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Abstract
Tree-based methods have become popular for spatial prediction tasks due to their high accuracy in dividing input spaces
into regions with different predictions. However, traditional decision trees perform univariate splits, resulting in rectangular
regions. To address this limitation and provide more intuitive and accurate decision boundaries for spatial data, we propose a
novel Geospatial Regression Tree (GeoTree) with two multivariate geospatial split types, i.e. oblique and Gaussian splits.
Our approach relies on evolutionary algorithms to decide on the optimal split type, chosen among axis-parallel, oblique
and Gaussian splits, in each internal node. We conducted a simulation study using five synthetic datasets to demonstrate
GeoTree’s ability to capture orthogonal, diagonal and ellipse patterns accurately. The results confirm the proposed method’s
advantage in tree depth and stability. We also tested GeoTree on real-life residential property valuation and soil content
data. Our experiments revealed that the geospatial split types in GeoTree improve interpretability and maintain predictive
power for price prediction and soil mapping tasks based on X- and Y-coordinates. The resulting decision boundaries are more
intuitive spatial patterns on a geographic map of the study area.
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1. Introduction
Spatial prediction tasks pose a significant challenge due
to the unique nature of the spatial data. Spatial data is
characterized by spatial dependence and spatial hetero-
geneity, which makes it difficult to analyze. For spatial
applications such as soil mapping [1], disease mapping
[2, 3], property valuation [4] and land use or cover map-
ping [5], tree-based models have proven to be appropri-
ate. However, traditional decision trees with univariate
splits are limited in their ability to capture spatial pat-
terns. By drawing axis-oblique decision boundaries, the
accuracy of the method for spatial data can be signifi-
cantly improved [6]. Furthermore, introducing multivari-
ate geospatial splits can improve the accuracy of tree
based models for spatial prediction tasks as they allow
to learn from X- and Y-coordinates simultaneously.

The recent advancements in Multivariate Decision
Tree (MDT) learning have primarily focused on linear
combinations in splits and their optimization. On the
other hand, omnivariate trees can allow test conditions
to follow any non-linear function. However, most spa-
tial data sets exhibit recognizable patterns. For example,
house prices often follow street patterns, where certain
(parts of) streets are more expensive than others. Sim-
ilarly, circular patterns can be observed in historic city
centers when zooming out to the city-level. For instance,
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cities such as Brussels, Belgium and London, United King-
dom, are surrounded by a ring road that separates the
city center from the suburbs. Moreover, administrative
boundaries frequently follow non-rectangular shapes, as
well as house prices, as shown in Figure 1. Despite these
spatial patterns, previous research in spatial prediction
has yet to incorporate them into tree-based models.

Therefore, we propose a new multivariate decision
tree algorithm that integrates three different split types:
axis-parallel splits, oblique splits and Gaussian splits. In
addition, we introduce a Genetic Algorithm (GA) to gen-
erate the oblique and Gaussian candidate splits within the
internal nodes. The combination of these multivariate
split types with the traditional axis-parallel split enables
the proposed method to recognize spatial patterns in
geographic location data more accurately and with sim-
pler trees. As a result, the Geospatial Regression Tree
(GeoTree) provides more intuitive decision boundaries
and less complex trees, making it more interpretable than
existing decision tree algorithms. We demonstrate that
our new decision tree algorithm can capture spatial pat-
terns more effectively than both traditional regression
trees and oblique regression trees for regression tasks.
Using synthetic data sets, we showcase the proposed
method’s efficient pattern learning ability, with limited
tree depth and error. In particular, our advanced synthetic
data set that reflects real spatial patterns demonstrates
GeoTree’s superior performance in error, tree depth and
stability. Finally, we apply the proposed tree algorithm
with the geospatial split types to real-life property valua-
tion and soil mapping data sets, demonstrating similar
predictive power compared to existing decision tree algo-
rithms, while significantly enhancing interpretability due

mailto:margot.geerts@kuleuven.be
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Figure 1: Median log price per commune in the province of
Namur, Belgium.

to shallower and smaller decision tree models and more
intuitive decision boundaries that can be easily visualized
on a geographic map.

