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Abstract
The quality of recommendations can be evaluated in terms of accuracy and beyond-accuracy metrics;
this renders recommendation a multiobjective task. Several works apply multiobjective optimization
techniques for training recommender systems (RSs) or for late fusion of recommendations. However, for
the hyperparameter selection, only accuracy is considered. In this paper, we include metrics for accuracy,
coverage, novelty, and fairness of recommendations towards groups of users of different activity, and
items of different popularity, in the hyperparameter optimization of RSs. We apply the concept of Pareto
dominance to select the optimal hyperparameter configurations. Then, by performing multiple univariate
linear regressions of the values of beyond-accuracy metrics on the values of NDCG for the optimal
hyperparameter configurations, we quantify the interplay of accuracy and beyond-accuracy metrics in
terms of the the slope of the lines of best fit. Furthermore, by performing experiments in the domains
of movie rating, music streaming, and food and household delivery and with four recommendation
algorithms we provide insight in the generalizability of the interplay between accuracy and beyond-
accuracy metrics. Our analysis shows that for 8 out of 12 combinations of algorithms and domains,
the line of best fit for at least one beyond-accuracy metric has a negative slope, indicating a trade-off
relationship and supporting the multiobjective hyperparameter optimization. Our analysis further shows
that both the sign and the absolute value of the slope of the line of best fit depend on the recommendation
algorithm as well as the recommendation domain, indicating the non-generalizability of the interplay
between accuracy and beyond-accuracy metrics in the hyperparameter optimization.
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1. Introduction
In the last decades, recommender systems (RSs) have become ubiquitous in our daily decisions

due to the widespread of online services such as streaming and e-commerce platforms. RSs can
be defined as software solutions that provide content consumers, i.e., users, convenient access
to relevant content [1], allowing them to overcome the information overload they often face.
In the RS research community, the accuracy of recommendations, i.e., the amount to which
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the items recommended to a user match the user’s historic preferences, is most commonly
used as the criterion for designing the loss functions. Additionally, metrics related to accuracy,
such as precision, recall, mean average precision, and normalized discounted cumulative gain
(NDCG), are commonly adopted for comparing the performance of RSs and for selecting the
hyperparameter configurations of the models. However, there is now a nearly unanimous
consensus within the RS community that accuracy alone is insufficient to capture the quality
of recommendations [2, 3]. This is the case both since users may have multiple decision
criteria [4, 1], and since users are not the only stakeholder of RSs [5, 6, 7]. Therefore, the
optimization of RSs should encode the quality of recommendations in terms of accuracy, as
well as beyond-accuracy metrics. This holds both for training, i.e., automatically adapting the
parameters of model-based recommendation algorithms, and for hyperparameter optimization,
i.e., selecting values for variables that are not adjusted during training, such as the embedding
dimension of models based on latent representations, or the number of hidden layers and nodes
of models based on neural networks.

In this work, we focus on the multiobjective hyperparameter optimization of recommendation
algorithms. More concretely, we measure the quality of recommendations in terms of NDCG@10,
coverage, novelty, and two metrics for the fairness of recommendations: Fairness of exposure of
items of different popularity and fairness of relevance of recommendations for users of different
activity. Since some of these aspects of recommendation quality can be competing with each
other [4, 1], the existance of a hyperparameter configuration optimizing all the evaluation
metrics is not guaranteed. This might be the case, for instance, on a music streaming platform,
in which a hyperparameter configuration that achieves a high accuracy by recommending
tracks that are similar to those already listened to by the user, might therefore achieve a low
performance in terms of novelty.

The originality of our contribution consists in applying the concept of Pareto optimality
to the hyperparameter optimization of RSs; our aim is twofold. First, to provide a deeper
understanding of the interplay between accuracy and beyond-accuracy metrics. To this purpose,
when analyzing the performance of a RS, instead of selecting one hyperparameter configuration,
we represent the RS with the set of hyperparameter configurations that are Pareto-optimal
w.r.t. the metrics under consideration, i.e., no other configuration provides a better performance
in terms of one of the metrics without worsening the performance with respect to at least
one of the other metrics. For each beyond-accuracy metric, we then perform a univariate
linear regression on NDCG@10 of the values achieved by the hyperparameter configurations
belonging to the Pareto front, in order to quantify the interplay of the two metrics for the optimal
configurations. Second, we provide an analysis of the generalizability of the trade-offs among
the optimization metrics across algorithms and domains of recommendation. More specifically,
we consider four recommendation algorithms – ItemkNN [8], BPR [9], MultVAE [10], and
LightGCN [11] – and three datasets from the domains of movie rating, music streaming, and
food and household delivery. This allows us to compare the relationships between metrics
across combinations of algorithms and domains. Our analysis shows that accuracy and at least
one of the beyond-accuracy metrics taken into consideration are in a trade-off relationship
in 8 out of 12 combinations of algorithms and domains. We hence highlight the potential
harms of a hyperparameter optimization based only on accuracy and provide insight for the
multiobjective hyperparameter optimization of RSs. In addition, we show that the relationship



between accuracy and beyond-accuracy metrics strongly depends on the algorithm and on
the domain of recommendation and hence it is not generalizable. Throughout our analysis,
we make use of the library recsyslearn1, which we introduce in this work for the first time.
recsyslearn is an open-source library for the evaluation of recommendation lists. The library
does not rely on any external RS framework, therefore facilitating the comparison of model
performance and the reproducibility of experiments. For more details on the functionalities of
recsyslearn we refer the reader to Appendix B, to the official documentation,2 and to the
GitHub repository.3

