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Abstract
The evaluation of recommender system algorithms depends on randomness, e.g., during randomly
splitting data into training and testing data. We suspect that failing to account for randomness in
this scenario may lead to misrepresenting the predictive accuracy of recommendation algorithms. To
understand the community’s view of the importance of randomness, we conducted a paper study on
39 full papers published at the ACM RecSys 2022 conference. We found that the authors of 26 papers
used some variation of a holdout split that requires a random seed. However, only five papers explicitly
repeated experiments and averaged their results over different random seeds. This potentially problematic
research practice motivated us to analyze the effect of data split random seeds on recommendation
accuracy. Therefore, we train three common algorithms on nine public data sets with 20 data split random
seeds, evaluate them on two ranking metrics with three different ranking cutoff values 𝑘, and compare
the results. In the extreme case with 𝑘 = 1, we show that depending on the data split random seed, the
accuracy with traditional recommendation algorithms deviates by up to ∼6.3% from the mean accuracy
achieved on the data set. Hence, we show that an algorithm may significantly over- or under-perform
when maliciously or negligently selecting a random seed for splitting the data. To showcase a mitigation
strategy and better research practice, we compare holdout to cross-validation and show that, again, for
𝑘 = 1, the accuracy of algorithms evaluated with cross-validation deviates only up to ∼2.3% from the
mean accuracy achieved on the data set. Furthermore, we found that the deviation becomes smaller the
higher the value of 𝑘 for both holdout and cross-validation.
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1. Introduction

Finding the best algorithm for a recommendation task is challenging, as the experimental setup
requires many difficult design choices [1]. On a high level, these design choices include or
are affected by: the preprocessing of input data, the set of available algorithms and hyperpa-
rameters, the evaluation metrics, the testing environment, and constraints on the experiment.
Understanding the effects of every choice in each step of the experimental pipeline is crucial
in obtaining a result that accurately represents the pipeline’s capabilities. Especially in state-
of-the-art papers, the evaluation procedure is often complex and lengthy, and sometimes the
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performance increase over competing solutions is small [2, 3, 4]. Notably, many components
in a recommender systems evaluation pipeline require randomness, e.g., to split the data or
initialize random parameters for an algorithm.

Any function that generates random output needs a random seed, e.g., an arbitrarily chosen
integer, for initialization purposes. For instance, in recommender systems, when data should be
randomly split, the sampling function requires a random seed to produce a random selection of
elements. A random generator, e.g., the aforementioned sampling function, always produces
the same chain of outputs when initialized with the same random seed. When the random seed
is explicitly set, repeated executions always run with the same randomization, e.g., the same
data split from the same input data. This is generally desirable and ensures the reproducibility
and repeatability of recommender systems research. However, the downside is that repeated
experiments with the same random seed remove randomness from the evaluation, ignoring
its potentially severe effects. We illustrate this with a recommender systems example in the
following paragraph.

When recommender systems are evaluated with a randomized holdout split, the data is
split with one specific random seed. If experiments are not repeated with different holdout
splits, e.g., different random seeds, the evaluation of the recommender systems algorithm is
not protected against the impact of the randomness of data on the evaluated recommendation
performance. To illustrate, each data split, generated through a specific random seed, may be
different in its data distribution, e.g., the interactions that make up the training and the testing
set. Specifically in recommender systems, some users or items may evaluate with exceptionally
low recommendation accuracy while others do the opposite. Ideally, the data should be split
in a way that results in an average over these outliers, but this can not be guaranteed. In the
worst case, the evaluated accuracy of an algorithm on one specific split could be an outlier that
significantly changes the judgment of a specific parameter setup or algorithm. This can also
be abused to obtain unnaturally good results that are not achievable on average. Furthermore,
replicating the exact result is unlikely if the random seed used in an experiment is unknown. We
assume that the effect of the randomness of data on the evaluated performance of recommender
systems algorithms is significant enough to warrant methods that mitigate the shortcomings of
a single holdout split.

Paper Study To motivate a thorough analysis of our suspicion, we conducted a brief ad-hoc
study of the 39 full papers that were published at the ACM RecSys Conference 20221. We analyzed
(1) which type of validation procedure was used in the experiments, (2) whether the code and
random seeds used for the experiments are public, and (3) whether the authors acknowledged
randomness and repeated experiments that are influenced by randomness. Regarding (1),
we found that 26 papers (66.6%) use some form of holdout split to validate their results. Of
the remaining papers, 10 (25.6%) used time-based leave-one-out splits that do not require
randomness, and the remaining three (7.7%) did not perform and evaluate any experiments.
Regarding (2), we found that 20 papers (51.3%) contain links to code to reproduce the results
found in the papers. Of those 20 papers, 11 (28.2%) allow for the configuration of random
seeds and provide default values, 6 (15.4%) contain static random seeds, and three (7.7%) do not
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specify a random seed at all. Reproducing the results of papers without the original code is
difficult and time-consuming. The task is even more challenging since no authors explicitly
state which random seeds were used. However, even in the papers that contain links to code, it
is unclear which random seed was used to obtain the results presented in the paper. Regarding
(3), we found that only five (12.8%) papers acknowledge and deal with the effects of randomness
during data-splitting on the recommendation accuracy. The authors of these papers found
that repeating their experiments three, five, or ten times with different random seeds was an
appropriate solution.