In the next section, we will review relevant literature
on MDTs and iterative methods used for decision tree
learning. In Section 3, we introduce the inner workings
of GeoTree. We report the results for the experimental
evaluation in Section 4 and critically discuss the proposed
GeoTree in comparison with two baseline methods using
on the one hand synthetic data sets and on the other
hand real-life property valuation and soil mapping data.
Finally, we summarize our findings and provide a critical
analysis of GeoTree, concluding with future research
directions in this area.

2. Related Work
As spatial prediction tasks benefit from the introduction
of multivariate splits in tree-based models, the following
section introduces MDTs and approaches to MDT learn-
ing. MDTs differ from traditional decision trees in the
split type used. While traditional decision trees split the
data based on a test condition of the form 𝑥𝑖 ≤ 𝑐, with
𝑥𝑖 the i𝑡ℎ feature, MDTs include multivariate conditions,
𝑓(x) ≤ 𝑐. In [7], multivariate decision tree algorithms
are discussed. The authors identify three split types, uni-
variate splits, multivariate splits that consist of linear
combinations of features, and multivariate splits that in-
clude non-linear combinations. Most researchers have
focused on axis-oblique splits, i.e. linear combinations,
and have demonstrated the benefits for spatial analysis
[6, 1] and classification in general [8]. However, non-
linear combinations have been included using quadratic
functions and power laws [9, 10]. Further, splits have
been generalized even more by using neural networks,
decision trees and random forest at internal nodes [11].
Nevertheless, this generalization increases the cost com-
plexity of learning an MDT substantially.

Instead of non-linear functions with many parameters,

constraining splits to a certain shape such as hyperplanes
or Gaussians might reduce complexity. However, deci-
sion tree algorithms that have implemented Gaussian
distributions also introduce soft decisions [12, 13]. In
addition to introducing hard Gaussian decisions, our pro-
posed method combines axis-parallel, axis-oblique and
Gaussian splits in contrast to previous work.

Another approach to address complexity is to estimate
the weights 𝑤𝑖 or function 𝑓 iteratively. While in [8] an
analytical approach is taken by constructing a House-
holder matrix from the dominant eigenvectors of the co-
variance matrix of each class to find the best hyperplane,
heuristics such as single-solution based metaheuristics,
evolutionary algorithms and swarm intelligence meth-
ods can improve split searching [14]. Evolutionary algo-
rithms have been more popular recently, but researchers
have mostly used them for global search rather than
split searching. To find near-optimal splits, genetic algo-
rithms (GA) are employed most often within the family
of evolutionary algorithms. A GA is a heuristic that lets a
population of individuals evolve over generations, using
three modification operators, with respect to a fitness
function. In [9], two GAs are used to search function
parameters and weights for non-linear splits. Whereas
they require a GA at both levels, we reduce complexity
by employing one GA for searching parameters for either
an oblique split or a Gaussian split.

3. An Evolutionary Geospatial
Regression Tree Algorithm

Our work focuses on binary decision trees for regression
with numerical features. A regression tree takes as input
an observation (𝑥1, ..., 𝑥𝑑, 𝑦) where 𝑥𝑖 are the features
which are real-valued, d is the number of features and y
is the real-valued target variable. A trained regression
tree consists of test conditions of the form 𝑥𝑖 ≤ 𝑐 with
𝑐 a constant, producing axis-parallel splits. Typically, a
top-down greedy approach is used for building the tree.
This means that the best split, determined by a feature 𝑖
and constant 𝑐, is chosen at each node, starting at the root
node, effectively splitting each node into two child nodes
until the specified depth is reached or the leaf nodes
are pure. The best split produces the largest reduction
in mean squared error of the predictions. In essence, a
regression tree sorts the observations in the training set
through the tree, according to the test conditions in the
internal nodes, and predicts in each leaf node the average
of all observations sorted into that node.

GeoTree’s key innovation lies in the inclusion of two
new bivariate decision tree splits, the oblique split and
a Gaussian split, in addition to the axis-parallel split.
The oblique split divides the input space in two regions
based on a linear combination of two features, 𝑤1 * 𝑥1 +



𝑤2 * 𝑥2 ≥ 𝑐. On the other hand, the Gaussian split
defines an ellipse in a two-dimensional space, 𝑑(𝑥, 𝑓1) +
𝑑(𝑥, 𝑓2) ≥ 𝑐. This is supported by the mathematical
property that an ellipse consists of all points of which the
sum of the distances to both focal points (𝑓1, 𝑓2) is equal
to a constant. Therefore, the Gaussian split separates
input data located inside of the ellipse from input data
located on or outside of the ellipse.

