (𝑋2, 𝑦2), … , (𝑋𝑛, 𝑦𝑛) each ∈ ℝ𝑑 ×
ℝ, where 𝑦 is the target value of 𝑋, the feature vec-
tor describing instances. Given a distance function
𝑑(𝑖, 𝑗) ∶ ℝ𝑑 × ℝ𝑑 → ℝ and a given point 𝑃 ∈ ℝ𝑑, let
(𝑋(1), 𝑦(1)), (𝑋(2), 𝑦(2)), … , (𝑋(𝑛), 𝑦(𝑛)) be the reordering of
the training instances so that 𝑑(𝑋(1), 𝑃) ≤ ⋯ ≤ 𝑑(𝑋(𝑛), 𝑃).
Given a value 𝑘 ≥ 1, predictions for new points can be
made as follows:

̂𝑦 (𝑃) ∶ ℝ𝑑 → ℝ =
𝑘
∑
𝑖=1

𝑤(𝑖) × 𝑦(𝑖) (1)

where𝑤 = ⟨𝑤(1), … , 𝑤(𝑘)⟩ a vectorweighting the neigh-
bors. By default, 𝑤 is uniform so that 𝑤𝑖 =

1
𝑘 for each 𝑖. Of-

ten, the inverse distance is also used, i.e. 𝑤𝑖 =
∑𝑘

𝑖=1 𝑑(𝑋(𝑖),𝑃)
𝑑(𝑋(𝑖),𝑃)

(a small constant can be added to prevent division by zero;
alternatively, in the presence of zero distances, 𝑤𝑖 = 1 if
𝑑(𝑋(𝑖), 𝑃) = 0 or 0 otherwise).
Similar to [11], we will use as a distance function the

length of the geodesic path on the constructed graph, so
that

𝑑(𝑥1, 𝑦1, 𝑥2, 𝑦2) ∶ ℝ2 × ℝ2 → ℝ = 𝑑𝑣𝑙(𝑥1,𝑦1),𝑣𝑙(𝑥2,𝑦2) (2)

Table 1
Different variations of the proposed K-NN approach

Name Decay Minmax Weighting function

KNN-Power 7 7 Power inverse
KNN-PowerDecay 3 7 Power inverse
KNN-Softmax 7 3 Softmax
KNN-SoftmaxDecay 3 3 Softmax

with 𝑑𝑖𝑗 returning the length of the geodesic path
between two nodes 𝑖, 𝑗 ∈ 𝑉 as introduced earlier, the
geodesic path being the shortest path between two ver-
tices utilizing the edge weights and 𝑣𝑙(𝑥, 𝑦) = ⋃{𝑣 ∈
𝑉 |𝑡𝑦𝑝𝑒(𝑣) = 𝑡𝑎𝑟𝑔𝑒𝑡 ∧ 𝑥(𝑣) = 𝑥 ∧ 𝑦(𝑣) = 𝑦} returning the
node positioned at a given location. For instances present
in the given training set, it is guaranteed by construction
that they can be found in the graph. However, given
a new position 𝑃, it is likely no matching node can be
found. Two approaches are possible to resolve this. First,
if the set of nodes to be predicted on during inference
is known, they can be simple added in as target nodes
with their target set blank. They are then to be ignored
during the retrieval of neighbors (as neighbors should
only consist of nodes considered to be in the train set).
This procedure allows that the full graph and distances
can be pre-calculated and is hence more computation-
ally efficient. In case inference over unknown nodes is
necessary, one has to modify the graph at inference time,
i.e. add 𝑃 as an target node to the graph, find the closest
connection point, add it as a road node to the graph, add
an edge to connect the node to the graph, add two edges
from the connection point to the original endpoints of
the closest edge, remove the original edge, and then infer
the closest neighbors only using target nodes different
from 𝑃.