In summary, this work assumes a novel perspective on the hyperparameter optimization
of RSs by treating it as a multiobjective optimization task and applying the concept of Pareto
optimality. We provide insight on the interplay between accuracy and beyond-accuracy metrics
on the optimal hyperparameter configurations, highlighting the potential harms of a hyperpa-
rameter optimization based only on accuracy. We further show that the relationship between
accuracy and beyond-accuracy metrics is not generalizable across algorithms and domains of
recommendation.

2. Related Work
Evaluating RSs beyond accuracy is motivated by the observation that accuracy is not the

only aspect defining the quality of recommendations [2]. Additionally, content consumers
are not the only stakeholders affected by RSs [6, 7]. These considerations led to the design of
several evaluation metrics going beyond accuracy [12], such as metrics measuring the novelty
and diversity [13] or the popularity bias [14] of recommendations, and to the development
of multiobjective RSs, i.e., RSs designed to optimize or balance more than one optimization
objective [1]. For instance, Zhou et al. [15] use a late fusion approach to optimize diversity and
accuracy of recommendations simultaneously, while Zhang et al. [16] and Jambor et al. [17]
propose the use of hard constraints on the values of one or more optimization objectives. More
recently, other works proposed scalarization for the multiobjective optimization of RSs. This
approach consists in modeling each metric of recommendation with a loss term and compute
the total loss as a weighted sum of the terms related to each metric. For instance, Coba et al. [18]
propose a matrix factorization approach with a loss term for the novelty of recommendations.
Moreira et al. [19] add regularization terms that model popularity and recency in the loss function
of recurrent neural networks for session-based news recommendation. Isufi et al. [20] propose a
RS based on graph convolutions that includes a regularization term for increasing the diversity
of recommendations. Few works exploit the concept of Pareto optimality, which is fundamental
in the domain of multiobjective optimization, for balancing the accuracy and beyond-accuracy
aspects of recommendations. In the context of RSs, a model is Pareto-optimal if none of the
metrics can be improved without negatively affecting at least one of the others. In addition to
the metrics to be optimized, the current approaches differ in what is considered as independent
variables the metrics depend on (e.g., parameters of the model, late fusion parameters, or weights
in the scalarization of the multiobjectives), and on the strategy used to approximate the Pareto
front, i.e., either with evolutionary algorithms or by means of scalarization. For instance, Ribeiro

1https://recsyslearn.readthedocs.io/en/latest/
2recsyslearn.readthedocs.io
3github.com/giuliowaitforitdavide/recsyslearn/
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et al. [21] leverage the concept of Pareto optimality for the late fusion of RSs in a post-processing
fashion using evolutionary algorithms. Other authors apply the concept of Pareto optimality
to in-processing techniques based on scalarization, i.e., combining the objectives in a single
value. For instance, Lin et al. [22] propose a two-step algorithm for automatically adjusting
the scalarization weights and the model parameters simultaneously, in a way such that the
scalarization weights converge to Pareto-optimal solutions. Similarly, Wu et al. [23] propose
a framework in which fairness metrics are translated to loss terms with the use of smoothed
versions of the ranked lists. The weights of the corresponding terms in the loss function are
adapted during training in a way that guarantees Pareto optimality. Other works leverage
reinforcement learning to approximate the Pareto-optimal solutions. For instance, the approach
proposed by Ge et al. [24] generates the Pareto front in the space of accuracy and fairness
of recommendations with a single training run by leveraging multiobjective reinforcement
learning. Xie et al. [25] propose a multiobjective RS based on a set of single-objective models
and a reinforcement learning module that tailors the weights of the loss terms reflecting the
metrics to the profile of each user. The module leverages the Pareto stationarity to approximate
Pareto-optimal combinations of weights. In the context of group recommendation, Xiao et
al. [26] aim at balancing the group utility and the fairness of group recommendation, the
latter being defined in terms of the differences between the utilities of the single users. For
this purpose, the authors propose two approaches to generate group recommendations that
approximate the Pareto front in terms of group utility and fairness. One algorithm is based on a
greedy approach, while the other is based on integer programming.

