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Abstract
In this paper we discuss some neuro-symbolic challenges that exist in combining a machine learning model and a symbolic
reasoning framework for directional relation prediction. In particular, we consider a recent machine learning approach that
predicts the qualitative directional relations between geographical regions, e.g., X is north-west of Y, where each region is a
polygon of boundary points, and highlight the challenges of aligning these predicted relations with the inference rules of a
well-known qualitative spatial calculus, viz., the Cardinal Direction Calculus.
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1. Introduction
Neuro-Symbolic Artificial Intelligence is a paradigm that
deals with the combination of Machine Learning models
and Logic-based frameworks; this combination should
ideally lead to unified architectures that aim to collabo-
ratively utilize both components to their fullest extent
possible. Due to its diverse and human-like nature that
involves data-driven inference and logical reasoning, as
well as its promise in handling problems that pertain to
both large amounts of data and knowledge-based rules,
Neuro-Symbolic Artificial Intelligence is an important
and re-surging topic of research [1, 2, 3, 4, 5, 6]. A classi-
fication of neuro-symbolic approaches is provided in [7,
Figure 24]; here, we focus on the class of architectures in-
tegrating learning and reasoning, a high-level illustration
of which is shown in Figure 1.

In this paper, we discuss some challenges, as well as
ways of addressing these challenges, that arise when
trying to join together a machine learning model and a
symbolic reasoning framework for directional relation
prediction, such as X is north-west of Y ; these challenges
pertain to problems that arise during this fusion of the
two paradigms in the context of qualitative directional
relation prediction. Specifically, we consider a machine
learning model for directional relation prediction from
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Figure 1: Cyclical interaction in neuro-symbolic AI as de-
picted in [8]; a symbolic framework provides symbolic (partial)
knowledge to a machine learning model, which is trained on
raw data, and (any) knowledge acquired through the model
can then be extracted and fed back to the symbolic framework
for further processing.

the recent literature that views each region as a polygon
of boundary points and then treats the task of predicting
the directional relation between two regions as a multi-
label classification problem [9]; each label corresponds
to a subset of the eight specific direction relations, viz.,
𝑁,𝑁𝐸,𝐸, 𝑆𝐸, 𝑆, 𝑆𝑊,𝑊,𝑁𝑊 (see also Figure 3). The
reasons to use machine learning instead of direct calcula-
tions to get directional relations from geometric data are
as follows: (1) direct calculations cannot automatically
adapt to varying interpretations of directional relations
but machine learning can; (2) the output of a machine
learning model for directional relation prediction can be
quantitative and thus easier to combine with other tasks
that involve quantitative inputs. At the other end, we ex-
ploit a well-known calculus, viz., the Cardinal Direction
Calculus [10, 11], from the area of Qualitative Spatio-
Temporal Reasoning (QSTR) [12, 13]. In sum, QSTR al-
lows one to spatially or temporally relate one object with
another object or oneself by using everyday, human-like,
natural language descriptions, and perform reasoning
with those descriptions. In the case of the Cardinal Direc-
tional Calculus these natural language descriptions are
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Figure 2: The training and testing pipeline of the machine learning model for directional relation prediction of [9].

nothing more than the eight directional relations that we
mentioned earlier, viz., 𝑁,𝑁𝐸,𝐸, 𝑆𝐸, 𝑆, 𝑆𝑊,𝑊,𝑁𝑊 .
However, unlike the machine learning model, which per-
forms statistical inference, the Cardinal Direction Calcu-
lus comes with its own logic-based inference rules, and
aligning the two is part of the discussion in the sequel.

The rest of the paper is organized as follows. In Sec-
tion 2 we summarize the machine learning model for
direction relation prediction of [9] and introduce the
theory behind QSTR and, in particular, the Cardinal Di-
rection Calculus. Then, in Section 3 we introduce and
expand on the neuro-symbolic research opportunities /
challenges that exist when trying to align the statistical
inference of the machine learning model with the logic-
based inference of the symbolic one. Finally, in Section 4
we conclude the paper and provide a discussion about
possible future directions of work.