Next, we introduce the following methods to establish
the weight vector 𝑤𝑖. First, weights are set equal to the
retrieved distances 𝑤𝑖 = 𝑑(𝑋(𝑖), 𝑃). Naturally, they do not
yet sum to one. First, a decay effect can be optionally
applied as such:

𝑤𝑖 = 1 − exp(−𝛼 ∗ 𝑤𝑖) (3)



with 𝛼 the decay amount. Afterwards, minmax scaling
can be applied so that

𝑤𝑖 =
𝑤𝑖 − 𝑚𝑖𝑛(𝑤)

𝑚𝑎𝑥(𝑤) − 𝑚𝑖𝑛(𝑤)
(4)

Next, to establish the final weights, one of both weight-
ing functions has to be applied. The first choose is to
apply a power inverse weighting:

𝑤𝑖 = (
𝑚𝑎𝑥(𝑤)

𝑤𝑖
)𝛽 (5)

with 𝛽 a hyperparameter to adjust the distribution of
neighboring distances. Alternative, a softmax weighting
can be applied:

𝑤𝑖 = exp(
−𝑤𝑖
𝜎

) (6)

with 𝜎 a hyperparameter to adjust the distribution of
neighboring distances. Finally, the weights are normal-
ized so that:

𝑤𝑖 =
𝑤𝑖

∑𝑘
𝑖=1 𝑤𝑖

(7)

Not all scaling steps are necessary depending on the
weighting function chosen: four variations of the steps
above are viable and are summarized in Table 1.

4. Experimental Setup
In this section, we describe an empirical experiment to
compare our presented K-NN based models with other
well-known geospatial predictive modeling techniques,
using a collection of real-life datasets.

4.1. Datasets
Four different datasets were collected, encompassing dif-
ferent regional location and predictive tasks across the
country of Belgium. To retrieve the road network, official
and open road data provided by the Flemish geospatial in-
stitute3. Regarding instances, properties where sourced
for the cities of Brussels and Antwerp respectively. An
open Airbnb dataset4 was used to provide a rental-based
regression target (price per property per person per night
per num. bedrooms). We also obtained properties with
a valuation based sale regression target (i.e. house price
per square meters) for both cities from a Belgian real
estate platform.

Table 2 describes the different datasets and properties
of the resulting graph after conversion. Each dataset
cleaned to remove duplicate values and was then par-
titioned into a training set (60%), a validation set (20%)

3See: https://www.vlaanderen.be/datavindplaats/
4See: http://insideairbnb.com/get-the-data/

Table 2
Different datasets used in the experiment and properties of
the constructed graphs

Name Region Target # Target
nodes

# Road
nodes

# Edges

A-S Antwerp Sale price 1190 10265 14846
A-R Antwerp Rental price 1964 11026 16382
B-S Brussels Sale price 415 17571 26095
B-R Brussels Rental price 4256 21327 33660

and a test set (20%). Furthermore, transformations were
applied to the coordinate systems describing property
locations and road locations in order to align them to
the same Cartesian coordinate system (EPSG:31370). The
datasets are also visualized in Figure 2. Note that the
sale-based datasets exhibit an even distribution across
the map, whilst the rental-based data is more concen-
trated.

4.2. Models
We include the followingmodels in our comparison. First,
GWR [7] and Kriging [6], both traditional geospatial sta-
tistical techniques, using Euclidean distances for both
and GWR fitting an intercept only using an adaptive ker-
nel. We also include K-means [19], by first clustering
based on the (normalized) geospatial coordinates using
Euclidean distance and then using the average target per
cluster to predict on unseen observations. K-means++
was used as the initialization scheme. A standard CART
regression tree (“Reg. Tree”) [20] as well as Random For-
est [21] was also considered, as well as default K-NN