The approaches discussed above address the issue of adapting the parameters of the model
either with evolutionary algorithms or with loss functions designed by means of scalarization,
which hence allow the use of training techniques such as stochastic gradient descent. However
RSs only yield optimal performance when also the hyperparameters are properly tuned, and
their tuning cannot be included in the training procedure. For instance, the hyperparame-
ters defining the architecture of a neural-network-based recommendation algorithm affect the
recommendation accuracy, but the architecture has to be set up prior to training. While the mul-
tiobjective optimization of the hyperparameters is a vivid topic of research in machine learning
in general (see, for instance, [27, 28] for recent reviews), the hyperparameter optimization of
RSs is typically performed considering accuracy aspects, only. To the best of our knowledge,
only Quadrana et al. [29] model the hyperparameter optimization of RSs as a multiobjective
optimization task, while the current work is the first that also leverages the concept of Pareto
front, instead of using scalarization to reduce it to a single objective optimization task.

3. Methodology
In this section, we describe the methodology of our work. Section 3.1 introduces the formalism

and notation used throughout the paper and adapts the concept of Pareto optimal and Pareto
front to the hyperparameter optimization. In Section 3.2 we describe the datasets used in
our experiments, as well as the data preparation. Section 3.3 provides a description of the
recommendation algorithms used in our analysis, while Section 3.4 introduces the reader to
the mathematical formulation of the accuracy and beyond-accuracy metrics we consider in
this work. We then describe how we carried out the analysis of the interplay between the
optimization objectives by means of univariate linear regression in Section 3.5.



Table 1
Summary of the notation used in the paper.

Notation Description
𝐴 = {𝑎𝑖}𝑁𝑎

𝑖=1 Set of recommendation algorithms.

𝑀 = {𝑚𝑗}𝑁𝑚
𝑗=1 Set of evaluation metrics.

𝐻𝑖 = {ℎ𝑖
𝑐}

𝐺𝑖
𝑐=1 Set of hyperparameter configurations considered for algorithm 𝑎𝑖.

𝑃𝑖 ⊆ 𝐻𝑖 Subset of Pareto optimal configurations of a specific algorithm 𝑎𝑖.

IF Fairness of exposure for items of different popularity.

UF Fairness of effectiveness of recommendations for items of different activity.

3.1. Optimal Configurations
In this section we introduce the reader to the notation used throughout the paper, providing

a summary in Table 1. We indicate the set of 𝑁𝑎 recommendation algorithms (e.g., matrix
factorization, item 𝑘-nearest neighbors, . . . ) as 𝐴 = {𝑎𝑖}𝑁𝑎

𝑖=1 and the set of 𝑁𝑚 evaluation
metrics as 𝑀 = {𝑚𝑗}𝑁𝑚

𝑗=1. For each algorithm 𝑎𝑖 ∈ 𝐴, we consider a set of 𝐺𝑖 hyperparameter

configurations, 𝐻𝑖 = {ℎ𝑖𝑐}
𝐺𝑖
𝑐=1. The specific configurations ℎ𝑖𝑐 as well as the total number

of configurations considered 𝐺𝑖 depend on the algorithm 𝑎𝑖 considered. A hyperparameter
configuration ℎ𝑖1 ∈ 𝐻𝑖 of a specific algorithm 𝑎𝑖 dominates another configuration ℎ𝑖2 ∈ 𝐻𝑖 if
the values of all metrics 𝑚𝑗 ∈ 𝑀 are equal or better4 on ℎ𝑖1 than on ℎ𝑖2, and if there exists at
least one metric that is strictly better on ℎ𝑖1 than on ℎ𝑖2. A model is considered Pareto optimal on
the considered set 𝐻𝑖 if it is not dominated by any other configuration in 𝐻𝑖. We indicate the
subset of Pareto optimal configurations of a specific algorithm as 𝑃𝑖 ⊆ 𝐻𝑖; this subset consists
of one hyperparameter configuration if the objectives are not competing, and coincides with
𝐻𝑖 if none of the configurations considered is dominated by the others.

For a given dataset and recommendation algorithm 𝑎𝑖, our goal is to investigate the interplay
between pairs of evaluation objectives when the hyperparameters are varied. Therefore, to
ensure that the hyperparameter configurations selected are the ones providing the best trade-off,
we restrict our analysis to the configurations in 𝑃𝑖. In agreement with the typical (single-
objective) hyperparameter optimization, the set of optimal hyperparameter configurations 𝑃𝑖 is
selected on the validation set, while the overall performance is computed and reported on the
test set.

3.2. Datasets
We perform our experiments in three recommendation domains and on three corresponding

datasets 𝑑𝑘 ∈ 𝐷, namely movie (MovieLens100K [30]), e-commerce (Amazon Pantry5), and
music (LastFM [31]). MovieLens100K and Amazon Pantry contain explicit feedback from
users, given as item ratings, while LastFM contains implicit feedback, consisting of listening
events, which indirectly reflect users’ preferences. All datasets are converted to implicit and
binarized feedbacks. For the explicit datasets (MovieLens100K, Amazon Pantry) we consider
interactions to be positive if the rating is at least 3. For LastFM, we consider as positive

4We use the term better instead of higher since for some metrics, lower values are preferred.
5https://jmcauley.ucsd.edu/data/amazon/
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Table 2
Characteristics of the datasets used in the experiments. Values refer to the datasets after conversion to
implicit feedback and after user 5-core filtering. The Gini indices are defined as in Deldjoo [32].