2. Background

2.1. Machine Learning-based Directional
Relation Prediction

In [9], the authors discuss how to predict qualitative
directional relations between geographical regions by
using machine learning techniques, where each region
is represented as a polygon formed by a sequence of
boundary points. Figure 2 introduces the overall idea of
the model, including its training and testing process.

In particular, the authors of [9] model the problem
of predicting qualitative directional relations between
regions as a multi-label classification problem. Each la-
bel correspond to one of the eight specific directions,
i.e., 𝑁,𝑁𝐸,𝐸, 𝑆𝐸, 𝑆, 𝑆𝑊,𝑊,𝑁𝑊 , and there might

be multiple directional relations between two regions,
e.g., {𝑁𝑊,𝑁} is encoded as (1, 0, 0, 0, 0, 0, 0, 1). The
training geometric data are formed of pairs of polygons
(𝐴𝑖, 𝐵𝑖), where each pair represents a reference region
and a target region. Geometric data are pre-processed
with a hand-crafted feature extractor to extract quanti-
tative features, such as angles, areas, intersections with
regions of acceptance, etc. The labels are from binary
encoding of given qualitative directional relations from
Wikipedia, e.g., 𝑁𝑊 is encoded as (0, 0, 0, 0, 0, 0, 0, 1).
These training data are then used to train the machine
learning (ML) model. For a new pair of polygons (𝐴,𝐵),
the qualitative directional relation between 𝐴 and 𝐵 can
be predicted by the ML model via feeding to the trained
ML model their quantitative features obtained using the
same feature extractor.

2.2. Qualitative Spatio-Temporal
Reasoning

To facilitate discussion, we first recall the formal def-
inition of a qualitative constraint language, which is a
constraint language that is used to represent and rea-
son about qualitative information. A binary qualitative
spatial or temporal constraint language is based on a
finite set B of jointly exhaustive and pairwise disjoint re-
lations, called base relations [13] and defined over an
infinite domain D. The base relations of a particular
qualitative constraint language can be used to represent
the definite knowledge between any two of its entities
with respect to the level of granularity provided by the
domain D. The set B contains the identity relation Id,
and is closed under the converse operation (−1). Indefi-
nite knowledge can be specified by a union of possible
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Figure 3: The base relations of Cardinal Direction Calculus.

base relations, and is represented by the set containing
them. Hence, 2B represents the total set of relations.
The set 2B is equipped with the usual set-theoretic op-
erations of union and intersection, the converse oper-
ation, and the weak composition operation denoted by
the symbol ◇ [13]. For all 𝑟 ∈ 2B, we have that 𝑟−1 =⋃︀
{𝑏−1 | 𝑏 ∈ 𝑟}. The weak composition (◇) of two base

relations 𝑏, 𝑏′ ∈ B is defined as the smallest (i.e., most re-
strictive) relation 𝑟 ∈ 2B that includes 𝑏 ∘ 𝑏′, or, formally,
𝑏◇𝑏′={𝑏′′ ∈ B | 𝑏′′∩(𝑏∘𝑏′) ̸= ∅}, where 𝑏∘𝑏′={(𝑥, 𝑦) ∈
D × D | ∃𝑧 ∈ D such that (𝑥, 𝑧) ∈ 𝑏 ∧ (𝑧, 𝑦) ∈ 𝑏′} is
the (true) composition of 𝑏 and 𝑏′. For all 𝑟, 𝑟′ ∈ 2B,
we have that 𝑟 ◇ 𝑟′ =

⋃︀
{𝑏 ◇ 𝑏′ | 𝑏 ∈ 𝑟, 𝑏′ ∈ 𝑟′}. We

note that the weak composition operation is of partic-
ular importance as it is the core operation used to per-
form some basic inference/reasoning, e.g., inside(𝑥, 𝑧) ◇
inside(𝑧, 𝑦)→ inside(𝑥, 𝑦), and consequently check the
admissibility/validity of large complex networks defined
over disjunctions of base relations [14, 15].