Figure 2: Visualization of the different graphs. Layout is
performed using each node’s spatial coordinates. Target nodes
are colored according to their target value (lighter is more
expensive). Rows: Antwerp, Brussels. Columns: sale, rental

https://www.vlaanderen.be/datavindplaats/
http://insideairbnb.com/get-the-data/


using Euclidean distances with uniform and inverse dis-
tance weights (“KNN-EuclUni” and “KNN-EuclInv”) [18].
With our graph representation, we include the four K-NN
adaptations presented above as well as another graph-
based technique, namely Label Propagation [22], a semi-
supervised algorithm that assigns labels to unlabeled
nodes in a graph by spreading labels from labeled nodes.
Since Label Propagation does not guarantee proper con-
vergence for regression tasks, we first discretize the target
by binning it and using the average price per bin as the
target when predicting on new observations.
Hyperparameters for all models were systematically

tuned on the validation set using mean absolute error
(MAE) before deciding upon a final model which was
then evaluated on the unseen test set. Evaluation re-
sults are reported using MAE and root mean square
error (RMSE). The full hyperparameter tuning grid is
provided in Table 3. All experiments were executed us-
ing Python and the scikit-learn, PyKrige, mgwr, and
PyTorch Geometric packages.

5. Discussion
In this section, we present the results of our experiments
and highlight interpretability benefits offered by our ap-
proach.

5.1. Results
The results of the experiments on the four datasets are
provided in Table 4. With regards to MAE, we notice
that the graph-centric methods (bottom half in the ta-
ble) outperform the traditional geospatial and machine
learning techniques for three out of four datasets. With
regards to RMSE, the results are more in favor of tradi-
tional techniques though here too we notice that one of
the graph-based K-NN techniques obtains the advantage.
Models leveraging the graph structure hence show

an interesting alternative compared to those based on
location only with promising results. These findings
highlight the importance of incorporating both location
and topological structure and suggest the potential for
utilizing graph structures in predictive modeling tasks.
We must, however, highlight the various limitations still
present. First of all, executing the experiment over more
datasets and over repeated train-validation-test splits (e.g.
by means of a more complete (nested) cross-validation)
would allow to make stronger statements by means of
e.g. significance tests. Also, only geospatial coordinates
were used as regressors. For e.g. house valuation tasks,
it is common to set up hedonic pricing models where
location information is combined with other attributes
describing characteristics of the property. Merging this
with our graph based representation leads to interesting

Table 3
Overview of the hyperparameter grid for the experimental
setup. Non-listed hyperparameters were kept to their default
values

Model Hyperparameter Range

GWR bandwidth [𝑚𝑖𝑛𝑑𝑖𝑠𝑡/2, ..., 𝑚𝑎𝑥𝑑𝑖𝑠𝑡 × 2]
Kriging num. lags [5, 6, ..., 100]
K-means k [1, 2, ..., 20]
Reg. Tree 𝑎𝑙𝑝ℎ𝑎 (pruning) [0.0, 0.1, 0.2, ..., 2.0]
Random Forest max. feats [0.1, 0.2, ..., 1.0]
KNN-EuclUni k [1, 2, ..., 20]
KNN-EuclInv k [1, 2, ..., 20]

KNN-Power
k
𝛽 (power)

[1, 2, ..., 20]
[0, 0.5, ... 3]

KNN-PowerDecay
k
𝛽 (power)
𝛼 (decay)

[1, 2, ..., 20]
[0, 0.5, ... 3]
[0, 0.1, ... 1]

KNN-Softmax
k
𝜎 (denom.)

[1, 2, ..., 20]
[0, 0.1, ... 2]

KNN-SoftmaxDecay
k
𝜎 (denom.)
𝛼 (decay)

[1, 2, ..., 20]
[0, 0.1, ... 2]
[0, 0.1, ... 1]

Label Propagation

num. bins
bin. strategy
num. layers
alpha

[2, 3, 4, 5]
[uniform, quantile, kmeans]
[1, 5, 10]
[0, 0.1, ..., 1.0]

avenues for future work which will be discussed in the
concluding section.

5.2. Interpretability
In many settings, it is important for constructed predic-
tive models (geospatial or otherwise) to be interpretable.
For instance, geospatial models are often used to make
decisions that can have significant impacts on the envi-
ronment, public health, and the economy. For geospatial
models, an obviously appealing avenue towards getting
insights in predictions offered by the model is to visual-
ize the results on a map. Unlike previous visualization
methodologies that rely on community segmentation or
heatmaps, our approach quite naturally leads to a vi-
sualization where the road network is used in a direct
manner.