Research Question We find the current practices surrounding random seeds, especially
during the data-splitting phase, worrying. Given that so many papers apply holdout splits but
do not repeat their experiments, we seek to answer the following research question: How sig-
nificant is the impact of random seeds used for splitting the data on recommendation
accuracy?

We answer the research question by evaluating nine different data sets on three different
recommendation algorithms with 20 different random seeds. We provide results for the nDCG@k
and Precision@kmetricswith 𝑘 = {1, 5, 10}. Furthermore, we propose cross-validation, a standard
practice in machine learning, as a mitigation strategy, and we showcase how it compares to the
results obtained with a holdout split. Our contribution quantifies the effect of random seeds
used during the data-splitting phase on recommendation accuracy. With this analysis, we aim
to increase the awareness of the recommender systems community of the importance of random
seeds for evaluating recommender systems. Furthermore, the code is open-source2, and our
experiments are reproducible.

2. Related Work

In machine learning and deep learning, the effects of random seeds are well-explored. The
holdout split is a traditional method to validate machine learning models. Early works suggest
that repeated holdout, with different random seeds, is necessary to correctly estimate the error
of a given configuration [5]. Furthermore, in machine learning literature, statistical tests over
multiple algorithms and data sets are only reliable when experiments are repeated sufficiently
often [6]. In another article, the authors describe how static random seeds can impact the
validation procedure [7]. Specifically in deep learning, multiple authors report how random
seeds in model initialization affect performance [8, 9]. Further evidence is that this also extends
to the data split [10]. Moreover, some works show the strong effects of random seeds on the
stability of deep learning models [11, 12]. This effect is specifically exploited to improve deep
learning ensemble performance [13, 14]. Apart from misrepresented performance, the reported
statistical significance in comparing two algorithms may also be misleading due to poor random
seeding practices [15]. Due to its advantages, cross-validation has become the standard for
machine learning a long time ago [16]. The AutoML community understands the importance of
randomness, and the collaborative AutoML benchmark uses 10-fold cross-validation to mitigate
randomness by default [17, 18].
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Recommender system evaluation is notoriously complex with many domain-specific problems
but also inherits the general machine learning problems stated above [19, 20]. To our knowledge,
there is no survey about using validation strategies in recommender systems research. In our
paper study (→Introduction), we found that holdout validation is still a widespread data-
splitting method. However, only a few authors apply repeated holdout validation, citing the
effects of randomness [21, 22, 23, 24, 25]. Additionally, while acknowledging randomness, none
of the authors cite any reference concerning randomness. We are unaware of any work that
concretely analyzes and quantifies this effect.

Performing random holdout splits neglects temporal effects. In our paper study (→Intro-
duction) we found that a significant amount of researchers use time-based splitting techniques.
However, the majority still applies a random holdout split. Recommender systems are inherently
affected by the chronological order and distance of historical interactions, and ignoring this
when splitting the data may lead to temporal leakage [26, 27]. Our work does not focus on
temporal effects.

Overall, there are only a fewworks in the recommender systems literature that understand the
importance of and use cross-validation [28, 29, 30, 31]. Interestingly, many popular recommender
systems libraries also natively include cross-validation [32, 33, 34, 35]. However, in our paper
study (→Introduction), we found that no authors use cross-validation. We are unaware of any
work that analyzes and quantifies how cross-validation mitigates the effects of the randomness
of data compared to holdout, specifically for recommender systems.

3. Method

Our experiments showcase the effects of random seeds used during the data-splitting phase
on recommendation accuracy. We denote such a random seed as data split random seed from
here on to distinguish it from usages of random seeds in other evaluation components. We
evaluate our pipeline with common design choices found in the literature such that the effects
we show in our results apply to many research results. Therefore, the analysis focuses on the
top-n ranking prediction task where the input data consists of binary user-item interactions.