Cardinal Direction Calculus

Let us first introduce the qualitative temporal constraint
language of Point Algebra (PA) [16, 17, 18], which uses
points to represent temporal entities (e.g., events) and
the following three base relations to reason about the
relative position of those temporal entities in the timeline:
precedes (<), equals (=), and follows (>). These three base
relations considered by Point Algebra are interpreted
on a set with a linear ordering relation. In particular,
considering the points on the line of rational numbers
and the usual ordering relation<, the three base relations
of Point Algebra are defined in the following manner:
precedes = {(𝑥, 𝑦) ∈ Q×Q |𝑥 < 𝑦}, follows = {(𝑥, 𝑦) ∈
Q×Q | 𝑦 < 𝑥}, and equals = {(𝑥, 𝑦) ∈ Q×Q | 𝑥 = 𝑦}.
Based on these three base relations, we can define eight
relations of Point Algebra in total that correspond to the
set 2B = {{<,=, >}, {<,>}, {<,=}, {=, >}, {<},
{>}, {=}, ∅}. As an example, relation {<,>} allows us
to represent the knowledge that an event occurs before
or after another event, but not at the same time. Further,
two events 𝑥, 𝑦 ∈ Q satisfy relation {<,>} if and only
if 𝑥 ̸= 𝑦.

Now, the Cardinal Direction Calculus (CDC) [10, 11] is
a qualitative constraint language with a spatial aspect and
can be seen as an extension of the qualitative constraint

language of Point Algebra discussed earlier. The entities
of the domain D are points in the Euclidean plane and
are equipped with an orthogonal reference. In particular,
the relative position between two entities is determined
by the Point Algebra base relations that are derived from
projections of those points on the two axes. As such, we
obtain nine possible base relations between two given
entities 𝑥 and 𝑦 in Cardinal Direction Calculus, namely,
east (𝐸), north (𝑁 ), south (𝑆), west (𝑊 ), northeast (𝑁𝐸),
northwest (𝑁𝑊 ), southwest (𝑆𝑊 ), southeast (𝑆𝐸), and
equals (𝐸𝑄). These base relations can be viewed in Fig-
ure 3.

Remark Generally, one can even use a rectangle, e.g.,
denoting a 2-dimensional minimum bounding box, to
approximate a region, instead of a single point, and thus
perform reasoning on directional relations about rect-
angles [19, 20]. As the main purpose of this paper is to
demonstrate the challenges of integrating learning and
reasoning, we chose the simpler approximation to better
convey the essential idea.

3. Challenges
Previously, a machine learning model [9] was proposed
to predict the directional relations between geographic
regions (see Section 2.1. However, the machine learning
model did not consider the semantic connections between
different relations and between different pairs of regions,
and may have issues such as missing or conflicting direc-
tional relations in these predictions, as illustrated in the
forthcoming examples, which are taken from the actual
testing data of [9].

This article proposes to use qualitative spatial reason-
ing to identify, add, or modify directional relation net-
works that have already been obtained in order to enrich
the network information and make the network more
complete and accurate.

In what follows, the universal constraint of a calculus,
which corresponds to the entire set of base relations B
of that calculus, will be denoted by ⋆ to avoid ambiguity
between what is a constraint and what is the signature
of the calculus, respectively (even though they are the
exact same relation).

3.1. Information Refining
Filling missing relations

In the prediction results of the machine learning model
in Section 2.1, sometimes there only exists the prediction
of the directional relation from region 𝑗 to region 𝑖, but
the relation from region 𝑖 to region 𝑗 is missing, i.e.,
𝑅𝑖𝑗 ̸= ⋆ and 𝑅𝑗𝑖 = ⋆. In this case, we can obtain an



approximation of 𝑅𝑗𝑖 by taking the inverse of 𝑅𝑖𝑗 :

𝑅𝑗𝑖 ← 𝑅−1
𝑖𝑗 .

j: Cecil Hills

i: Cecil Park

Figure 4: An actual example illustrating filling missing rela-
tions in predictions by taking inverse.