Dataset Domain Interactions Users Items Gini Items Gini Users

MovieLens100K Movie rating 82 520 943 1 574 0.64 0.47

LastFM Music streaming 92 798 1 877 17 617 0.73 0.01

Amazon Pantry Food and household delivery 115 920 11 981 8 401 0.67 0.33

interactions those user-item pairs for which the listening count is at least 2. After binarization,
we apply 5-core filtering to users, restricting the dataset to the set of users that have positive
interactions with at least 5 different items. The characteristics of the datasets after binarization
and filtering are summarized in Table 2. The resulting dataset is split into a train, a validation,
and a test set by randomly selecting 60%, 20%, and 20% of the positive interactions of each user.
This ensures all users to be present in all the three sets. The selection of the non-dominated
hyperparameter configurations 𝑃𝑖 is performed on the validation, while the results refer to the
test set.

3.3. Algorithms
We select for our study four types of recommendation algorithms: memory-based, matrix-

factorization-based, neural-network-based, and graph-based algorithms. The representatives of
each algorithm class are selected due to their frequent use in the RS community. Following the
work of Melchiorre et al. [33], we select Item-𝑘-nearest-neighbors (ItemkNN [8]) for memory-
based algorithms, matrix factorization with Bayesian Personalized Ranking as optimization
function (BPR [9]) for matrix-factorization-based algorithms, and variational autoencoders
for collaborative filtering (MultVAE [10]) for neural-network-based algorithms. For graph-
based approaches we select LightGCN [11]. We provide below a brief description of the
investigated algorithms. The set of hyperparameter configurations 𝐻𝑖 considered for each
algorithm 𝑎𝑖 is a grid obtained by linearly spacing the range of values considered for each
hyperparameter. Details on the values considered for each hyperparameter can be found at
https://github.com/mmosc/moho/.
ItemkNN [8] is a memory-based approach that recommends to a user items that are similar
to the ones they interacted with. The similarity between items is defined on the consumption
pattern of other users, and computed as cosine similarity between the interaction vectors of
items (i.e., the corresponding columns in the user-item interaction matrix).
BPR [9] BPR is an optimization function that ranks the items by defining an implicit order
between pairs thereof, and maximizing the difference between the scores of items that have
been interacted with by the user, with respect to the other items. Rendle et al. [9] introduce
BPR and apply it to matrix factorization. We use the same strategy and hence indicate with BPR
a matrix factorization algorithm with BPR as optimization strategy.
MultVAE [10] is a variational autoencoder architecture that projects the users’ interaction
vectors to a latent distribution space. The model then samples the user’s latent representation
from the corresponding latent distribution and reconstructs the interaction vector by means of
a decoder; the model is trained to minimize the reconstruction loss.

https://github.com/mmosc/moho/


LightGCN [11] is a graph convolutional neural network (GCN) that models users and items
as entities in a graph, and interactions as edges. The model learns user and item embeddings
by linearly propagating them on the user-item interaction graph. The weighted sum of the
embeddings of the neighbors of an entity contributes to the final embedding of the entity. Items
are then assigned a recommendation score given by the scalar product between the embedding
of the item and the embedding of the target user.

3.4. Evaluation Metrics
We consider accuracy, coverage, novelty, as well as user and item fairness as metrics for

evaluating the quality of recommendations. In this section, we provide the mathematical formu-
lation of these evaluation metrics. In our analysis, all metrics are computed for recommendation
lists of 𝑘 = 10 items.
Accuracy: We measure the accuracy of recommendations for a user 𝑢 in terms of NDCG.
For a list of 𝑘 recommendations, NDCG@𝑘(𝑢) = DCG@𝑘(𝑢)

IDCG@𝑘(𝑢) [13], where DCG is defined as

DCG@𝑘(𝑢) =
∑︀𝑘

𝑖=1
rel(𝑖)

log2(𝑖+1) . Since we consider a scenario of implicit feedback, rel(𝑖) is an
indicator function that signals whether the item recommended at rank 𝑖 has been positively
interacted with by user 𝑢. IDCG@𝑘(𝑢) represents the ideal DCG for user 𝑢, obtained when
the intersection between the set of recommended items and the items with which the user
has positively interacted is the largest possible allowed by the user’s profile. If 𝑢 positively
interacted with a sufficient number of items, IDCG corresponds to the value of DCG obtained
when 𝑢 positively interacted with all items in their recommendation list. We choose NDCG as a
measure of accuracy since, compared to other metrics, it not only captures the ability of the
system to recommend relevant items, but also gives more weight to accurate recommendations
that appear higher in the recommendation list.
Coverage: We investigate coverage, which is defined as the proportion of items that appear in

the recommendation lists at least once, Cov = |𝑇 |
|𝑇 | =

|⋃︀𝑢 𝑇𝑢|
|𝑇 | [13], where 𝑇 is the set of items

in the dataset, 𝑇 𝑢 is the set of items recommended to user 𝑢, while 𝑇 the set of items that have
been recommended to at least one user. A low coverage is hence an indication that the RS tends
to always recommend a restricted set of items.
Novelty: To reflect the freshness of the recommended items in terms of global popularity we
define novelty as 𝑁@𝑘 = − 1