As for oblique splits, finding the best Gaussian split is
NP-hard [15]. In addition, a brute-force search that enu-
merates all possible hyperplanes and ellipses, based on
two and three data points respectively, has an exponen-
tial cost. Two points are necessary to define a hyperplane
and three to define an ellipse, where two points function
as focal points and the third is used to calculate the con-
stant 𝑐. A GA is employed instead to generate oblique
and Gaussian candidate splits in each internal node. We
base the fitness function on the evaluation criterion for
the decision tree, that is, the gain in mean squared error.
As such, the fitness function is defined by

𝑀𝑆𝐸𝑝𝑎𝑟𝑒𝑛𝑡− (
|ℒ|
𝑛

∑︁
𝑙∈ℒ

(𝑦𝑙− 𝑦)2 +
|ℛ|
𝑛

∑︁
𝑟∈ℛ

(𝑦𝑟 − 𝑦)2)

where ℒ andℛ are the sets of observations sorted to the
left and right respectively by the candidate split. Algo-
rithm 1 presents the logic of the GA-based candidate split
generation that returns the best split. This algorithm is
invoked for both proposed splits separately, as the no-
tion of an individual is specific to the type of split. As
mentioned above, an oblique split can be defined by two
two-dimensional points and a Gaussian split by three
two-dimensional points. Consequently, an individual for
an oblique candidate split is a list of four floats, or two
points 𝑥1 and 𝑥2 as can be seen in Figure 2a, to make the
hyperplane. An individual for a Gaussian candidate split
is defined as a list of six floats, or three points 𝑥1, 𝑥2 and
𝑥3 (see Figure 2b), to generate an ellipse. The population
is initialized by randomly drawing 𝑛𝑝 times from the uni-
form distribution defined by the lower boundaries (𝑏) and
upper boundaries (𝑏). The upper and lower boundaries
are defined by the minimum and maximum values of the
two data dimensions. To reflect individuals, these values
are repeated to result in a list of four values in case of
oblique splits, while Gaussian boundaries require a list
of six values. After initialization, the evolution process
is repeated for the number of generations (𝑛𝑔). First, a
‘Hall of Fame’ variable is updated to retain the individu-
als that have the highest fitness values from the current
population. This elitist approach requires a parameter 𝑛ℎ

to indicate the number of individuals to retain. Then, the
current population is modified using selection, crossover
and mutation operators. A tournament selection is per-
formed by selecting the fittest individual in 𝑛𝑝 tourna-
ments of size 𝑛𝑡. Crossover is performed subsequently

on two individuals with a probability cxpb. This step is
implemented with a blend crossover and the required
parameter 𝛼 which determines the interval to draw new
values from based on the parents. Next, the new offspring
are mutated with a probability mutpb. Specifically, poly-
nomial bounded mutation is used to ensure individuals
range between the boundaries (𝑏, 𝑏). This operator re-
quires two additional parameters: the probability of each
value of the individual to be mutated (indpb) and the
crowding degree (𝜂). Lastly, the fittest individuals are
chosen among the offspring and the fittest of the previous
population (‘Hall of Fame’). After 𝑛𝑔 generations, the
fittest individual from the last population is returned as
the candidate split. The implementation is based on the
Python library DEAP [16].

The decision tree algorithm performs a greedy search
in each internal node by finding the best orthogonal,
oblique and Gaussian candidate split and finally choosing
the best split among the three candidate splits. Orthog-
onal candidate splits are efficiently searched by sorting
all unique values for each variable in the data set and
evaluating corresponding candidate splits. Oblique and
Gaussian splits are generated by Algorithm 1 as explained
before. The complete GeoTree algorithm is available at
https://github.com/margotgeerts/GeoTree.

Algorithm 1 Genetic algorithm for candidate split gen-
eration.