Figure 4 gives a such example. In this figure, the pre-
dicted 𝑅𝑖𝑗 is {𝐸}, i.e., region 𝑗 is on east of region 𝑖.
However, the machine learning model did not predict
𝑅𝑗𝑖. By taking the inverse of 𝑅𝑖𝑗 , we can directly get
𝑅𝑗𝑖 = 𝑅−1

𝑖𝑗 = {𝑆𝑊,𝑊,𝑁𝑊}, meaning that the rela-
tion of 𝑗 w.r.t. 𝑖 can be 𝑆𝑊 , 𝑊 , or 𝑁𝑊 .

Sometimes there exists the prediction of the directional
relation from region 𝑖 to region 𝑗 and the directional re-
lation from region 𝑗 to region 𝑘, but the relation from
region 𝑖 to region 𝑘 is missing, i.e., 𝑅𝑖𝑗 ̸= ⋆ and 𝑅𝑗𝑘 ̸= ⋆
and 𝑅𝑖𝑘 = ⋆. In this case, we can obtain an approxima-
tion of 𝑅𝑖𝑘 by composing 𝑅𝑖𝑗 and 𝑅𝑗𝑘:

𝑅𝑖𝑘 ← 𝑅𝑖𝑗 ◇𝑅𝑗𝑘.

i: Cecil Park

k: Erskine Park

j: Kemps Creek

Figure 5: An actual example illustrating filling missing rela-
tions in predictions by taking composition.

For instance, in Figure 5, the predicted 𝑅𝑖𝑗 is {𝑊}
and 𝑅𝑗𝑘 is {𝑁}. However, the machine learning model
did not predict 𝑅𝑖𝑘 . By composing 𝑅𝑖𝑗 and 𝑅𝑗𝑘 , we can
directly get 𝑅𝑖𝑘 = 𝑅𝑖𝑗 ◇𝑅𝑗𝑘 = {𝑁,𝑊,𝑁𝑊}.

Removing unfeasible relations

Sometimes there is no absence of a relation, but there is
a contradiction between 𝑅𝑖𝑗 and the composition of 𝑅𝑖𝑘

and 𝑅𝑘𝑗 , i.e., 𝑅𝑖𝑗 ̸= ⋆ and 𝑅𝑖𝑘 ̸= ⋆ and 𝑅𝑘𝑗 ̸= ⋆ and
𝑅𝑖𝑗 ̸= 𝑅𝑖𝑗 ∩ (𝑅𝑖𝑘 ◇ 𝑅𝑘𝑗). In this case, we can obtain
an approximation of 𝑅𝑖𝑗 by taking the intersection of

𝑅𝑖𝑘 ◇𝑅𝑘𝑗 and 𝑅𝑖𝑗 :

𝑅𝑖𝑗 ← 𝑅𝑖𝑗 ∩ (𝑅𝑖𝑘 ◇𝑅𝑘𝑗).

k: Doonside

j: Eastern Creek i: Huntingwood

Figure 6: An actual example illustrating removing impossible
relations from predictions.

As an illustration, in Figure 6, the predicted
𝑅𝑖𝑗 is {𝑆, 𝑆𝑊,𝑊} and 𝑅𝑖𝑘 is {𝑁𝑊} and 𝑅𝑘𝑗 is
{𝑆𝑊}. However, the composition of 𝑅𝑖𝑘 and 𝑅𝑘𝑗

is {𝑆𝑊,𝑊,𝑁𝑊} ≠ 𝑅𝑖𝑗 , so we can update 𝑅𝑖𝑗 =
𝑅𝑖𝑗 ∩ (𝑅𝑖𝑘 ◇𝑅𝑘𝑗) = {𝑆𝑊,𝑊}.