|𝑈 |
∑︀

𝑢∈𝑈
∑︀

𝑖∈𝑇𝑢

log2 pop𝑖
𝑘 [13], where 𝑇 𝑢 is the list of 𝑘 items

recommended to user 𝑢, and pop𝑖 is the popularity of item 𝑖, measured as percentage of inter-
actions with 𝑖 compared to the total number of interactions. Since we perform our experiments
on binarized versions of the datasets, this definition of popularity corresponds to the percentage
of unique positive user-item pairs involving 𝑖, compared to the total number of positive pairs.
Item Fairness (IF): We consider an interaction-oriented definition of item fairness [5] and
therefore measure the extent to which a RS is able to spread item exposure across items of
different popularity. Exposure is defined in terms of the appearances in the recommendation lists,
while items are categorized according to their popularity. Following the work of Lesota et al. [34],
we define three item categories: a short-head, a mid-tail, and a distant-tail, corresponding to the
most popular, intermediate, and least popular items, respectively. These categories are defined in
terms of percentiles of the total interactions in the dataset; short-head, mid-tail, and distant-tail
account for 60%, 30%, and 10% of the number of interactions in the training set, respectively.



We then compute the distribution 𝐸 of recommendations across popularity categories; 𝐸(𝑐) is
therefore the proportion of items of popularity category 𝑐 in the recommendations (i.e., over all
users). Since we assume proportionality as a fairness criterion, we take the Kullback-Leibler
(KL) divergence w.r.t. a target distribution Tar𝑖 reflecting the distribution of the interactions
in the training set across the same categories, as a measure of item fairness. Item fairness is
therefore defined as IF = KL(𝐸,Tar𝑖) =

∑︀
𝑐𝐸(𝑐) log2

𝐸(𝑐)
Tar𝑖(𝑐)

.
User Fairness (UF): We are interested in a behavior-oriented definition of user fairness [5, 35].
Therefore we consider the extent to which effective recommendations are spread over user
groups of different activity. We first assign each user to the group of active, semi-active, or
inactive users, respectively representing the 60%, 30%, and 10% percentiles of the total number
of interactions. We then compute the distribution 𝑅 of relevant recommendations across activity
groups and measure the overall fairness of recommendations as the KL divergence w.r.t. a target
distribution Tar𝑢 reflecting the distribution of the interactions in the training set across the
same groups. User fairness is therefore defined as UF = KL(𝑅,Tar𝑢) =

∑︀
𝑔 𝑅(𝑔) log2

𝑅(𝑔)
Tar𝑢(𝑔)

.
We use the library recsyslearn to compute the metrics and to segment users and items into
the categories and groups required by the definition of IF and UF.

3.5. Quantifying the interplay between metrics
We aim at modeling the variation in performance of a RS when its hyperparameters are varied

across the optimal configurations. Since we consider four recommendation algorithms, three
domains of recommendation, and five metrics for evaluation, analyzing the interplay between
each pair of metrics would lead to 10 comparisons for each algorithm-dataset combination, for
a total of 120 pair-wise analyses. Therefore, since accuracy is still the dominant optimization
objective in the RS community, we simplify the discussion by considering the pair-wise interplay
of NDCG@10 with each of the beyond-accuracy metrics described in Section 3.4. Furthermore,
similar pair-wise analyses between beyond-accuracy metrics can be carried out by adapting the
code we provide under https://github.com/mmosc/moho/.

For each algorithm and each domain of recommendation, the interplay between accuracy
and each of the beyond-accuracy metrics is modeled as a linear dependence by means of a
univariate linear regression: accuracy is taken as the independent variable 𝑥 and each of the
beyond-accuracy metrics as the dependent variable 𝑦. As it is well known, and in agreement
with previous studies that analyze the impact of sampling strategies and dataset characteristics
on the performance of RSs [36], we observe that depending on the domain of recommendation
the values of the metrics range in very different intervals. This general and well-established
observation is evident in our experiments by looking at the mean values of the metrics reported
in Table 3, computed for each algorithm 𝑎𝑖 and each dataset 𝑑𝑘 , over the optimal hyperparameter
configurations in 𝑃𝑖. We are, however, not primarily interested in the absolute performance of
each recommendation algorithm, but rather in comparing the different amounts of trade-offs
that each of them displays among the optimization metrics, and on whether these trade-offs
depend on the domain of recommendation. Therefore, in order to facilitate the comparison
across domains despite the different absolute values of the metrics, we first apply min-max
scaling to the values achieved for each metric on the test set of a specific recommendation
domain, and across all model configurations 𝑎𝑖 in the optimal configurations 𝑃𝑖. In the case of
IF and UF, lower values are to be preferred since they indicate a higher similarity between the

https://github.com/mmosc/moho/


target distribution (i.e., the one observed over the interactions in the training set) and the one
observed over recommendations. We therefore subtract the min-max rescaled values of IF and
UF from 1 before performing the linear regression. In this way, also for the normalized values
of IF and UF higher values of the slope of the line of best fit indicate a better interplay, while
negative values indicate a trade-off relationship.