Given a graph as detailed above and one of the K-NN
based models, a visualization can be set up by interpo-
lating across each edge and querying the model for its
prediction for this new point. Note that this potentially
leads to a large amount of predictions to be generated,
which can be computationally expensive. As such, we
also provide an approximation where predictions are gen-
erated for each road node present in the graph, which is
then used to interpolate values across each edge. Visu-
alizations for the four datasets are provided by Figure 3,
overlaid on a terrain background. As can be observed,
central areas of both cities display higher prices compared
to the suburban areas. In Brussels, the South-Eastern part
has higher prices (as is known), while in Antwerp, the
highest prices spread out from the central city along the



Table 4
Experimental results. Test set MAE and RMSE evaluation results are shown for each model and dataset. The best performing
model for each dataset and error metric is indicated in bold.

Evaluation MAE RMSE

Models A-S A-R B-S B-R A-S A-R B-S B-R

GWR 644.87 37.56 862.33 42.95 894.83 57.50 1137.81 295.46
Kriging 714.26 35.68 858.32 42.14 1002.26 55.53 1133.16 295.57
K-means 688.25 35.19 902.83 42.54 927.89 55.01 1169.69 295.95
Reg. Tree 838.72 39.63 947.18 43.84 1150.33 75.15 1385.92 298.61
Random Forest 661.04 34.67 823.75 44.28 897.68 63.33 1162.65 296.91
KNN-EuclUni 635.16 42.13 967.61 44.83 887.88 126.52 1376.47 297.23
KNN-EuclInv 624.77 45.94 822.04 45.67 851.91 179.29 1131.50 297.84

KNN-Power 618.67 35.58 845.25 45.16 856.29 63.01 1133.21 297.48
KNN-PowerDecay 643.99 35.58 862.36 45.16 895.48 63.01 1128.03 297.48
KNN-Softmax 722.99 67.80 1063.47 57.43 989.49 427.43 2452.17 322.27
KNN-SoftmaxDecay 726.27 68.57 1070.86 57.93 996.93 429.33 2481.81 323.45
Label Propagation 857.03 33.09 888.70 39.73 1262.81 56.39 1254.80 297.18

river, indicating a discernible trend. Also interesting is
the variation between the rental and sale targets. Streets
located near tourist destinations, universities, and em-
bassies demonstrate the higher prices in the rental map,
whilst on the sale map, the prices of streets exhibit a
smoother tendency.

6. Conclusions
The primary aim of this work was to showcase the possi-
bility of representing road networks and location-bound
observations as graphs and to examine the potential use-
fulness of graph-based techniques in predictive modeling
tasks. A comparative experiment was conducted to il-
lustrate the predictive and interpretative capabilities of
graph-oriented methods.
The results provide some initial insights towards uti-

lizing graph-based representations and techniques which
retain both location information (coordinates) as well
as topological information (road-house network struc-
ture). The limitations should also be acknowledged:
an exhaustive study should consider more datasets and
modeling techniques, stemming from different regions
exhibiting differing population densities (our datasets
stemmed from dense urban areas). This, together with a
repeated experiment, would allow to make stronger state-
ments using statistical hypothesis testing. Moreover, our
setup was limited to comparatively small datasets. When
considering large datasets and graphs, effort should be
spend on the inclusion of efficient graph construction
and neighbor retrieval mechanisms such as outlined
in [23, 24, 25, 26].

Nevertheless, we do believe that there is strong poten-
tial for future work along this direction. For instance, the
graph structure has not yet been fully exploited: feature
engineering based on e.g. centrality metrics could be an

effective strategy to easily enhance model performance.
Currently, only geospatial coordinates were used as re-
gressors. For e.g. house valuation tasks, also attributes
describing characteristics of the property are typically
available. Merging this with our graph based representa-
tion also leads to avenues towards future work, such as
leveraging geometric learning based approaches based
on message passing over graphs.

Figure 3: Visualizations of the K-NN model over the graph,
overlaid on a terrain background (source: OpenStreetMap).
Red represents higher predicted target values.
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