3.2. Inconsistency handling
Sometimes there is a contradiction between the predicted
𝑅𝑖𝑗 and the composition of 𝑅𝑖𝑘 and 𝑅𝑘𝑗 , i.e., 𝑅𝑖𝑗 ̸= ⋆
and 𝑅𝑖𝑘 ̸= ⋆ and 𝑅𝑘𝑗 ̸= ⋆ and 𝑅𝑖𝑗 ∩𝑅𝑖𝑘 ◇𝑅𝑘𝑗 = ∅. In
this case, we can resolve contradiction by replacing 𝑅𝑖𝑗

with the composition of 𝑅𝑖𝑘 and 𝑅𝑘𝑗 :

𝑅𝑖𝑗 ← 𝑅𝑖𝑘 ◇𝑅𝑘𝑗 .

j: Dawes Point

i: Lavender Bay
k: McMahons Point

Figure 7: An actual example illustrating resolving inconsis-
tency by taking composition.

For example, in Figure 7, the predicted 𝑅𝑖𝑘 is {𝑊}
and 𝑅𝑘𝑗 is {𝑆} and 𝑅𝑖𝑗 is {𝑆𝐸} and 𝑅𝑖𝑗 ∩𝑅𝑖𝑘 ◇𝑅𝑘𝑗 =
{𝑆𝐸}∩{𝑆𝑊} = ∅. So we can resolve the inconsistency
by setting 𝑅𝑖𝑗 = 𝑅𝑖𝑘 ◇𝑅𝑘𝑗 = {𝑆𝑊}.

There can also be a contradiction between the pre-
dicted 𝑅𝑖𝑗 and 𝑅𝑗𝑖, i.e., 𝑅𝑖𝑗 ̸= ⋆ and 𝑅𝑗𝑖 ̸= ⋆ and
𝑅𝑖𝑗 ∪𝑅−1

𝑗𝑖 ̸= 𝑅−1
𝑗𝑖 and 𝑅𝑖𝑗 looks more reasonable (prob-

ably based on criteria including the area in regions of
acceptance, the angle of the line connecting center points,
etc.). In this case, we can obtain an approximation of 𝑅𝑖𝑗

by taking the inverse of 𝑅𝑖𝑗 :

𝑅𝑗𝑖 ← 𝑅−1
𝑖𝑗 .



i: Bronte

j: Clovelly

Figure 8: An actual example illustrating resolving inconsis-
tency in predictions by taking inverse.

In Figure 8, the predicted 𝑅𝑗𝑖 is {𝑁} and 𝑅𝑖𝑗 is {𝑊}
and 𝑅𝑗𝑖 is more reasonable. So we can directly get 𝑅𝑖𝑗 =
𝑅−1

𝑗𝑖 = {𝑆𝑊,𝑆, 𝑆𝐸}.

4. Discussion
In this paper we discussed some neuro-symbolic chal-
lenges that arise when trying to combine a machine learn-
ing model and a symbolic reasoning framework for di-
rectional relation prediction. Specifically, on one hand,
we considered the machine learning approach of [9] that
predicts the qualitative directional relations between ge-
ographical regions, e.g., X is north-west of Y, and, on the
other hand, we employed the symbolic framework of the
Cardinal Direction Calculus to capture and reason with
those predicted relations [10, 11].

It is important to note that we just initiated the dis-
cussions by presenting several example cases where a
symbolic reasoning framework can help with the pre-
dictions of a machine learning model. Much more work
can be done in the future, e.g., when inconsistency is
detected by composition or inverse, how to determine
which predicted relations are more plausible is an impor-
tant yet insufficiently researched topic. How to exploit
the predictions of a machine learning model to perform
symbolic reasoning better is also very interesting. For the
problem considered in this paper, an implicit assumption
is that the semantics of symbolic reasoning matches the
semantics of predicted relations, which in real-world ap-
plications is seldom the case. As have been discussed in
[8], machine learning predictions can help symbolic rea-
soning frameworks build reasoning rules that are consis-
tent with the observations in real-world. Automatically
discovering conceptual neighbourhood graphs (CNGs)
in [21] is a good start, but there is still a huge gap be-
tween reasoning and CNGs. Finally, the type of integra-
tion between the machine learning model and the logical
component remains open to discussion; in the future, we
would like to tackle this via abductive reasoning, utilizing
the neuro-symbolic framework proposed in [22].
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