Require: 𝑏, 𝑏, 𝑛𝑝, 𝑛𝑔, 𝑛ℎ, 𝑛𝑡, cxpb, 𝛼,mutpb, indpb, 𝜂
Population ← Repeat(𝒰(𝑏, 𝑏), 𝑛𝑝)
for 𝑖 = 0 to 𝑛𝑔 do

HallofFame ← Fittest(Population, 𝑛ℎ)
Offspring ← TournamentSelection(Population,

𝑛𝑡, 𝑛𝑝)
Offspring ← Mate(Offspring , cxpb, 𝛼)
Offspring ← Mutate(Offspring ,mutpb, indpb,

𝜂)
Population ← SelectBest(Offspring +

HallofFame, 𝑛𝑝)
end for
BestIndividual ← SelectBest(Population, 1)
return BestIndividual

4. Experimental Evaluation
The performance of GeoTree is demonstrated by first
comparing the regression outcomes for five synthetic
data sets. Second, we show the benefits of our method in
two spatial applications, a real-life housing data set and
soil mapping data.

https://github.com/margotgeerts/GeoTree


(a) Oblique split individual
consisting of four chro-
mosomes, that form two
points 𝑥1 and 𝑥2.

(b) Gaussian split individual
consisting of six chro-
mosomes, that comprise
three points 𝑥1, 𝑥2 and
𝑥3.

Figure 2: Two types of GA individuals.

4.1. Experimental Setup
In order to thoroughly test the benefits of the proposed
method with two GA-generated split types, axis-oblique
and Gaussian, in combination with axis-orthogonal splits,
we consider other orthogonal and oblique regression tree
algorithms as baselines. The proposed Geospatial Re-
gression Tree (GeoTree) is compared with a traditional
Univariate Regression Tree (SkTree), and an Oblique Re-
gression Tree (ObTree). The baseline methods are imple-
mented using Scikit-learn’s decision tree regressor [17]
and a HHCart regression tree implementation [18].

To evaluate the models, we employ a repeated 5-fold
set-up, where each fold is evaluated using five repeated
experiments, resulting in 25 observations per model. We
report the performance metrics on the test set among the
five folds using the average of the five iterations. For all
models, we use the MSE as the impurity measure. We
set the hyperparameters of SkTree and ObTree to their
default values. In GeoTree, we use a GA to generate
oblique and Gaussian canidate splits. The parameter
settings of the are shown in Table 1, which results from
a grid search on a separate real-life housing data set with
spatial features. The boundaries (𝑏, 𝑏) are defined by the
minimum and maximum values of the data.

Table 1
GA parameter settings employed for oblique and Gaussian
candidate split generation in GeoTree.

Param-
eter

Value Description

𝑛𝑔 200 Number of generations
𝑛𝑝 100 Population size
𝑛ℎ 5 Hall of Fame size
𝑛𝑡 10 Tournament size
cxpb 0.9 Crossover probability
𝛼 0.05 Crossover extent
mutpb 0.2 Mutation probability of individuals
indpb 0.9 Mutation probability of chromosomes
𝜂 0.2 Crowding degree of mutation

(a) orthogonal (b) diagonal (c) ellipse

(d) mixed (e) bivariate bumps

Figure 3: Synthetic data sets

4.2. Simulation Study
To assess the performance of GeoTree and the baselines
in detecting patterns in data, we generated five synthetic
data sets with distinct patterns (see Figure 3). The tar-
get variable in the different areas defined in the data
sets is normally distributed with a varying mean. The
results for the orthogonal data set shows that while
GeoTree and SkTree can identify the true splits almost
perfectly, ObTree struggles to do so. In contrast, GeoTree
chooses correctly for orthogonal splits among the three
split types and replicates the performance by SkTree.
Similarly, GeoTree is effective in detecting the diagonal,
elliptic, and mixed patterns in the diagonal, ellipse
and mixed data sets. In addition, the experiments show
that GeoTree can identify diagonal patterns more effi-
ciently than ObTree. Finally, the bivariate bumps
data set, a synthetic spatial regression data set adapted
from [19], further confirms the superior performance of
GeoTree in comparison to the baselines. In summary,
the results show that GeoTree achieves lower error and
requires smaller trees, thereby enhancing interpretability
of the final model in comparison to traditional decision
trees.

The data sets and results are discussed in more detail
in appendix A.