To summarize, we quantify the interplay between different metrics in the hyperparameter
selection by modeling the dependence of each of the beyond-accuracy metric on NDCG@10 as a
linear relationship. We perform a univariate linear regression on the pairs of min-max rescaled
values (NDCG@10,𝑚𝑗), with 𝑚𝑗 ∈ 𝑀 ∖{NDCG@10}. We then take the slope of the line of best
fit as a measure of the overall trend for the trade-off for a specific recommendation algorithm on
a specific dataset. A steeper positive slope of the line indicates a better overall trade-off for that
recommendation algorithm on that dataset.6 To better visualize our approach, we display the
values of the min-max scaled metrics, as well as the line of best fit, in 2-dimensional planes with
NDCG@10 on the 𝑥 and 𝑚𝑗 ∈ 𝑀 ∖{NDCG@10} on the 𝑦 axis. Each recommendation algorithm
𝑎𝑖 is represented by a different color, and points represent different optimal hyperparameter
configurations ℎ𝑖𝑐 ∈ 𝑃𝑖. Figure 1 provides an example of these plots on the Amazon Pantry
dataset. Similar plots for the other domains can be found in Appendix A and obtained by
adapting the code available at https://github.com/mmosc/moho/. These plots represent visually
our way of modeling the dependency of a beyond-accuracy metric on NDCG: If moving from
left to right, i.e., increasing NDCG@10, the value of the beyond-accuracy metric depicted on
the 𝑦-axis tends to decrease, this is an indication of a trade-off between accuracy and the
beyond-accuracy metric represented on the 𝑦 axis.

4. Results
Table 3 displays the average value of each evaluation metric before min-max rescaling, as

well as the slope of the line of best fit between the min-max rescaled values of NDCG@10
and each of the beyond-accuracy metrics 𝑚𝑗 ∈ 𝑀 ∖ {NDCG@10}, for each dataset 𝑑𝑘 ∈ 𝐷
and recommendation algorithm 𝑎𝑚 ∈ 𝐴. By looking at the slopes for each recommendation
algorithm and across all datasets, we notice that none of the algorithms 𝑎𝑚 ∈ 𝐴 displays
a positive interplay (slope) for all 𝑚𝑗 ∈ 𝑀 ∖ {NDCG@10} and across all 𝑑𝑘 ∈ 𝐷. Even
considering all algorithm-dataset combinations (𝑎𝑚, 𝑑𝑘), only for a few of them, highlighted
in green, all beyond-accuracy metrics have a positive interplay with accuracy. This is an
indication that for many combinations, NDCG@10 and at least one of the beyond-accuracy
metrics𝑚𝑗 ∈ 𝑀∖{NDCG@10} show a trade-off relationship: as NDCG@10 increases, 𝑚𝑗 tends
to decrease, indicating a worse performance of the model w.r.t. this aspect of recommendation.

Insights: In the hyperparameter optimization of RSs, accuracy and beyond-accuracy
metrics do not always show a positive interplay, indicating a trade-off relationship. This
highlights the need for multiobjective hyperparameter optimization to balance competing
objectives, since in general there exists no optimal hyperparameter configuration for all
evaluation metrics.

6We focus on the slope instead of the Pearson’s correlation coefficient since the slope represents the (average) change
in the metric for each percentage increase in NDCG@10, and hence better captures the trade-offs we want to
analyze.

https://github.com/mmosc/moho/


Figure 1: Performance of the Pareto optimal configurations 𝑃𝑖 in terms of accuracy (𝑥 axis) and beyond-
accuracy (𝑦 axis) metrics on the test set of Amazon Pantry. All metrics are min-max scaled. Each
color represents a different recommendation algorithm. Shaded areas correspond to the 1𝜎 confidence
intervals of the linear regression.

Additionally, in agreement with previous studies [36], we observe that the ranking of different
recommendation algorithms according to their performance in terms of accuracy of recom-
mendation varies across datasets. In other words, not only the absolute values of NDCG@10
for a specific recommendation algorithm, but also the relative performance compared to other
algorithms depends on the characteristics of the dataset. The novelty of our analysis is in show-
ing that these considerations hold for the interplay between accuracy and beyond-accuracy
metrics: Comparing the slopes of the lines of best fit for a single algorithm across different
datasets, we observe that the interplay between accuracy and other performance metrics heavily
depends on the domain of recommendation. Additionally, if the interplay between NDCG@10
and 𝑚𝑗 ∈ 𝑀 ∖ {NDCG@10} on a dataset 𝑑𝑘 ∈ 𝐷 is better for algorithm 𝑎𝑚 ∈ 𝐴 than for
algorithm 𝑎𝑛 ∈ 𝐴, the same does not necesarily hold on a different dataset 𝑑𝑙 ∈ 𝐷 ∖ {𝑑𝑘}.



