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Abstract
This paper focuses on the selection of hierarchical orders in multi-task architectures, a significant chal-
lenge in developing neural network architectures. We propose a systematic methodology based on the
statistical results of the Apriori algorithm to arrange the order of co-training tasks. Our findings demon-
strate that this approach can provide near-optimal performance, significantly reducing the exploration
times in multi-task scenarios. The models developed using this methodology surpass state-of-the-art per-
formances in flu vaccination intent prediction and music review sentiment analysis tasks, demonstrating
its efficacy.
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1. Introduction

The development of neural network architectures frequently necessitates a significant degree
of trial-and-error, in addition to substantial computational time. State-of-the-art models across
various tasks often require thousands of GPU days for training [1]. The environmental and
computational expenses associated with such complex models present serious challenges [2].
Therefore, developing guidelines to enhance performance and reduce iterative testing becomes
a critical area of exploration.
A key area of computational intensity arises when probing the hierarchical order of a hier-

archical multi-task architecture. Given four candidate tasks within an architecture, to obtain
optimal performance, we would need to experiment with all 24 possible hierarchical orders.
Previous works have demonstrated the efficacy of multi-task architectures in natural language
processing (NLP) tasks [3, 4, 5, 6]. However, the literature remains sparse in providing insights
on choosing the hierarchical order for these architectures. This paper attempts to bridge this
gap, offering a systematic analysis for selecting an optimal hierarchical order for multi-task
architectures.
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Table 1
Statistics of Twitter FV.

Flu Vaccination Region Gender Age
Taken/Plan 502 Midwest 227 Female 835 <= 30 775
No Intent 832 Northeast 427 Male 499 > 30 559

South 412
West 268

The crux of multi-task architectures lies in sharing learned embeddings and information
across tasks. We propose an approach based on the Apriori algorithm’s statistical results [7]
to organize the order of the co-training tasks. Our findings suggest that the hierarchical
order proposed by our approach achieves near-optimal performance, significantly reducing the
number of required exploration iterations.
The contributions of this paper are three-fold:

1. We highlight a crucial intersection between sustainable NLP and multi-task learning.
2. We propose an efficient method for arranging the hierarchical order in multi-task archi-

tecture, offering near-optimal performance with fewer explorations.
3. The models developed using our methodology outperform state-of-the-art performances

in flu vaccination intent prediction [8] and music review sentiment analysis [9] tasks.

2. Related Work

The human learning process often involves sharing information or experience across tasks,
an idea reflected in multi-task learning architecture. This concept has seen success in diverse
applications, such as computer vision [10] and NLP [11]. However, decisions regarding what
and how to share remain open questions. A comprehensive survey of multi-task learning is
provided by Zhang and Yang [12]. The field typically bifurcates into hard-sharing and soft-
sharing methods, as overviewed by Ruder [13]. In both cases, a majority of previous works
have focused on information sharing within the encoder [14, 15, 16]. This paper instead offers a
guideline for information sharing by designing a hierarchical architecture, particularly focusing
on the learning order selection. Bidirectional Encoder Representations from Transformers
(BERT) have revolutionized the NLP field [17]. Researchers have leveraged BERT and other
pre-trained text-encoders to set new standards on several NLP tasks [18, 19, 20]. This work
uses BERT as an encoder and delves further into the issue of hierarchical order selection.

3. Datasets

Our experiments utilize two publicly available datasets. Each dataset contains four labels for a
single input sample, therefore, we treat our task setting as a four-label classification problem.
The first dataset, denoted as Twitter FV, is sourced from Twitter [8]. The corresponding

task involves predicting whether the author of a tweet has already received a flu vaccination
or intends to do so. The second dataset, referred to as Amazon Sentiment, is collected from



Table 2
Statistics of Amazon Sentiment.

Sentiment Region Gender Age
Positive 27,035 Midwest 4,641 Female 6,665 <= 30 6,922
Negative 4,961 Northeast 9,822 Male 25,331 > 30 25,074

South 8,956
West 8,577
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Figure 1: Structures of multi-task architectures. 𝐼𝑖 and 𝐸𝑖 denote the 𝑖th input token and the embedding
of the 𝑖th input token, respectively. 𝑇𝑗 denotes the prediction of Task 𝑗.

Amazon music reviews [9]. The task for this dataset is to label given reviews as either positive
or negative. Huang and Paul [9] identified a correlation between the writer’s demographic
factors (region, gender, and age) and the tasks of flu vaccination intent and sentiment analysis.
Accordingly, we incorporate these demographic features from their dataset as labels for auxiliary
tasks. The statistics for both the Twitter FV and Amazon Sentiment datasets are detailed in
Table 1 and Table 2, respectively.

4. Methods

4.1. Models

For individual task training performance testing, we adopt BERT-Large [17], a 24-layer Trans-
former [21]. We compare the standard multi-task architecture depicted in Figure 1 (a) with the
hierarchical multi-task architecture shown in Figure 1 (b). We preprocess the input text using
WordPiece [22] to obtain the input embedding, 𝐼. Post BERT-Large encoding, we acquire the
token embedding 𝐸 ∈ ℝ1024. Following the classification task setup in previous work [17], we
utilize the first token embedding of an input instance (𝐸1) to represent the encoded informa-
tion. Subsequently, a one-layer perceptron is adopted for decoding and prediction. The Adam
optimizer [23] is used for stochastic optimization, employing the cross-entropy loss function.