4.3. Experiments on Housing and Soil
Data

Two spatial applications, house price prediction and soil
mapping, show the performance of the proposed method
in a real-life setting. The results are discussed with re-
gards to model accuracy, tree depth and size, and stability
defined by the Interquartile Range (IQR), as well as the
decision boundaries visualized in geographic space.

4.3.1. Housing data set

A real-life housing data set of the province of Namur in
Belgium is used to test the performance of the proposed



Figure 4: Box plots of test RMSE for the three models on the housing data set for different depths (n). The regression trees
have a maximum depth of 10. The average of five repeated experiments is used for each of the five folds.

(a) Clay data set

(b) Meuse data set

Figure 5: Box plots of test RMSE for the three models on the clay and Meuse data set for different depths (n). The regression
trees have a maximum depth of 6 and 8 respectively.

model in comparison with the baseline methods. The
data set contains 17 967 houses with the indexed transac-
tion price and the X- and Y-coordinates. The house prices
range between 100 000 and 600 000 euros approximately.
For the experiments, the prices are log transformed and
the X- and Y-coordinates are used as predictor variables.
The test RMSE is presented in a box plot for all models
in Figure 4. GeoTree reaches its lowest RMSE at depth
4 with a median RMSE of 0.3293. SkTree reaches a min-
imum RMSE of 0.3304 at depth 6, and ObTree reaches
a value of 0.3285 at depth 8. The difference between
the test errors of GeoTree and ObTree is not statistically
significant (𝑝-value = 0.1584), based on the corrected
repeated k-fold cross-validation test [20]. These obser-
vations add to the evidence of the simulation study that

the proposed GeoTree has an advantage in depth com-
pared to the baseline methods. A smaller depth in turn
increases interpretability. Moreover, these experiments
show that the baseline methods have a similar test error.
Table 2 also reveals that while the RMSE is similar among
the three models, GeoTree is able to achieve this error
level using significantly smaller trees indicated by the
lower amount of leaf nodes. In addition, IQR of GeoTree
is comparable to the IQR of the baseline methods, illus-
trated in Figure 4 by the box sizes. Although the box
plots show more upward outliers for GeoTree than the
baseline trees, this is only depths larger than the optimal
depth. Therefore, we can conclude that GeoTree is as
stable as the baseline methods.

Figure 6 presents the decision boundaries by the three



Table 2
Results of GeoTree and baselines for housing and soil data sets. Depth indicates the optimal depth, based on the median
RMSE shown in boxplots. Tree size is defined by the average number of leaf nodes at the respective optimal depth among 5x5
folds and standard deviation. The RMSE column displays the average RMSE at the respective depth among 5x5 folds and
standard deviation.

Data set Model Depth Tree size RMSE

Housing SkTree 6 61.4 ± 1.74 0.3300 ± 0.00296
ObTree 8 256 ± 0 0.3278 ± 0.00317
GeoTree 4 16 ± 0 0.3305 ± 0

Clay SkTree 6 61.4 ± 2.33 14.5645 ± 1.67785
ObTree 6 64 ± 0 14.6245 ± 1.17688
GeoTree 5 28.6 ± 1.41 14.9365 ± 1.52441

Meuse SkTree 8 92.7 ± 2.19 0.3816 ± 0.3739
ObTree 8 149.92 ± 0.996 0.3991 ± 0.4176
GeoTree 7 59.64 ± 3.31 0.3805 ± 0.3484

(a) Ground truth (b) GeoTree

(c) SkTree (d) ObTree

Figure 6: Plots of housing data with log transformed price in
X-Y space (a) and decision boundaries of proposed and baseline
methods on housing data (b-d).

methods for the housing data set. While these figures
show completely different patterns at first glance, the
colors (predictions) in most areas are quite similar. For
example, the lower left corner of the geographic map
contains an area in bright green. In Figure 6b this area is
odd-shaped, in Figure 6c it is rectangular shaped and a
green triangle is visible in Figure 6d, according to the split
types. Further, the decision boundaries of SkTree and
ObTree are more similar, by dividing the space in many
horizontally wide and vertically narrow rectangular re-
gions. In contrast, GeoTree draws more ellipse patterns,
with almost solely ellipses down the tree indicated by
small ellipses. Nevertheless, larger areas are bounded by
orthogonal, diagonal, and ellipse splits. This indicates
that introducing ellipse shaped splits is beneficial, in par-

(a) Ground truth (b) GeoTree

(c) SkTree (d) ObTree

Figure 7: Plots of clay percentage data in X-Y space (a) and
decision boundaries of proposed and baseline methods (b-d).

ticular, to capture fine-granular spatial patterns.