Table 3
Mean (before min-max rescaling) and slope of the line of best fit for the dependence of the min-max scaled
metrics 𝑚𝑗 ∈ 𝑀 ∖ {NDCG@10} on NDCG@10. Green cells indicate a model-dataset combination for
which all slopes are positive. The best interplays between NDCG@10 and 𝑚𝑗 are highlighted in bold,
the worst in italic.

Dataset Model NDCG@10 Coverage Novelty IF UF

LastFM BPR mean 0.169 0.190 9.588 0.508 2.726e-04
slope — 0.923 0.285 0.998 1.973e-01

ItemkNN mean 0.156 0.269 11.192 0.220 3.251e-04
slope — -1.058 -2.044 -1.577 1.055e-02

LightGCN mean 0.007 0.255 12.859 0.051 2.466e-03
slope — -37.666 -15.634 7.687 1.591e+01

MultVAE mean 0.210 0.346 10.944 0.144 6.870e-04
slope — -0.086 -0.458 -0.856 -5.607e-02

MovieLens100K BPR mean 0.291 0.535 8.987 0.183 1.646e-01
slope — -0.623 -0.131 -0.154 3.914e-01

ItemkNN mean 0.252 0.697 9.385 0.087 1.711e-01
slope — 0.117 -0.231 0.614 -1.089

LightGCN mean 0.063 0.608 9.140 0.116 1.478e-01
slope — 0.231 0.145 0.235 2.050e-01

MultVAE mean 0.300 0.527 9.079 0.125 1.714e-01
slope — -0.308 -0.322 -0.343 2.317e-02

Amazon Pantry BPR mean 0.025 0.939 10.701 0.186 7.100e-02
slope — 0.176 -0.151 0.107 -8.647e-02

ItemkNN mean 0.027 0.856 12.783 0.400 7.390e-02
slope — -1.287 -3.363 -3.116 4.368e-01

LightGCN mean 0.032 0.837 10.638 0.187 6.307e-02
slope — 4.416 4.416 10.369 2.432e-01

MultVAE mean 0.030 0.727 10.424 0.250 6.776e-02
slope — 0.976 0.049 0.107 5.516e-01

As a consequence, also the algorithm achieving the best trade-off in terms of NDCG@10 and
one of the beyond-accuracy metrics 𝑚𝑗 ∈ 𝑀 ∖ {NDCG@10} can vary across recommendation
domains. This pattern can be observed in Table 3 where for each domain and for each beyond-
accuracy metric 𝑚𝑗 ∈ 𝑀 ∖ {NDCG@10}, the highest value of the slope of the line of best fit is
highlighted in bold, while the lowest is displayed in italic.

Insights: The impact of algorithm selection on the interplay between metrics varies
depending on the dataset. Along with hyperparameter selection, model selection is a
process that cannot be translated nor generalized across datasets, neither in terms of
individual metrics, nor in terms of their interplay.

5. Conclusions and Future Work
The hyperparameter optimization of RSs is typically regarded as a single-objective opti-

mization problem. However, many aspects of recommendations have to be considered when



evaluating their quality, both because several stakeholders are involved, and because each
stakeholder values more than one aspect of recommendations. In this paper we analyzed the
interplay between NDCG@10, coverage, novelty and fairness of recommendation towards items
of different popularity and users of different activity, for four algorithms and three domains of
recommendation. We showed that the aspects of recommendation included in our analysis are
often competing and we therefore provided evidence in support of the multiobjective hyper-
parameter optimization of RSs. Our analysis was carried out adapting the concepts of Pareto
optimality and of Pareto front from the multiobjective optimization domain: We selected the
set of optimal hyperparameter configurations and quantified the interplay between accuracy
and beyond-accuracy metrics by means of univariate linear regressions. This allowed us to
show that the accuracy of recommendations is often in a trade-off relationship with at least
one of the beyond-accuracy metrics considered, hence supporting our proposal for multiobjec-
tive hyperparameter optimization. Furthermore, by comparing the results across algorithms
and domains of recommendation, we showed that the interplay between evaluation metrics
depends both on the RS and on the dataset, hence showing that the results of the evaluation of
the amount of trade-off cannot be generalized across algorithms and domains. In performing
our analysis we developed recsyslearn, which is a library for the evaluation of accuracy
and beyond-accuracy aspects of recommendations. Since recsyslearn does not rely on any
library used to generate the recommendation lists, we hope that its release can contribute to
the reproducibility of scientific results in the domain of RSs.