Data Sets & Algorithms We evaluate nine publicly available and commonly used data sets:
Adressa [36], Amazon-CDs&Vinyl [37], Gowalla [38], Hetrec-LastFM [39], MovieLens-1M [40],
Amazon-MusicalInstruments [37], Retailrocket3, Amazon-VideoGames [37], and Yelp4. Table 1
shows statistical information on the data sets. We evaluate the data sets on three algorithms
from traditionally used categories: Implicit Matrix Factorization with Alternating Least Squares
(ALS), Item-based k-Nearest Neighbors (ItemKNN), and the baseline recommender Popularity
Recommender (Pop). We use the algorithm implementations from the LensKit library [41].

Preprocessing For the explicit feedback data sets Amazon and MovieLens, we treat a rating
of higher than three as an interaction according to common practice [42, 43, 44]. For all data
sets, we remove duplicates and incomplete entries, and all features other than the user ID and

3https://www.kaggle.com/datasets/retailrocket/ecommerce-dataset
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item ID. Following previous works, we perform 5-core filtering, which means that we prune the
data to ensure that all users and items contain at least five interactions [45, 46, 47].

Table 1
Basic information of the data sets used in our experiments.

#Interactions #Users #Items Avg.#Int. per user Avg.#Int. per item Sparsity

adressa 2,020,328 146,635 2,441 13.78 827.66 99.44%
cds-and-vinyl 1,075,615 87,712 59,934 12.26 17.95 99.98%
gowalla 2,018,421 64,115 164,532 31.48 12.27 99.98%
hetrec-lastfm 71,355 1,859 2,823 38.38 25.28 98.64%
movielens-1m 574,376 6,034 3,125 95.19 183.8 96.95%
musical-instruments 147,173 18,177 7,414 8.1 19.85 99.89%
retailrocket 240,938 22,178 17,803 10.86 13.53 99.94%
video-games 291,985 33,625 12,455 8.68 23.44 99.93%
yelp 3,999,684 268,658 109,340 14.89 36.58 99.99%

Data Splitting Our primary analysis revolves around the effect of different data split random
seeds on recommendation accuracy. We want to show how different data split random seeds
affect the common practice of holdout splits and compare this to the machine learning standard
of cross-validation. Therefore, we perform 20 holdout splits with different data split random
seeds for each data set. We split the interactions with a ratio of 80% for training and 20% for
testing, following other works [48, 49, 50]. For cross-validation, we use the same data split
random seeds to generate five non-overlapping testing folds for each data set 20 times.

Training & Evaluation We train a model for each recommendation algorithm per data set
per data split random seed. For each data split random seed, we train one model with the holdout
training data and evaluate it on the holdout testing data. Additionally, for cross-validation, we
train five separate models with the training data of all five data split folds, evaluate them on
the respective testing data, and average the results. We train all models with default algorithm
hyperparameters as we look for the effects of data split random seeds without the confounding
effects of hyperparameter optimization. We then evaluate the predictions with the nDCG@k
and Precision@k metrics with 𝑘 = {1, 5, 10}. We choose different values for 𝑘 to analyze the
effects at various cutoff points.

4. Results & Conclusion

To answer our research question, we quantify the expected variation in recommendation
accuracy of different data split random seeds when using holdout validation and compare this to
cross-validation. Therefore, we present the results of our experiments over all nine data sets
separated by the three algorithms, two metrics, three different cutoff values, and two validation
methods.

Figure 1 shows a comprehensive summary of these experiments. There is one plot per
algorithm, per metric with each cutoff value 𝑘, and each plot compares holdout to cross-
validation on the y-axis. On the x-axis, the value 100 designates the mean accuracy of the



evaluations of one data set with 20 different data split random seeds. Furthermore, each plot
contains the evaluations of all nine data sets. To illustrate, we observe a few outliers for both
validation methods by looking at the plot for the algorithm ALS evaluated on Precision@1.
One of them is at ∼106 for holdout, which means that there exists a data split random seed
that achieved an accuracy that is ∼6% higher than the accuracy for its data set on average.
Conversely, another achieved a ∼5.5% lower accuracy than the mean for its data. Finally, we
used a Wilcoxon test (𝛼 = 0.05) to verify whether the hypothesis 𝐻0, that the distributions of
the absolute deviation from the mean across seeds are equal for holdout and cross-validation,
holds per algorithm. We were able to reject 𝐻0 for each algorithm with 𝑝 < 0.001. Therefore,
the impact of the data split random seed on the evaluation of recommendation accuracy is
significantly different for holdout and cross-validation for all tested algorithms.

In the following paragraphs, we point to the main observations of these results, interpret their
meaning for our research goal, outline the limitations of this work, and conclude by answering
our research questions.