4.3.2. Clay data set

The first soil mapping data set contains clay percentage
at 3418 locations around Lake Tahoe in California, USA,
sourced from [21]. Figure 5a exhibits the RMSE on the
test set with respect to different depths, with maximum
depth 6, for the three decision trees. While all models
show little progress in test error, GeoTree achieves its
optimal depth at n = 5, and the baselines at n = 6, based
on the median RMSE. The median RMSE at these depths
is 14.83, 14.5 and 15.18 for GeoTree, SkTree, and ObTree
respectively. The RMSE on the test set for GeoTree is not
significantly different from SkTree (𝑝-value = 0.753) and
ObTree (𝑝-value = 0.6486). The stability of the methods is



(a) Ground truth (b) GeoTree

(c) SkTree (d) ObTree

Figure 8: Plots of Meuse data with log transformed zinc
concentrations in X-Y space (a) and decision boundaries of
proposed and baseline methods for the Meuse prediction grid
(b-d).

also comparable, indicated by similarly sized boxes, i.e.,
IQRs. Table 2 indicates as for the housing data that while
the RMSE is similar, GeoTree needs on average less than
half the number of leaf nodes than the baseline methods.
This leads to the conclusion that the interpretability of
our proposed method is boosted significantly in compar-
ison to traditional decision trees.

Furthermore, the decision boundaries in Figure 7 also
show much more intuitive patterns in geographic space
for soil mapping. In contrast to straight-line separations
between areas in the decision boundaries delineated by
the baseline decision trees, GeoTree is able to present
hotspots of high and low clay percentages in soil defined
predominantly by ellipses. Again, some similarities can
be found. For example, the decision boundaries in the
upper right corner of the map show a yellow hotspot of
clay percentage for GeoTree and ObTree. SkTree, on the
other hand, seems to have found this pattern as well, but
the same area is not as explored regarding the number
of splits. Considering the rugged nature of geological
phenomena, we conclude that the combination of elliptic
splits with orthogonal and oblique splits are better suited
to capture patterns in soil contents.

4.3.3. Meuse data set

Lastly, the proposed method is evaluated on one of the
most widely used soil mapping data sets for spatial anal-
ysis, the Meuse data set [22]. This data set contains mea-
surements of metals in soil around the Meuse river at
155 locations. As the number of observations is small,
a leave-one-out cross-validation set-up is used instead

of the 5-fold set-up. Similar to related work [1, 21], the
target variable is the log transformed zinc concentration
and X- and Y-coordinates are used as predictors. The
RMSE on the test set is shown in Figure 5b for the three
models with respect to depth n = 1 to 8. The median
RMSE for GeoTree is lowest at depth 7 and slightly lower
than the lowest median RMSE of the baselines, which is
achieved at depth 8. Nevertheless, the variance of these
error metrics is high, as can be seen in Figure 5b and
Table 2, due to the small size of the data set. On average,
GeoTree only requires around 60 leaf nodes to achieve a
similar error level as the baselines, compared to 93 and
150 leaf nodes for SkTree and ObTree respectively (Table
2). Figure 8 shows the data and the decision boundaries
of the methods for the area including the Meuse pre-
diction grid. Although axis-parallel decision boundaries
seem predominant even in Figure 8d, the ability to in-
clude Gaussian patterns makes the decision boundaries
by GeoTree more easy to interpret and intuitive.