Table 3
Lift in each dataset.

Region Gender Age
Midwest Northeast South West Female Male <= 30 > 30

Twitter FV - Taken 1.1824 0.8339 1.0578 1.0213 1.1393 0.7669 1.2344 1.1961
Sentiment - Positive 1.0203 0.9614 1.0133 1.0193 1.0203 0.9947 0.9901 1.0027

Table 4
𝐼-𝑆𝑐𝑜𝑟𝑒 in each dataset.

Region Gender Age
Twitter FV - Taken 10.69% 18.62% 21.52%
Sentiment - Positive 2.29% 1.28% 0.63%

4.2. Hierarchical Order Selection Approach

In a hierarchical multi-task architecture, the optimal task order selection remains an open
question. Exhaustively exploring all hierarchical orders to achieve the best performance is an
obvious yet highly inefficient approach. This paper proposes a method based on the Apriori
algorithm [7] for selecting the hierarchical order.

The Apriori algorithm is typically employed for association rule learning, with market basket
analysis being a common application. Using this algorithm, given an item in a customer’s basket
(for instance, a bottle of milk), we can calculate the probability of another item (like cereal) also
being included in the basket, based on previous transaction statistics. In our method, we treat
each label as an individual item and compute the 𝐿𝑖𝑓 𝑡 of a given label towards other labels as
defined in Equation 1.

𝐿𝑖𝑓 𝑡(𝐿𝑖, 𝐿𝑗) =
𝑆𝑢𝑝𝑝𝑜𝑟 𝑡(𝐿𝑖 ∩ 𝐿𝑗)

𝑆𝑢𝑝𝑝𝑜𝑟 𝑡(𝐿𝑖) × 𝑆𝑢𝑝𝑝𝑜𝑟 𝑡(𝐿𝑗)
, (1)

Here, 𝑆𝑢𝑝𝑝𝑜𝑟 𝑡(⋅) denotes the frequency of the given label set in the dataset, and 𝐿 denotes the
label set. Table 3 presents the Lift between different labels in each dataset.

To estimate the informativeness of each auxiliary task, we further calculate the informative-
ness score (𝐼-𝑆𝑐𝑜𝑟𝑒) using Equation 2.

𝐼-𝑆𝑐𝑜𝑟𝑒(𝑇 𝑎𝑠𝑘𝑖|𝐿𝑗) =
∑𝑁

𝑡=1 ∣ 𝐿𝑖𝑓 𝑡(𝐿
𝑇𝑎𝑠𝑘𝑖
𝑡 , 𝐿𝑗) − 1 ∣
𝑁

, (2)

In this equation, 𝑁 denotes the number of labels in 𝑇𝑎𝑠𝑘𝑖. The principle behind the 𝐼-𝑆𝑐𝑜𝑟𝑒 is
that whether the target label has a positive (> 1) or negative (< 1) correlation to 𝐿𝑗, the further
it is from 1, the more information the target label provides. Table 4 displays the 𝐼-𝑆𝑐𝑜𝑟𝑒 for each
dataset.

We recommend arranging the auxiliary tasks in an ascending order of 𝐼-𝑆𝑐𝑜𝑟𝑒. The proposed
approach’s suggested hierarchical orders for both datasets are listed in Table 5. Consequently,
given the order of auxiliary tasks, we only need to explore four hierarchical orders instead of
probing all possible 24 combinations.



Table 5
Suggested hierarchical orders. fv, s, r, g, and a denote the flu vaccination intent detection, sentiment
analysis, region, gender, and age tasks, respectively.

Twitter FV Amazon Sentiment
fv-r-g-a s-a-g-r
r-fv-g-a a-s-g-r
r-g-fv-a a-g-s-r
r-g-a-fv a-g-r-s

Table 6
Experimental results of Twitter FV.

Model
Flu Vaccination (fv)
Macro Weight

NUFA+w [9] 85.41 87.46
Single-task BERT 86.51 87.29
Vanilla multi-task 85.83 86.75
Hierarchical multi-task (g-a-fv-r) 86.66 87.40

Table 7
Experimental results of Amazon Sentiment. * denotes the results are significantly better than the
second-best result (ranking based on macro-averaged F1-score) at 𝑝 < 0.05 using McNemar’s test.

Model
Sentiment (s)

Macro Weight
NUFA+w [9] 66.74 83.54
Single-task BERT 66.25 82.32
Vanilla multi-task 64.59 83.49
Hierarchical multi-task (a-r-s-g) 70.43* 85.21*

5. Experiments

Huang and Paul [9] divide the dataset into training and test sets randomly but do not specify
the indices for splitting. Given Gorman and Bedrick’s findings [24], single ”standard split”
results may not be reliable. Thus, we employ five-fold cross-validation to gauge each model’s
performance. To ensure reproducibility, the splitting indices are provided in the supplementary
materials.1 We report the average macro-F1 score. Since Huang and Paul [9] use the weighted
F1-score on the Twitter FV and Amazon Sentiment datasets, we also report results using this
metric.