Although in this work we evaluated the performance of RSs in terms of accuracy, coverage,
novelty, and fairness of recommendations towards items of different popularity and users of
different activity, the analysis can be extended to other measures as well [35]. For instance,
one could consider user group fairness with respect to users of different gender, item group
fairness with respect to items of different genres, or include emerging evaluation metrics such
as glocalization [37]. Additionally, the dependence of the relationship between accuracy and
beyond-accuracy metrics on the domain of recommendation could be attributed to the different
dataset characteristics. Therefore, it would be interesting to also analyze how the interplay
between evaluation metrics varies depending on dataset characteristics, such as sparsity and
Gini index with respect to users and to items [32], or on sampling strategies used to reduce the
size of the dataset. We also considered only a cutoff of 𝑘 = 10 in our evaluation, although the
metrics considered, and therefore also their interplay, might depend on this parameter. Our
analysis relied on multiple univariate linear regressions of beyond-accuracy metrics on NDCG
and did not include a multivariate linear regression of all beyond-accuracy metrics, nor the
use of statistical tools such as mixed-effects models, which allow to also model groupings of
datapoints (e.g., in terms of the dataset or of the underlying recommendation algorithm). We
leave these extensions of our analysis for future work.

This work raises the question of which techniques from the multiobjective optimization
domain, e.g., scalarization or heuristic approaches such as evolutionary algorithms, can be
effectively translated to the hyperparameter optimization of RSs. This challenge still remains
open and we hope it will be addressed by the RS community in the next years.
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A. Additional Figures
Figure 2 displays the scatterplots of the values of the min-max scaled metrics, as well as the

line of best fit, in 2-dimensional planes with NDCG@10 on the 𝑥 and 𝑚𝑗 ∈ 𝑀 ∖{NDCG@10} on
the 𝑦 axis, for MovieLens100K and LastFM. Each recommendation algorithm 𝑎𝑖 is represented
by a different color, and points represent different optimal hyperparameter configurations
ℎ𝑖𝑐 ∈ 𝑃𝑖. These plots extend Figure 1, which refer to the Amazon Pantry dataset, instead.

B. The recsyslearn library
This Appendix provides additional information on the functionalities of recsyslearn,

which is a Python library to preprocess RS datsets and evaluate recommendation lists. The
following subsections describe the main classes of the library, categorizing them in those for
dataset preprocessing and for evaluation of the recommendation lists.

B.1. Dataset
recsyslearn simplifies the process of calculating item popularity and user activity, and

of segmenting (i.e., categorizing) users and items into groups. The users and items can be
segmented based on various criteria, hence providing the basis for group fairness analyses on
several dimensions.
PopularityPercentage assigns items a popularity value, or user an activity value, corre-
sponding to the percentage of user-item interactions.
DiscreteFeatureSegmentation segments the users or items into groups based on one of
their categorical features (e.g., user gender, or item genre).
InteractionSegmentation segments the items or users after sorting them according to
the number of interactions and based on the cumulative number of interactions in each group.
For instance, segmenting the items keeping the function’s argument for the split to the default
value of [0.8, 0.2], the most popular items corresponding to the first group account for 80% of
the interactions, and the items in the second group account for the remaining 20%.
ActivitySegmentation segments the items or users after sorting them according to the
number of interactions and based on the number of items or users in each group. For instance,
segmenting the users keeping the function’s argument for the split to the default value of
[0.8, 0.2], the most active 80% users will belong to the first group, and the least active 20%
users to the second.
The methods of the classes for dataset preprocessing take as argument the dataset in the form
of a pandas7 DataFrame.

7https://pandas.pydata.org/

https://pandas.pydata.org/


B.2. Evaluation
For the evaluation of recommendation lists, recsyslearn provides classes with methods

that accept as arguments the pandas DataFrames representing the recommendation lists and
the target user-item interactions (i.e., the validation or test set).
NDCG computes the NDCG at a specific cutoff 𝑘. A list of values of 𝑘 can also be passed as
argument to compute the corresponding values of NDCG@𝑘 on the same recommendation list.
Coverage evaluates the proportion of items that appear in the recommendation lists at least
once.
Novelty implements the definition of novelty provided by Schedl et al. [13] and extends it al-
lowing for a definition of item popularity in terms of percentage of interactions (as in the original
definition) or in terms of popularity class (e.g., as defined by InteractionSegmentation).
Entropy [35] computes the Shannon’s entropy of utility (i.e., recommendations or accurate
recommendations) over user or item groups.
KullbackLeibler [35] measures the KL divergence between the distribution of utility over
user or item groups computed on the list of recommendations, and a target distribution passed
to the function as additional argument.
MutualInformation implements the definition of mutual information provided by Amigó et
al. [35], which measures to what extent the information on the user’s group provides information
about the item groups to which the recommendations provided to the user belong.
For more details on the functionalities of recsyslearn we refer the reader to the official
documentation8 and to the GitHub repository,9 which also provides several examples on how
to use the library.

8recsyslearn.readthedocs.io
9github.com/giuliowaitforitdavide/recsyslearn/

https://recsyslearn.readthedocs.io
https://github.com/giuliowaitforitdavide/recsyslearn/


Figure 2: Performance of the Pareto optimal configurations 𝑃𝑖 in terms of accuracy (𝑥 axis) and
beyond-accuracy (𝑦 axis) metrics on the test set of MovieLens100K and LastFM. Each color represents
a different recommendation algorithm. Shaded areas correspond to the 1𝜎 confidence intervals of the
linear regression.
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