5. Conclusion
In this paper, we address the incompatibility of tree-based
methods for spatial data by proposing a novel Geospa-
tial Regression Tree algorithm (GeoTree). While deci-
sion trees are known for dividing the input space into
rectangular regions, this feature is not always advanta-
geous for spatial prediction, as spatial variables exhibit
different patterns in reality. To address this issue, previ-
ous research has suggested replacing axis-parallel splits
with axis-oblique splits. However, we propose a more
advanced approach that combines bivariate oblique and
Gaussian splits with axis-parallel splits. The combination
of split types improves the regression tree’s ability to cap-
ture geospatial patterns and introduces more intuitive
and accurate decision boundaries. We rely on evolution-
ary algorithms to generate geospatial candidate splits
and choose the best split among the three split types at
each internal node. Our proposed algorithm is compared
with Scikit-learn’s univariate regression tree and the HH-
Cart oblique tree using both synthetic data and real-life
house price and soil mapping data. The results show
that GeoTree outperforms the oblique decision tree on
all synthetic data sets, particularly on the diagonal data
set. Using real-life spatial applications, we have demon-
strated that GeoTree achieves similar error metrics with
less complex and more intuitive models. Furthermore,
GeoTree models are more shallow and smaller in terms
of leaf nodes, which increases interpretability, and al-
lows for intuitive visualization of decision boundaries
on a geographic map. We have also found that the sta-
bility of GeoTree is comparable to that of the baseline
despite its non-analytical approach. In future work, we
plan to improve GeoTree by including additional features,



extending evaluation, and exploring the potential of en-
semble learning. Overall, we believe that the proposed
GeoTree algorithm has the potential to advance the field
of spatial prediction and improve the interpretability and
accuracy of models.
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A. Simulation Study

A.1. Data sets
We have generated five synthetic data sets to demon-
strate the geospatial patterns that GeoTree can detect
more accurately (see Figure 3). The data set generation
process starts in all five cases by uniformly creating data
points in a two-dimensional space. All data sets contain
4096 data points. The target variable generation differs
for each data set. The first, orthogonal data set con-
tains two orthogonal boundaries through the middle of
the first and second axis, dividing the two-dimensional
space in four equal parts (see Figure 3a). The y-values are
drawn from𝒩 (10, 2.02),𝒩 (20, 2.02),𝒩 (30, 2.02) and
𝒩 (40, 2.02). For the second data set, the diagonal data
set, four points in the two-dimensional space are selected
to generate two parallel hyperplanes (see Figure 3b). The
three respective areas separated by these hyperplanes are
assigned y-values from 𝒩 (40, 2.02), 𝒩 (10, 2.02) and
𝒩 (20, 2.02). The third, ellipse data set consists of
an ellipse shape created by three random points in the
input space (see Figure 3c). The points inside the ellipse
are assigned a y-value from 𝒩 (30, 2.02), while the y-
values for the points outside of the ellipse are drawn
from𝒩 (10, 2.02). In the fourth, mixed data set a hyper-
plane connecting two randomly sampled points divides
the space in two areas (see Figure 3d). From the points
above the hyperplane, three points are randomly sampled
to generate an ellipse. The y-values in the three result-
ing areas are drawn from𝒩 (40, 2.02),𝒩 (10, 2.02) and
𝒩 (20, 2.02). Lastly, we calculate the y-values based on
the bivariate bump function from [19], a study in which
it was used previously for spatial regression. The y-value
for each point i is calculated as 𝑦𝑖 = 𝑠𝑖1 · 𝑠𝑖2, with

𝑠𝑖𝑗 =
1

1 + 𝑥𝑖𝑗
+

(︁
5.5 · 𝑒−50·(𝑥𝑖𝑗−0.2)2

)︁
+(︁

5 · 𝑒−25·(𝑥𝑖𝑗−0.8)2
)︁

for j = 1, 2 and 𝑥𝑖1 and 𝑥𝑖2 the coordinates of point i. The
resulting y-values for the bivariate bumps data set
range between 1 and 40 (see Figure 3e).

A.2. Results for orthogonal, diagonal,
ellipse, mixed, and bivariate
bumps

Figure 9 presents the error metrics of GeoTree, SkTree
and ObTree on the orthogonal data set. The decision
trees have depth 2 which is the optimal depth for this
data set. As the data set contains four areas with different
target values, a decision tree should be able to recreate
this pattern with four leaf nodes. These box plots show
that while GeoTree can replicate SkTree’s performance,

ObTree’s errors are much higher. The decision bound-
aries of the three models on the orthogonal data set
also reveal the perfect ability of GeoTree and SkTree to
find the orthogonal patterns, in contrast to ObTree.