5.1. Comparison with Baselines

In this section, we juxtapose the performance of the best hierarchical model against other
baseline models. For the Twitter FV and Amazon Sentiment datasets, we utilize NUFA+w [9]
as a baseline, a BiLSTM-based multi-task architecture. We also employ single-task BERT as

1http://explorationreduction.nlpfin.com/

http://explorationreduction.nlpfin.com/


Table 8
Performance of hierarchical multi-task architecture with suggested hierarchical orders. The bold results
are not significantly different from the best performance. FV and S denote the flu vaccination intent
detection and sentiment analysis tasks.

Order Macro F1 Rank

FV

Best g-a-fv-r 86.66 1/24

Suggested

fv-r-g-a 86.00 2/24
r-g-fv-a 85.66 4/24
r-g-a-fv 85.30 12/24
r-fv-g-a 84.39 19/24

S

Best a-r-s-g 70.43 1/24

Suggested

a-g-s-r 70.12 2/24
a-g-r-s 69.33 14/24
s-a-g-r 69.29 16/24
a-s-g-r 65.00 22/24

a robust baseline for all datasets. Table 6 and Table 7 present the experimental results, also
detailing the hierarchical order. The parenthesized information denotes the hierarchical order
from Task 1 to Task 4. We observe that the hierarchical architecture consistently outperforms
across all datasets.
Interestingly, the vanilla multi-task architecture’s performance trails behind that of single-

task BERT in both the Twitter FV and Amazon Sentiment datasets. This finding suggests that
when the encoder is merely fine-tuned without shared information between the task-specific
components, some task-specific information may not be effectively learned by the models.

5.2. Performance with Suggested Orders

Table 8 displays the performance of the suggested orders. We find that the nearly optimal
performance is achieved by exploring just four recommended hierarchical orders. Notably, this
near-optimal performance does not significantly deviate from the best performance, achieved
by probing all hierarchical orders. These results validate the efficacy of our proposed approach
for hierarchical order selection and highlight the importance of prior knowledge about the
dataset and labels. With our approach, attaining near-optimal performance requires exploring
only a sixth of all possible permutations in four-task cases.

6. Discussion

6.1. Correlation between the Tasks

The performance of the hierarchical multi-task architecture is found to be on par with single-
task BERT according to Table 6. However, Table 7 shows a significant difference between the
performances of the hierarchical multi-task architecture and single-task BERT. We provide an
in-depth analysis of this phenomenon in this section.

We execute ordinary least squares regression (OLS) on the task performances in both datasets.



Table 9
OLS Results. DV and IV denote the dependent and independent variables. std err denotes the standard
error. t and P denote the t-value and p-value. The confidence level is set as 95%.

DV IV coef std err t P > ∣ t ∣

FV
Region 0.15 0.12 1.33 0.19
Gender 0.04 0.06 0.79 0.43
Age 0.00 0.09 -0.05 0.96

S
Region 0.99 0.04 26.91 0.00
Gender 1.16 0.06 18.09 0.00
Age 0.80 0.13 6.33 0.00

The OLS inputs consist of experimental results from all hierarchical orders, resulting in 24
distinct experimental results. Table 9 presents the statistics. We find that the performance
of flu vaccination intent detection is not significantly correlated with the performance of all
auxiliary tasks. This indicates that while demographic information proves useful in BiLSTM-
based architectures [9], it may not be beneficial for the flu vaccination intent detection task in
a BERT hierarchical multi-task architecture. Conversely, demographic information remains
useful for music review sentiment analysis, as performance improvements in auxiliary tasks
also enhance the sentiment analysis task’s performance.

6.2. Limitations

While our study offers initial insights into optimizing hierarchical order selection in multi-task
architectures, it does have certain limitations. First, we did not analyze all multi-task setting
datasets due to the sheer volume of possibilities. Another potential limitation is our omission of
GPU cost calculations in our study. However, the inferred reduction in carbon dioxide emissions
stemming from decreased exploratory iterations is an important point to note. Assuming
identical datasets and models, our proposed method implies that nearly optimal performance
can be achieved with only one-sixth of the carbon dioxide emissions associated with exhaustive
exploration. Lastly, the performance correlation between tasks observed in our study could
be context-specific. As demonstrated, the demographic information was useful in the context
of music review sentiment analysis but not in the flu vaccination intent detection task. This
finding suggests that not all information may be universally useful across different tasks in a
hierarchical multi-task learning setup.

7. Conclusions

This paper presented a systematic analysis for selecting an optimal hierarchical order for multi-
task architectures, addressing a gap in the literature. We proposed an approach based on the
Apriori algorithm to organize task order and demonstrated that the resulting hierarchical order
achieves near-optimal performance while considerably reducing the number of exploration
iterations.
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