Observations We highlight seven observations that are numbered for reference: (1) In the
most extreme case of the non-baseline recommenders, which is ItemKNN evaluated with
Precision@1, there is one data split random seed that resulted in ∼6.3% higher accuracy than the
mean with a holdout split. (2) In the same case, since there is also a data split random seed that
achieves a ∼5.3% lower recommendation accuracy, the best-performing data split random seed
has a ∼12.2% higher accuracy than worst-performing data split random seed. (3) Cross-validation
makes the effect much less noticeable, where the highest deviation is only ∼2.3% over the mean.
(4) Similarly, the lowest-performing data split random seed for cross-validation is only ∼1.8%
lower than the mean, resulting in an accuracy range of ∼4.2%. (5) In terms of the effect of
data split random seeds on accuracy, ALS and ItemKNN are similar across the board, while Pop
has a larger range and more outliers. (6) We observe that the deviation shrinks with bigger 𝑘,
but it does so proportionally for both holdout and cross-validation. (7) There is no noticeable
difference in the observations between nDCG and Precision, and we note that nDCG@1 and
Precision@1 are equivalent.

Interpretation Observation (1) shows that specific data split random seeds can result in
extreme performance gain over the mean performance. Therefore, it is possible to cherry-pick
a data split random seed that significantly overestimates the performance of an algorithm.
Similarly, observation (2) shows that the opposite may be the effect. Results that are outliers in
either direction can be achieved if the data split random seed is chosen negligently, potentially
skewing results. Specifically, a static data split random seed may return extreme results, which
can go unnoticed in repeated experiments. Observations (3) and (4) show how cross-validation
mitigates this effect by drastically reducing the magnitude of outliers. Furthermore, a logical
conclusion is that if cross-validation can not be applied for any reason, averaging results over
repeated holdout with different data split random seeds is still expected to result in an accuracy
closer to the mean. Observation (5) shows how much the common baseline algorithm Pop reacts
to the randomness of data and how the traditional algorithms ALS and ItemKNN are similarly
affected by the randomness of data. Observation (6) may be explained by the fact that larger
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Figure 1: Results of the entire suite of experiments over all nine data sets and three algorithms. The
plots are separated by algorithm, metric, and cutoff value 𝑘. The validation methods on the y-axis of
each plot are Holdout Validation (HO) and Five-Fold Cross-Validation (CV). The x-axis shows the relative
performance deviation of data split random seeds in recommendation accuracy from the mean accuracy
over all 20 data split random seeds. Each plot further aggregates all nine data sets, so there are 180 data
points in total, with 20 data split random seeds for each of the nine data sets.



cutoff values 𝑘 lead to a higher probability that the recommended items contain ground-truth
interactions, reducing the impact of data split random seeds on the accuracy. However, while
the absolute deviation shrinks with larger 𝑘, cross-validation still mitigates the impact of data
split random seeds by a similar magnitude. Observation (7) is a hint to the similarity of Precision
and nDCG in recommender systems and shows that data split random seeds similarly affect both
metrics that do and do not account for the position of the recommended items.

Limitations The results are obtained with non-optimized models. We acknowledge that
hyperparameter optimization may have an effect on the reported distribution. It may be
worthwhile to repeat the experiments with hyperparameter optimization in the future but that
is an analysis with a different objective and incurs relatively high computational requirements.
Furthermore, we did not analyze the effects of data split random seeds with respect to data set
metadata. There may be a connection between the data set size, sparsity, and other features and
the variance of resulting performance scores. However, such a detailed analysis is outside the
scope of this paper. Still, it may be interesting to understand how much data set characteristics
affect the severity of the effects of data split random seeds in future work.

Conclusion We answer our research question by quantifying how significant the impact
of data split random seeds on recommendation accuracy is. Our results, observations,
and interpretation show that the impact of data split random seeds on recommendation accuracy
may be significant to warrant steps to mitigate it. Even with a cutoff value of 10, e.g., ALS
evaluated with Precision@10, any one data split random seed may still lead to accuracy that is
up to ∼4% lower than the mean accuracy over all data split random seeds, potentially changing
the ranks of compared approaches. To illustrate, if an experiment evaluates an algorithm on
Precision@10 without repetition on a data split random seed that produces an exceptionally low
accuracy, it may be assumed that it is up to ∼4% worse than it would be on average. On the
contrary, if a new algorithm is evaluated with the same parameters, it could be estimated to be
∼4% better than on average, potentially opening a rift between the two compared algorithms.

Given these results, we argue it is hard to trust a result evaluated with holdout validation on
a single data split random seed. We urge researchers to take randomness into account when
evaluating an algorithm properly. Due to our results, we are convinced that a single holdout
evaluation is not enough to gauge an evaluation pipeline’s performance accurately. Given the
distributions shown in Figure 1 and that we were able to reject 𝐻0 with 𝑝 < 0.001 for each
algorithm, we recommend performing at least repeated holdout validation or cross-validation,
and in the best case, repeated cross-validation. We acknowledge that experimenting may be
expensive, but misjudging algorithm performance may be more costly in the long term.
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