The test RMSE of the three models is presented in box
plots as shown in Figure 10 for the diagonal, ellipse
mixed and bivariate bumps data set. The maximum
depth is set for all methods dependent on the data set, 8
for the diagonal data set, 9 for the ellipse and mixed
data sets. GeoTree performs significantly better than the
baseline trees on the diagonal data set (see Figure 10a).
Not only can the GA-based tree find the diagonal patterns
with three splits (i.e. depth 2), the median RMSE (2.0066)
is considerably lower at this depth than the minima that
SkTree (3.2372) and ObTree (3.2788) achieve at reasonable
depth. What is apparent is that ObTree does not find
the diagonal boundaries with a shallow tree, despite the
ability to learn axis-oblique splits. While ObTree’s test
error continues to improve at depth 9, SkTree achieves a
minimum RMSE at depth 8.

For the ellipse data set, GeoTree’s error starts con-
siderably lower at depth 1 than the baseline methods and
continues this trend across depths. This is due to the
first split where GeoTree is able to draw an ellipse in the
input space, replicating the ellipse pattern in the data
set. While a decreasing trend in SkTree’s and ObTree’s
errors is visible in Figure 10b, they do not reach a similar
level. In addition, GeoTree’s Interquartile Range (IQR) is
smaller than the baseline methods as of depth 2.

Figure 10c shows a similar trend as the previous plots,
GeoTree’s error declines rapidly, while the decline in the
error of the baseline methods is more gradual. In addition,
SkTree’s and ObTree’s errors do not reach the same level
as GeoTree’s error. GeoTree reaches the lowest median
test RMSE at depth 4 (2.4685), whereas SkTree reaches a
test RMSE of 3.6054 at depth 8 and ObTree’s error ends
at 4.267.

Lastly, Figure 10d provides the results of the three
methods trained on the bivariate bumps data set with
depth 30. What stands out in this figure is that, in con-
trast to the other methods, ObTree can not improve the
train error after depth 14 and therefor stops the training
process. Nevertheless, the lowest median test RMSE is
1.72 at depth 11, compared to 0.75 and 1.16 for GeoTree
and SkTree respectively. The depths where GeoTree and
SkTree reach these values are considerably higher (29
and 24). However, at depth 11, where ObTree reaches a
minimum, GeoTree’s median test RMSE is 1.31, and at
depth 24, where SkTree reaches a minimum, GeoTree
has a value of 0.75. ObTree’s IQR of the test error is also
considerably higher than the other methods.



Figure 9: Box plots of RMSE, MAE, MAPE and 𝑟2 on the
orthogonal data set for the three models at depth 2. The
average metric on the test set of five repeated experiments is
used for each of five folds.

A.3. Evaluation
The experiments on the synthetic data sets confirm
GeoTree’s ability to efficiently detect orthogonal, diago-
nal and ellipse patterns. Figure 9 and Figure 10 show that
GeoTree finds the patterns in fewer splits and reaches
a substantially lower error on the test set with reason-
able depth than the baseline methods SkTree and Ob-
Tree. The performance on the mixed data set also shows
that GeoTree can correctly combine the different split
types. At the same time, the proposed model can perfectly
replicate a traditional univariate tree’s performance on
a data set with orthogonal patterns. Notably, GeoTree
also outperforms ObTree on the diagonal data set with
a substantial difference. The bivariate bumps data
set allows to confirm GeoTree’s superior performance
on more advanced rounded patterns compared to the
baseline methods. Though GeoTree requires a deeper
tree to reach the minimum test RMSE, the error is con-
siderably lower. In addition, the proposed method has
a lower median test RMSE than the baseline methods
at the depth where they reach a minimum. This indi-
cates that GeoTree still has an advantage in depth for the
bivariate bumps data set as for the other synthetic
data sets. Despite the added variability in candidate split
generation due to the GA, GeoTree’s stability is superior
to the baseline methods in most cases illustrated by the
IQR of the test error.



(a) diagonal

(b) ellipse

(c) mixed

(d) bivariate bumps

Figure 10: Box plots of test RMSE for the three models on different data sets for different depths (n). The trees have a
maximum depth of 8, 9, 9 and 30 for the diagonal, ellipse, mixed and bivariate bumps data set respectively. The
average of five repeated experiments is used for each of five folds.
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